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computing Real Square Roots of a Real Matrix*
Nicholas J. Higham

Department of Mathematics

{niversity of Manchester

Manchester M13 9PL., England

In memory of James H. Wilkinson

gubmitted hy Hans Schneider

ABSTRACT

Bjorck and Hammarling [1] describe a fast, stable Schur method for computing a
square oot X of a matrix A (X* = A). We present an extension of their method
which enables real arithmetic to be used throughout when computing a real square
root of a real matrix. For a nonsingular real matrix A conditions are given for the
existenice of a real square root, and for the existence of a real square root which is a
polynomial in A; the number of square roots of the latter type is determined. The
conditioning of tnatrix square roots is investigated, and an algorithm is given for the
computation of a well-conditioned square root.

1. INTRODUCTION

Given a matrix A, a matrix X for which X2 = A is called a square root of
A. Several authors have considered the computation of matrix square roots [3,
1.9.10. 15, 16]. A particularly attractive method which utilizes the Schur
decomposition is described by Bjorck and Hammarling {1]; in general it
requires complex arithmetic. Qur main purpose is to show how the method
can be extended so as to compute a real square root of a real matrix, if one
exists, in real arithmetic.

The theory behind the existence of matrix square roots is nontrivial, as
can be seen by noting that while the n X n identity matrix has infinitely
many square roots for n > 2 (any involutary matrix such as a Householder
transformation is a square root), a nonsingular Jordan block has precisely two
square roots (this is proved in Corollary 1).

*This work was carried out with the support of a SERC Research Studentship.
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406 NICHOLAS ]. HIGH4y
In Section 2 we define the square root function of a matrix. The featy
which complicates the existence theory for matrix square roots is thatj
general not all the square roots of a matrix A are functions of A.

In Section 3 we classify the square roots of a nonsingular matrix A
manner which makes clear the distinction between the two classes of squar
roots: those which are functions of A and those which are not.

With the aid of this background theory we find all the real square roots«
a nonsingular real matrix which are functions of the matrix, and show ha
these square roots may be computed in real arithmetic by the “real St
method.” The stability of this method is analysed in Section 5.

Some extra insight into the behavior of matrix square roots is gainedh
defining a matrix square root condition number. Finally, we give an algoritly
which attempts to choose the square root computed by the Schur method ¢
that it is, in a sense to be defined in Section 5.1, “well conditioned.”

2. THE SQUARE ROOT FUNCTION OF A MATRIX

Let A e C™™", the set of all »n X n matrices with complex elements, ai
denote the Jordan canonical form of A by

Z'AZ =] =diag(], J5...-. 1,). 21
where
A, 1 0|
A, 1
]k=]]\(AA)= ECJ)HX!HL- (2:
. 1
L 0 A ]

If A has s < p distinct eigenvalues, which can be assumed without Jos
generality to be Ay, A,,...,A,, then the minimum polynomial of A-t
unigue monic polynomial p of lowest degree such that p( A)= 0—is givenb

v(A) = ﬁ(k—k.)"', o

where n; is the dimension of the largest Jordan block in which A, appes
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1L, p 168]. The values
FOAN), O<jsn,—1, l<iss, (2.4)

yethe values of the function f on the spectrum of A, and if they exist, f is
wid 1o be defined on the spectrum of A.

We will use the following definition of matrix function, which defines
fidtto be a polynomial in the matrix A. The motivation for this definition
which is one of several, equivalent ways to define a matrix function [17}]) is
genin {6, p. 95 L], [11, p. 168 ff.].

Derinition 1 6, p. 97}
120777 Then

Let f be a function defined on the spectrun of

flA)=r(A),

shere r is the unique Hermite interpolating polynomial of degree less than

Z n,=degy

i=1
which satisfies the interpolation conditions

r A= (X)), 0<jsn -l I<iss.

Of particular interest here is the function g(zs)= 42 which is certainly
defined on the spectrum of A if A is nonsingular. However, g(A) is not
wiguely defined until one specifies which branch of the square root function
isto be taken in the neighborhood of each eigenvalue A . Indeed, Definition 1
delds a total of 2° matrices g( A) when all combinations of branches for the
qure roots g(A,), 1 <i<s, are taken. It is natural to ask whether these
mtrices are in fact square roots of A. That they are can be seen by taking
Qu, uy) = u} — uy, fi(A)=A"%, with the appropriate choices of branch in
the neighborhoods of A, A,.... Ay, and f{A)= A in the next result.

TuEoREM 1. Let Q(u,, ty,..., uy) bea polynomial in u,, Uy, U aned
letf, f5... .. fi be functions defined on the spectrum of A € cn" for which
Qi far---» J1) is zero on the spectrum of A. Then

O(£i(A), fi(A)..... ilA))=0.
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Proof. See[11, p. 184]. |

The square roots obtained above, which are by definition polynomialsi
A, do not necessarily constitute all the square roots of A. For example,

1+aq'=—1, aeC, (23
-

xar={ g

yet X(a) is evidently not a polynomial in — I. In the next section we clasi
all the square roots of a nonsingular matrix A € C"*". To do so we need I
following result concerning the square roots of a Jordan block.

