
Chapter 19

Basics of the Differential Geometry of Curves

19.1 Introduction: Parametrized Curves

In this chapter we consider parametric curves, and we introduce two important in-
variants, curvature and torsion (in the case of a 3D curve).

Properties of curves can be classified into local properties and global properties.
Local properties are the properties that hold in a small neighborhood of a point on
a curve. Curvature is a local property. Local properties can be studied more con-
veniently by assuming that the curve is parametrized locally. Thus, it is important
and useful to study parametrized curves. In order to study the global properties of a
curve, such as the number of points where the curvature is extremal, the number of
times that a curve wraps around a point, or convexity properties, topological tools
are needed. A proper study of global properties of curves really requires the intro-
duction of the notion of a manifold, a concept beyond the scope of this book. In
this chapter we study only local properties of parametrized curves. Readers inter-
ested in learning about curves as manifolds and about global properties of curves
are referred to do Carmo [7] and Berger and Gostiaux [2]. Kreyszig [15] is also an
excellent source, which does a great job at tracing the origin of concepts. It turns out
that it is easier to study the notions of curvature and torsion if a curve is parametrized
by arc length, and thus we will discuss briefly the notion of arc length.

Let E be some normed affine space of finite dimension, for the sake of simplicity
the Euclidean space E2 or E3. Recall that the Euclidean space Em is obtained from
the affine space Am by defining on the vector space Rm the standard inner product

(x1, . . . ,xm) · (y1, . . . ,ym) = x1y1 + · · ·+ xmym.

The corresponding Euclidean norm is

∥(x1, . . . ,xm)∥ =
√

x2
1 + · · ·+ x2

m.

Inspired by a kinematic view, we can define a curve as a continuous map f : ]a,b[→
E from an open interval I =]a,b[ of R to the affine space E . From this point of view
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530 19 Basics of the Differential Geometry of Curves

we can think of the parameter t ∈ ]a,b[ as time, and the function f gives the position
f (t) at time t of a moving particle. The image f (I) ⊆ E of the interval I is the
trajectory of the particle. In fact, asking only that f be continuous turns out to be
too liberal, as rather strange curves turn out to be definable, such as “square-filling
curves,” due to Peano, Hilbert, Sierpiński, and others (see the problems).

Example 19.1. A very pretty square-filling curve due to Hilbert is defined by a se-
quence (hn) of polygonal lines hn : [0,1]→ [0,1]× [0,1] starting from the simple
pattern h0 (a “square cap” ⊓) shown on the left in Figure 19.1.

Fig. 19.1 A sequence of Hilbert curves h0,h1,h2.

The curve hn+1 is obtained by scaling down hn by a factor of 1
2 , and connecting

the four copies of this scaled–down version of hn obtained by rotating by π/2 (left
lower part), rotating by −π/2 and translating right (right lower part), translating up
(left upper part), and translating diagonally (right upper part), as illustrated in Figure
19.1.

It can be shown that the sequence (hn) converges (pointwise) to a continuous
curve h : [0,1]→ [0,1]× [0,1] whose trace is the entire square [0,1]× [0,1]. The
Hilbert curve h is nowhere differentiable. It also has infinite length! The curve h5 is
shown in Figure 19.2.

Actually, there are many fascinating curves that are only continuous, fractal
curves being a major example (see Edgar [8]), but for our purposes we need the
existence of the tangent at every point of the curve (except perhaps for finitely many
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Fig. 19.2 The Hilbert curve h5.

points). This leads us to require that f : ]a,b[→ E be at least continuously differ-
entiable. Recall that a function f : ]a,b[→ An is of class Cp, or is Cp-continuous,
if all the derivatives f (k) exist and are continuous for all k, 0≤ k ≤ p (when p = 0,
f (0) = f ). Thus, we require f to be at least a C1-function. However, asking that
f : ]a,b[→ E be a Cp-function for p≥ 1 still allows unwanted curves.

Example 19.2. The plane curve defined such that

f (t) =

⎧
⎨

⎩

(0, e1/t) if t < 0;
(0, 0) if t = 0;
(e−1/t , 0) if t > 0;

is a C∞-function, but f ′(0) = 0, and thus the tangent at the origin is undefined. What
happens is that the curve has a sharp “corner” at the origin.

Example 19.3. Similarly, the plane curve defined such that

f (t) =

⎧
⎨

⎩

(−e1/t , e1/t sin(e−1/t)) if t < 0;
(0, 0) if t = 0;
(e−1/t , e−1/t sin(e1/t)) if t > 0;

shown in Figure 19.3 is a C∞-function, but f ′(0)= 0. In this case, the curve oscillates
more and more rapidly as it approaches the origin.

The problem with the above examples is that the origin is a singular point for
which f ′(0) = 0 (a stationary point).
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Fig. 19.3 Stationary point at the origin.