Lemma 1. For A, # 0 the Jordan block Ji(A) of (2.2) has precisely t
upper triangular square roots

I , £ D) |
) (M) NCTENE
L= LP(A,) = ) : . j=L
FAAD
k 0 FN)

i2)

where fi\)= N2 and the superscript j denotes the branch of the squarc
in the neighborhood of \,. Both square roots are functions of k.

Proof. For a function f defined on the spectrum of A the fornnda ¢
for f(J,) follows readily from the definition of f(A) [6, p. 98]. Hence!
and L‘f’ are (distinct) square roots of J;; we need to show that they are:
only upper triangular square roots of J;. To this end suppose that X =(x,
an upper triangular square root of J,. Equation (i, #) and (i, i + 1) elemeut
X2=7] . gives

xZ =X, l<i<mg,

and

(i +x 0% 0 =1 l<ismg—1

BAL SQUARE ROQOTS 409

e second equation implies that x,; + x  # 0, so from the first,

[ W

- = = - L2
X SXg=...=X =+ /"

my, my
ince x;, + x ;. # 0 for all i and j, X is uniquely determined by its diagonal

lements (see Section 4.2); these are the same as those of LY or LY, so
(=L or X = LY. [

. SQUARE ROOTS OF A NONSINGULAR MATRIX

A prerequisite to the investigation of the real square roots of a real matrix
san understanding of the structure of a general complex square root. In this
ection we extend a result of Gantmacher’s [6, p. 232] to obtain a useful
haracterisation of the square roots of a nonsingular matrix A which are
unctions of A. We also note some interesting corollaries.

Our starting point is the following result. Recall that L{’ and L{ are the
wo upper triangular square roots of J; defined in Lemma 1.

TueoreMm 2. Let A € €"™" be nonsingular and have the Jordan canoni-
ol form {(2.1). Then all square roots X of A are given by

X = ZU diag( LYV, LY>,..., LY )U ‘27, (3.1)

there j, is 1 or 2 and U is an arbitrary nonsingular matrix which commutes

with J.

Proof.  See [6, pp. 231, 232]. =

The next result describes the structure ¢f the matrix U in Theorem 2.

Turorers 3. Let A € C™" have the Jordan canonical form (2.1). All
solutions of AX = XA are given by

X=2ZWZ !,

where W= (W) is a block matrix with

N#A)
W.. = A /ECHI,XHI,‘

ol
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where T;; is an arbitrary upper trapezoidal Toeplitz matrix [(T;}),, =48, ,

which for m, <m; has the form T,; = [0,U,;], where U, is square.

Proof. See [6, pp. 220, 221].

We are now in a position to extend Theorem 2.

TueoReM 4. Let the nonsingular matrix A € C"*" have the Jords
canonical form (2.1), and let s < p be the number of distinct eigencaly
of A.

Then A has precisely 2° square roots which are functions of A, given b

X;=Zdiag( LYV, Ly=,..., L) 27, 1<j<2, (3
corresponding to all possible choices of j,,.... j,. ju=1or 2, subjectto
constraint that j, = j, whenever A, = A,.

If s <p, A has square roots which are not functions of A; they for
parametrized families

Xj(U) = ZUdiag(Lﬁ“’, L(gjz),‘“, L(pj,,)) U-17- l’

where f is 1 or 2, U is an arbitrary nonsingular matrix which commutes wi
I, and for each j there exist i and k, depending on j, such that X, = A, whi
Ji # J

Proof. We noted in Section 2 that there are precisely 2° square roots
A which are functions of A. That these are given by Equation (3.2) follo
from the formulae [6, p. 98 ff.]

flA)=fZJZ ") =ZA])Z ' = Zdiag( f(],))}Z ",

and Lemma 1. The constraint on the branches { j; } follows from Definition

By Theorem 2, the remaining square roots of A (if any), which, by t
first part, cannot be functions of A, either are given by (3.3) or have the for
ZULU "'Z "', where L ;= diag(Ly",..., L{}») and X,=2L2 " isa
one of the square roots in (3.2), and where U is an arbitrary nonsingul
matrix which commutes with J. Thus we have to show that for every such
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iL,

ZULI.U 17z 1= ZLjZ L
tis, UL, U ™ = Lj or equivalently, UL;= L,U. Writing U in block form

(U j) to conform with the block form of J, we see from Theorem 3 that
ce U commutes with J,

UL;=LU iff ULy’ =LYU,; whenever A\, =X,.

erefore consider the case A, = A, and suppose first m; > m;. We can write

Yi
U""z[ok}’

ere Y, is a square upper triangular Toeplitz matrix. Now A, = A implies
zj. 50 LY has the form

Lo [L‘,j*’ M]
' 0 N

s

. Y., LU
(’I:'kL(k“)z [ ik k }
0

_ l:l‘(kh)o Y, } _ L(,j')Uik'

here we have used the fact that square upper triangular Toeplitz matrices
mmite. A similar argument applies for m, < m;, and thus the required
adition holds. =

Theorem 4 shows that the square roots of A which are functions of A are
ilated”” square roots, characterized by the fact that the sum of any two of
¢ir eigenvalues is nonzero. On the other hand, the square roots which are
it finctions of A form a finite number of parametrized families of matrices;
¢h family contains infinitely many square roots which share the same
ectnim.
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Several interesting corollaries follow directly from Theorem 4,

CoroLrary 1. If A, # 0, the two square roots of Ji(A,) given in Len
1 are the only square roots of JL{A,).

CoROLLARY 2. If AEC™ ", A is nonsingular, and its p elemen
divisors are coprime — that is, in (2.1) each eigenvalue appears in only
Jordan block —then A has precisely 27 square roots, each of which i
function of A.

The final corollary is well known.

CoroLLARY 3. Every Hermitian positive definite matrix has a i
Hermitian positive definite square root.

4. AN ALGORITHM FOR COMPUTING REAL SQUARE ROOTS

4.1. The Schur Method

Bjorck and Hammarling [1] present an excellent method for computi
square root of a matrix A. Their method first computes a Schur decomy
tion

Q*AQ =T,

where Q is unitary and T is upper triangular [8, p. 192], and then detem
an upper triangular square root U of T with the aid of a fast recursio
square root of A is given by

X = QUO*.

A disadvantage of this Schur method is that if A is real and has no
eigenvalues, the method necessitates complex arithmetic even if the 5
root which is computed should be real. When computing a real square
is obviously desirable to work with real arithmetic; depending on the rel
costs of real and complex arithmetic on a given computer system, subst
computational savings may accrue, and moreover, a computed real
root is guaranteed.

In Section 4.3 we describe a generalization of the Schur method v
enables the computation of a real square root of A € R"*" in real arithn
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& however, we address the important question *When does A € R"*"
eareal square root?”

. Existence of Real Square Roots
The following result concemns the existence of general real square
s—~those which are not necessarily functions of A.

ToomeM 5. Let A € R"™" be nonsingular. A has a real square root if
donly if each elementary divisor of A corresponding to a real negative
mealwe occurs an even number of times.

Pwof. The proof is a straightforward modification of the proof of
eorem 1 in [14), and is omitted. |

Theorem 5 is mainly of theoretical interest, since the proof is nonconstruc-
¢and the condition for the existence of a real square root is not easily
«ked computationally. We now focus attention on the real square roots of
¢R"*" which are functions of A. The key to analysing the existence of
wre roots of this type is the real Schur decomposition.

Tezorenm 6 (Real Schur decomposition). [f A€R"™", then there exists

ral orthogonal matrix Q such that

R“ ng T le
R, R m

OTAOZR: 22 . 2 ER”X", (41)
0 Rmm

e vach block R, is either 1X1, or 2% 2 with complex conjugate

gncatiees N, and Ao N+ N,

Proof.  See (8, p. 219]). u

Suppose that A €R"*" and that f is defined on the spectrum of A.
ince A and R in (4.1) are similar, we have

flA)=QAR)Q,
that fLA) is real if and only if
T =f(R)
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is real. It is easy to show that 7 inherits R’s upper quasitriangular struc
and that

Tiizf(R,'.‘)a l<igm.

If A is nonsingular and f is the square root function, then the wholey
is uniquely determined by its diagonal blocks. To see this equate (i, j) bl
in the equation T2 = R to obtain

i
b) I, T,;=R,;, j=i
k=i

These equations can be recast in the form

T>=R,, Igigm, i
i1
TiiTij+TijTjj=Rij_ Z Trkaja j>i W
k=i+1

Thus if the diagonal blocks 7, are known, (4.3) provides an algorithn
computing the remaining blocks 7; ; of T along one superdiagonal at a tin:
the order specified by j —i =1,2,..., m — 1. The condition for (4.3) to ha
unique solution T;; is that T,; and —T;; have no eigenvalue in com
(8, p. 194; 11, p. 262). This is guaranteed because the eigenvalues of T
iy = f{A,), and for the square root function f(A,)= —f(/\j) implies |

;= ?\j and hence that f{A;)= 0, that is A, = 0, contradicting the nousi
larity of A.

From this algorithm for constructing T from its diagonal blocks
conclude that T is real, and hence f{A) is real, if and only if each of
blocks T, = f(R,,) is real. We now examine the square roots f(T) of a?
matrix with complex conjugate eigenvalues.

LeMMa 2. Let A€ R?**? have complex conjugate eigenvalues M.
6 + iy, where p+0. Then A has four square roots, cach of which
function of A. Two of the square roots are real, with complex conju
eigenvalues, and two are pure imaginary, having eigenvalues which ar
complex conjugates.

IEAL SQUARE ROOTS 415

Poof. Since A has distinct eigenvalues, Corollary 2 shows that A has
our square roots which are all functions of A. To find them, let

7 'AZ = diag(\, \)

=0l +ipK,
;\'hel'e
_|1 0
k=[5 9
Then
A=6I+pW, (4.4)

shere W = iZKZ ~ !, and since 8, p € R, it follows that W € R***,
If (a+iB)>=8+ip, then the four square roots of A are given by
1=ZDZ !, where

a+i 0
poy[tti ]

0 +(a—if)
that is,
D= +{al +iBK)
or
D=+(aK+ipl)=+i(Bl—iaK).
Thus

X =+(al + W), (4.5)
that is, two real square roots with eigenvalues +(a+ i, a—if8); or
X=1i(Bl—aW),

envalues +(a+ i, —a+if).

that is, two pure imaginary square roots with eig .
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With the aid of the lemma we can now prove

TueoRem 7. Let A€R"™" be nonsingular. If A has a real negti
eigenvalue, then A has no real square roots which are functions of A.

If A has no real negative eigenvalues, then there are precisely 2"
square roots of A which are functions of A, where 1 is the number of dlistinr
real eigenvalues of A, and c¢ is the number of distinct complex conjug
eigenvalue pairs.

Proof. Let A have the real Schur decomposition (4.1), and let f beth
square root function. By the remarks preceding Lemma 2, F(AY is real it
only if f(R,,) is real for each i. if R, =(r,) with 7, <0, then f(Ri
necessarily nonreal; this gives the first part of the theorem.

If A has no real negative eigenvalues, consider the 2* square roots fi1
described in Theorem 4. We have s = +2¢. From Lemma 2 we see th
f(R,,) is real for each 2x 2 block R,; if and only if FIN) = f(A;) whenes
A, = A, where {A} are the eigenvalues of A. Thus, of the 2° = PARER
in which the branches of f can be chosen for the distinct eigenvil
AL Ag,..., A, of A, precisely 271 of these choices yield real square roots. !

An example of a class of matrices for which Theorems 5 and 7 guarat
the existence of real square roots is the class of nonsingular M-matrices. si
the nonzero eigenvalues of an M-matrix have positive real parts (cf. [13)}

It is clear from Theorem 5 that A may have real negative eigenvaluesu
yet still have a real square root; however, as Theorem 7 shows, and Equati
(2.5) illustrates, the square root will not be a function of A.

We remark, in passing, that the statement about the existence of i
square roots in {5, p. 67] is incorrect.

4.3. The Real Schur Method

The ideas of the last section lead to a natural extension of Bjtrcka
Hammarling’s Schur method for computing in real arithmetic a real s
root of a nonsingular A € R"*". This real Schur method begins by comput
a real Schur decomposition (4.1), then computes a square root T of Rfn
equations (4.2) and (4.3), and finally obtains a square root of A via!
transformation X = QTQ".

We now discuss the solution of Equations (4.2) and (4.3). The 2 X2 bl
T, in (4.2) can be computed efficiently in a way suggested by the proot
Lemma 2. The first step is to compute # and p, where A =48+ ipis
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genvalue of the matrix

R, = [r“

T2
Toy  Tao|

/e have

B =3(r,+rm), ;L=5Vf—(r“—r22)2—4r2]r12.

et @ and B such that (a+ iB)% =8 + ip are required. A stable way to
ompute & is from the formula

(0+V'P—2jFﬁ2
2 7

/ - ‘uw——-—— . gg(),
V2(\_8+"‘;02+”2)

lisgiven in terms of « and x by 8 = p /2a. Finally, the real square roots of
,, are obtained from [cf. (4.4) and (4.5)]

1
i i(a1+ —Q—E(Ru_gl))
1 1
a+ 4‘01‘(’11‘ T2) T2

1 1
D 21 “‘Zg(rn“’m)

+ (4.6)

\tice that, depending on «, 1,, may have elements which are much larger
hn those of R,,. We discuss this point further in Section 6.
{1, is of order p and T is of order g, (4.3) can be written

"

I

Iiklk] ’

, i1
(1(}@1‘“+7;’§®1r,)5tr(1;j)=5tr R,- 2

k=1i+1

(4.7)

shere the Kronecker product A®B is the block matrix (a; ;B for B=
buby,.... b,]. Str(B) is the vector (b1, b, b and I, is the rXr
dentity matrix. The linear system (4.7) is of order pg = 1. 2, or 4 and may be
wlved by standard methods.
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Any of the real square roots f(A) of A can be computed in the ab

fashion by the real Schur method. Note that to conform with the definitio:

f(A) we have to choose the signs in (4.6) so that T;;, and T}; have the %

eigenvalues whenever R,;, and R; do; this choice ensures simultaneousl
nonsingularity of the linear systems (4.7).

The cost of the real Schur method, measured in flops [8, p. 32], mati
broken down as follows. The real Schur factorization (4.1) costs about li
flops [8, p. 235]. Computation of T as described above requires n’/6 fly
and the formation of X = QTQ" requires 3n°/2 flops. Interestingly. ot
small fraction of the overall time is spent in computing the square root I

5. STABILITY AND CONDITIONING

Two concepts of great importance in matrix computation, which ¢
particularly relevant to the matrix square root, are the concepts of stabi
and conditioning. We say an algorithm for the computation of X = {4

stable if the computed matrix X is the function of a matrix “near” .
ideally X = flA + E) with ||E|| <¢|A|, where ¢ is of the order ofi
machine unit roundoff « [8, p. 33).

The accuracy of a computed matrix function, as measured by the reli
error ||X — f{ A/ f(A)]], is governed by the sensitivity of f(A)to pertn
tions in A, and is largely beyond the control of the method used to conp
X. No algorithm working in finite precision arithmetic can be expected
yield an accurate approximation to f{ A) if for that particular A, £ s wnd
sensitive to perturbations in its argument.

In the next two sections we analyse the stability of the real Schur met
and the sensitivity of the matrix square root.

5.1, Stability of the Real Schur Method
Let X be an approximation to a square root of A, and define the rd

E=X?-A.

Then X2%= A + E, revealing the interesting property that stability o
algorithm for computing a square root X of A corresponds to the residu
the computed X being small relative to A.

Consider the real Schur method. Let T denote the computed appmy
tion to a square root T of the matrix R in (4.1), and let

F=T®-R.
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Making the usual assumptions on floating point arithmetic 8, p. 33], an error

aalysis analogous to that given by Bjorck and Hammarling in [1] renders the
bound

L2l ( Iy
<|l+e¢ , 5.
iR <R (5.1
where ||-||  is the Frobenius norm {8, p. 14] and ¢ is a constant of order 1.
Following [1], we define for a square root X of A and a norm ||-|| the
number
X2
X)= = 1.
o) ="pay

suming that || Tl = T

¢

|- we obtain from (5.1}, on transforming by @ and

1I1A||i. < [1+ enap(X)]u.

(5.2)

We conclude that the real Schur method is stable provided that a,(X) is
sufficiently small.

In [1] it is shown that the residual of fl(X), the matrix obtained by
nunding X to working precision, satisfies a bound which is essentially the
ume as (3.2). Therefore even if a(X) is large, the approximation to X
furnished by the real Schur method is as good an approximation as the
wunded version of X if the criterion for acceptability of a square root
approximation is that it be the square root of a matrix “near” to A.

Some insight into the behavior of a( X) can be gleaned from the inequali-
ties tef. [1])

k(X)
r(A)

<a(XY<n(X),

where w(A)=||A||||A |l is the condition number of A with respect to
mversion. Thus if «(X) is large, X is necessarily ill conditioned with respect
o inversion, and if A is well conditioned then a( X} = &(X).

Loosely, we will regard a as a condition number for the matrix square
wot, although in fact it does not correspond to the conventional notion of
wnditioning applied to a square root, namely, the sensitivity of the square
wot to perturbations in the original matrix. The latter concept is examined in
the next section.
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5.2, Conditioning of a Square Root
Define the function F:C"*" — C"*" by F(X)= X?— A. The (Fréche
derivative of F at X is a linear operator F/(X):C""" — C""", specified b:

F/(X)Z=XZ + ZX.

As the next result shows F/(X) ! plays a key role in measuring the sensitivit
of a square root X of A.

Tueorem 8. Let X2= A, (X + AX)2= A + E, and suppose that F{1
is nonsingular. Then for sufficiently small || E||

LAILIEN , o1
; + O||E||7)-
I pap + OUEr) >

AX o
”||X|[” <[ Fxy

Proof. One finds easily that AX = F(X) ™ Y E — AX?). On taking nerm:
this leads to

1aX|) <|

, 1 12
F(X) [ QEN+ A X)),
a quadratic inequality which for sufficiently small || E|| has the solution
1aXiE< [F/(X) " HIEN+ O(IEN®).

The result follows by dividing throughout by || X||. !

Theorem 8 motivates the definition of the matrix square root condific
number

(Rl
al X))

X =[x gl =) (54

The linear transformation F/(X) is nonsingular, and y(X) is finite, if and onh
if X and — X have no eigenvalue in common (8, p. 194]; if A is nonsingulx
Theorem 4 shows that this is the case precisely when X is a function of
Hence the square roots of A which are not functions of A are characterisa
by having “infinite condition™ as measured by vy. This is in accord with (3.3i
which indicates that such a square root is not well determined: indeed, v

can regard even zero perturbations in A as giving rise to unbounds
perturbations in X,
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By combining (5.2), (5.3), and (5.4) we are able to bound the error in a
square root approximation X = X computed by the real Schur method as
follows

X—X||p g
X — Xl < ey X)ap(X)u +0(u”)
1X1 e

|FAx) | X e + O(u), (5.5)

=c'n

where ¢’ is a constant of order 1.
We conclude this section by examining the conditioning of the square
wots of two special classes of matrix. The following identity will be useful (see

)
(5.6)

[F(x) ', =|luex + x"er)

a*

. . x> . e
Leamma 3. If the nonsingular matrix A€ C"*" is normal and X is a
square root of A which is a function of A, then

(i) X is normal,
(i) as(X)=1, and

(iii} we have

“X“I-‘ 1 (5‘7)
min g+ p ap (X}’

lgijsn

Y.V( X)=

where { pt,} are the eigenvalues of X.

Proof. Since A is normal, we can take Z to be unitary and m =1,
l<k<p=n, in (2.1) [8, p. 193]. The unitary invariance of the 2-norm
implies |jAll, =max, ., . ./A,}, and Theorem 4 shows that
pi=AX;, l<i<n. (5.8)

X = Zdiag(g,, pas- - Ba) 2%,

It follows that X is normal and that

IXI3={ max ful) =14l

sl %

that is, a,( X)=1.
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The matrix (I®X + X7®1) ! is normal since X is normal, and i
eigenvalues are (p, +p j)" L1k, j < n. The third part follows from (34
and (5.8). N

Note that if A is normal and X is not a function of A, then, as illustrated
by (2.5), X will not in general be normal and ay(X) can be arbitrarily large.

The next lemma identifies the best y-conditioned square root of a Hermi:
tian positive definite matrix.

Lemma 4. If A€C"*" is Hermitian positive definite, then for ay
square root X of A which is a function of A,

1 L .
Ye(P)= 20(F(P)IIP ||2||P||;‘<YF(X): (59)

where P is the Hermitian positive definite square root of A.

Proof. A is normal and nonsingular; hence Lemma 3 applies and we
use (5.7) and (5.8). Let

m(X)= min |p,(X) +,u.(X)|

l<ijgn

where 1;(X) denotes an eigenvalue of X, and suppose A, = min, A,. Since
p(P)> 0 for all i, we have m(P)=2u,(P)=2yA, =2||P~ st 1 Togelhcr
with (5.7) this gives the expression for yg(P).

From (5.8)

n 1/2
HX“I-':( ZA.') >
i=1

which is the same for each X, so |[X||p =Py and ap(X)= az(P). Sinc
also m(X) < 2|p (X)) = 2| + Vfﬁ] = m(P), the inequality follows. 1

The a, terms in (5.7) and (5.9) can be bounded as follows. Using the
norm inequalities

1Al < Il Allp < VnllAll (10
(8, p. 15], we have for the choices of X in Lemmas 3 and 4

1< a(X)SnaX)=n.
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It is instructive to compare vy (P} with the matrix inversion condition

wmber & -:(P)=||P||}{P '||p- From Lemma 4, using the inequalities (5.10)
we obtain

zlx/an(P) Y P) < 3up(P).

Thus the square root conditioning of P is at worst the same as its conditioning

with respect to inversion. Both condition numbers are approximately equai to
a2
w{A)=

6. COMPUTING A WELL-CONDITIONED SQUARE ROOT

Consider the matrix

I -1 -1 -1
_ 1.1 -1 -1
k= 15 -1
0 2

By Corollary 2, R has sixteen square roots T', which are all functions of R and
hence upper triangular. These square roots yield eight different a-values:

a(T)=1.64,22.43,...,1670.89,1990.35

weich repeated), where the smallest and largest values are obtained when
diagisign(¢,,)) = +diag(1,1,1,1) and +diag(l, =1, 1, 1) respectively.
Because of the potentially wide variation in the a-conditioning of the
square roots of a matrix llustrated by this example, it is worth trying to ensure
that a square root computed by the (real) Schur method is relatively “well
wnditioded™"; then (5.2) guarantees that the computed square root is the
square root of a matrix near to A. Unfortunately, there does not seem to be
ay convenient theoretical characterization of the square root for which a is
smallest (cf. [1]). Therefore we suggest the following heuristic approach.
Consider, for simplicity, the Schur method. We would like to choose the
diagonal elements of T, a square root of the triangular matrix R. so as to
minimize a(T )= |T||2/ iR} or equivalently, to minimize ||T||. An algorithm
which goes some way towards achieving this objective is derived from the
shservation that T can be computed column by column: (4.2) and (4.3) can
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be rearranged for the Schur method as

—_ /
L= 2yT
i1
Tij— Z Lirty;
k=i+1 , ™
= i=f— -2,....1, 61
iy T Li-2 l

for j=1,2,...,n. Denoting the values ¢ i resulting from the two possit!

choices of ¢;; by ¢, and ¢, we have

ALGORITHM SQRT.

For j=12,...,n

Compute from (6.1) t,»'j and ¢, i=j,j—1,....1,
i i
C; = Z kt:j|’ (‘} = Z |t|j |
i=1 i=1

If cj+ <ce then

t”—tf;, 1<i<y; (/']-2—(‘]::-
else

b=t I<i<ij c;7=¢

a:=(max, _; ., ¢;Y"/ iRl = a(T).

At the jth stage f,;,....¢;_, ; , have been chosen already and
algorithm chooses that value of ¢ i which gives the smaller 1-norn to the |
column of T. This strategy is analogous to one used in condition estimati
[2].

The algorithm automatically rejects those upper triangular square rools
R which are not themselves functions of R, since each of these must ki
t;; +t;;=0 for some i and j with i < j, corresponding to an infinite value!
¢/ or ¢; - We note, however, that as shown in [1], it may be the case th
a( X)) is near its minimum only when X is a square root which is nut
function of A. The computation of such a square root can be expected to p
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numerical difficulties, associated with the singular nature of the problem, as
discussed in Section 5.2. The optimization approach suggested in [1] may be
weful here. In the case that A has distinct eigenvalues every one of A's
square roots is a function of A and is hence a candidate for computation via
Algorithm SQRT.

The cost of Algorithm sQrrt is double that incurred by an a priori choice
of t,-.., £, this is quite acceptable in view of the overall operation count
given in Section 4.3.

To investigate both the performance of the algorithin and the a-condition-
ing of various matrix square roots, we carried out tests on four different types
of ramdom matrix. In each of the first three tests we generated fifty upper
mangular matrices R of order 5 from the following formulae:

Test 1: 7, =RBND+ iRND,

Test 2: ., = RND,
RND/, i=1,
Test 3: r|j=” | ] .
RND,  j>i,

where RND and RND' denote (successive) calls to a routine to generate random
nmbers from the uniform distribution on [ — 1, 1]. Each matrix turned out to
have distinct eigenvalues and therefore thirty-two square roots, yielding
sisteen {repeated) values a(T'). Tables 1, 2, and 3 summarize respectively the
results of Tests 1, 2 and 3 in terms of the quantities

a=a,(T),
where T is the square root computed by Algorithm sQrr, and

@ = max a,(7).

min a;(T), a
T*=R

T?=R

min max

In the fourth and final test we formed twenty-five random real upper
qusitriangular matrices R =(R,)) of order 10. Each block R ; was chosen to

TABLE 1
COMPLEX UPPER TRIANGULAR

Proportion with

x Maximum <100 100 < x < 1000
@ i 5.3 100% _
Can 45x10° 60% 399,
a /‘1 nin 8.5x10" 82%, 14%
a‘/almu 26 & = a"ml; 64(}0
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TABLE 2
REAL UPPER TRIANGULAR

Proportion with

x Maximum x <100 100 < x < 1000
amin 24 X lol 100% —_—
C s 1.0x10° 30% 44%
amux /amin 50 X 10; 60% 18%
&/amin 12 &= O int 99%

have order 2 and constructed randomly, subject to the requirements thi
R Il = O and that the eigenvalues be complex conjugates A; and)\
with A i computed from ?\ = gnD + i _ND'. The elements of the off-dldgona!
blocks were obtained from r ;; = RND. Each matrix in this test had a total 104
square roots, thirty-two of them real; Algorithm sQRT was forced to computes
real square root, and the maximum and minimum values of « were taken over
the real square roots. The results are reported in Table 4.

The main conclusion to be drawn from the tests is that for the classesd
matrix used Algorithm sQrT performs extremely well. In the majority of wse
it computed a “best a-conditioned” square root, and in every case & wa
within a factor 3 of the minimum.

It is noticeable that in these tests e, was usually acceptably small (lex
than 100, say); the variation of @, as measured by «a,,,, /@, was at tine
very large, however, indicating the value of using Algorithm sQgT.

There is no reason to expect the a,-values in the four tables to bec
similar size, and in fact the ones in Table 4 are noticeably larger than thosei
the other tables. A partial explanation for this is afforded by the expresi
(4.6), from which it may be concluded that if (for the block R, wit

TABLE 3
REAL UPPER TRIANGULAR, POSITIVE EIGENVALUES"

Proportion with

x Maximum x < 100 100 < x < 1000
@i 9.1 100% —
- 1.1x10% 2% 18%
e/ S 4.3x10° 6% 26%
&/ 1 &=, 100%

*All square roots real.
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TABLE 4
REAL UPPER QUASITRIANGULAK'
Proportion with
x Maximum x < 100 100 < x < 1000

amm 9'3 X 107 48% 8%
& 1.2x10°% 0% 24%
anmx /amin 12 X 105 80% 12%
a/a,, 2.16 a=o,,: 44%

*Only real square roots computed.

genvalue A in the real Schur decomposition of A) a=ReA’? is small
dative to || R ||, then there is the possibility that the real square roots + T,
Al have large elements and hence that a(T) will be large. Consider, for
ample, # = 7 in the matrix

1cosd 1+3sin’f
R(0)=['Cof sin } 8%,

-1 Lcosd

s matrix has eigenvalues cos 8 + isinf, @ = Re A/ = cos(8/2), and the real
quare roots are, from (4.6),

cos 8 1+ 3sin*4
cos(8/2)+ —F7av a5
T(6)= + 41'COS(0/2) 2cos(8,/2) ,
cos
"~ 8cos(8/2) cos(6/2)= 4cos(8/2)

tsmall @ can arise if A is close to the negative real axis, as in the above
sunple, or if A is small in modulus, either of which is possible for the
wdom eigenvalues A used in Test 4.

To illustrate that a small value of « in (4.6) need not lead to a large value
fo(T), and to gain further insight into the conditioning of real square roots,
webriefly consider the case where A is normal. We need the following result,
iproof of which may be found in [12, p. 199].

Levma 5. Let A € R"™" be normal. Then A's real Schur decomposition
11 tekes the form

QIA{) = diag(Ru, Rz?_) R Rmm)’
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where each block R; is either 1 X1, or of the form

R,.,.=[_;; Z] b+0.

R,; in (6.2) has eigenvalues a + ib, so from (4.6) its real square rools
given by
- ¢ d a+va®+b® —a+yat=F

{#
from which it is easy to show that

3=Va+b® =R, f

T

Thus the possibility that large growth will occur in forming the elementsd
is ruled out when A is normal. Indeed, it follows from (6.4} that when '
normal, any real square root which is a function of A is perfectly conditio
in the sense that a, =1 (see also Lemma 3).

It is worth pointing out that if we put ¢ = — 1, b =0 in (6.2), then ¥

[

has two real negative eigenvalues, the formula (6.3) still gives a real s¢
root of R, namely

. 0 1
]:
[—1 0]’

(necessarily not a function of R). This square root is also obtained when:
(2.5) is chosen to minimize ay(X(a)). We note that R, in (6.2) is a w
multiple of a Givens rotation

a(T)=1 It

cos 8
—sind

sind |
cos @]’

1(6)=

fALSQUARE ROOTS 429
ith this interpretation T' = J(7/2) in (6.6) is a natural choice of square root
rB=Ko)in (6.5)

- CONCLUSION

The real Schur method presented here provides an efficient way to
apute a real square root X of a real full matrix A. In practice it is desirable
yeompute, together with the square root X, both a X)) and an estimate of
¥ square root condition number y(X) (this could be obtained using the
ethod of [2] as described in [7]); the relevance of these quantities is
iplyed by the bounds (5.2) and (5.3). The overall method is reliable, for
wability is signaled by the occurrence of a large «(X).

Algorithm sgaT is an inexpensive and effective means of determining a
dtively well-conditioned square root using Schur methods.

When A is normal, any square root {and in particular any real square
ot} which is a function of A is perfectly conditioned in the sense that
=L Work is in progress to investigate the existence of well-conditioned
aland complex square roots for general A.

We have tacitly assumed that one would want to compute a square root
hich is indeed a function of the original matrix, but as illustrated by (6.5)
1 (6.6), the * natural” square root may not be of this form. We are currently
wloring this phenomenon.

Liwish to thank Dr. I Gladwell, Dr. G. Hall, and Professor B. N. Parlett
i their comments on the manuscript.

I am grateful to Professor H. Schneider for private communication in
dich he pointed out [14) and stated Theorem 5 and its proof.
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ABSTRACT

We consider the strong and weak discrete maximum principles for matrix equa-
tions associated with the elliptic problems. We also give some examples and an
application to illustrate the usefulness of the discrete maximum principles.

. INTRODUCTION

In the theory and applications of a wide class of real linear second order
dliptic partial differential equations, the maximum principles play a basic
wle [8,16,17]. Let € be a bounded domain in the real m-dimensional
Fuclidean space R™, with boundary T. The second order elliptic partial
differential operator .# takes the form

m 2 m

- L a5 o+ XA

=1 i=1

5.0!1(,1')5 —““”+(”( ll(.’.‘),

where «, Ax). B.x) 1< ] < m, ¢,(x) are continuous in Q'E QUT; cy(x)
e, (V) =a; (x), Isijsmy and there exists a positive constant §,
wieh that

m m

)> “.‘,,‘(1")5.‘5; > 8 Y&
i=1

=1

in
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