Although it is possible to define the tangent when f is sufficiently differentiable
and when for every t ∈ ]a,b[ , f (p)(t) ̸= 0 for some p≥ 1 (where f (p) denotes the pth
derivative of f ), a systematic study is rather cumbersome. Thus, we will restrict our
attention to curves having only regular points, that is, for which f ′(t) ̸= 0 for every
t ∈ ]a,b[ . However, we will allow functions f : ]a,b[→ E that are not necessarily
injective, unless stated otherwise.

Definition 19.1. An open curve (or open arc) of class Cp is a map f : ]a,b[→ E of
class Cp, with p≥ 1, where ]a,b[ is an open interval (allowing a =−∞ or b =+∞).
The set of points f (]a,b[) in E is called the trace of the curve f . A point f (t) is
regular at t ∈ ]a,b[ if f ′(t) exists and f ′(t) ̸= 0, and stationary otherwise. A regular

open curve (or regular open arc) of class Cp is an open curve of class Cp, with
p≥ 1, such that every point is regular, i.e., f ′(t) ̸= 0 for every t ∈ ]a,b[ .

Note that Definition 19.1 is stated for an open interval ]a,b[ , and thus f may not
be defined at a or b. If we want to include the boundary points at a and b in the curve
(when a ̸=−∞ and b ̸=+∞), we use the following definition.

Definition 19.2. A curve (or arc) of class Cp is a map f : [a,b]→ E , with p ≥
1, such that the restriction of f to ]a,b[ is of class Cp, and where f (i)(a) =
limt→a,t>a f (i)(t) and f (i)(b) = limt→b,t<b f (i)(t) exist, where 0 ≤ i ≤ p. A regu-

lar curve (or regular arc) of class Cp is a curve of class Cp, with p ≥ 1, such that
every point is regular, i.e., f ′(t) ̸= 0 for every t ∈ [a,b]. The set of points f ([a,b]) in
E is called the trace of the curve f .

It should be noted that even if f is injective, the trace f (I) of f may be self-
intersecting.

Example 19.4. Consider the curve f : R→ E2 defined such that
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f1(t) =
t(1+ t2)

1+ t4
,

f2(t) =
t(1− t2)

1+ t4
.

The trace of this curve, shown in Figure 19.4, is called the “lemniscate of
Bernoulli” and it has a self-intersection at the origin. The map f is continuous,
and in fact bijective, but its inverse f−1 is not continuous. Self-intersection is due to
the fact that

lim
t→−∞

f (t) = lim
t→+∞

f (t) = f (0).

Fig. 19.4 Lemniscate of Bernoulli.

If we consider a curve f : [a,b]→ E and we assume that f is injective on the
entire closed interval [a,b], then the trace f ([a,b]) of f has no self-intersection.
Such curves are usually called Jordan arcs, or simple arcs. The theory of Jordan
arcs f : [a,b]→ E where f is only required to be continuous is quite rich. Because
[a,b] is compact, f is in fact a homeomorphism between [a,b] and f ([a,b]). Many
fractal curves are only continuous Jordan arcs that are not differentiable.

We can also define closed curves. A simple way to do so is to say that a closed
curve is a curve f : [a,b]→ E such that f (a) = f (b). However, this does not ensure
that the derivatives at a and b agree, a situation that is quite undesirable. A better
solution is to define a closed curve as an open curve f : R→ E , where f is periodic.

Definition 19.3. A closed curve (or closed arc) of class Cp is a map f : R→ E such
that f is of class Cp, with p≥ 1, and such that f is periodic, which means that there
is some T > 0 such that f (x+T ) = f (x) for all x ∈ R. A regular closed curve (or

regular closed arc) of class Cp is a closed curve of class Cp, with p ≥ 1, such that
every point is regular, i.e., f ′(t) ̸= 0 for every t ∈ R. The set of points f ([0,T ]) (or
f (R)) in E is called the trace of the curve f .
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A closed curve is a Jordan curve (or a simple closed curve) if f is injective on
the interval [0,T [ . A Jordan curve has no self-intersection. The ellipse defined by
the map t ,→ (acost, bsint) is an example of a closed curve of type C∞ that is a
Jordan curve. In this example, the period is T = 2π . Again, the theory of Jordan
curves f : [0,T ]→ E where f is only required to be continuous is quite rich.

An observant reader may have noticed that a curve has been defined as a map
f : ]a,b[→ E (or f : [a,b] → E ), rather than as a certain set of points. In fact,
it is possible for the trace of a curve to be defined by many parametrizations,
as illustrated by the unit circle, which is the trace of the parametrized curves
fk : ]0,2π [→ E (or fk : [0,2π ]→ E ), where fk(t) = (coskt, sinkt), with k ≥ 1. A
clean way to handle this phenomenon is to define a notion of geometric curve (or
arc). Such a treatment is given in Berger and Gostiaux [2]. For our purposes it will
be sufficient to define a notion of change of parameter that does not change the “ge-
ometric shape” of the trace. Recall that a diffeomorphism g : ]a,b[→ ]c,d[ of class

Cp from an open interval ]a,b[ to another open interval ]c,d[ is a bijection such
that both g : ]a,b[→ ]c,d[ and its inverse g−1 : ]c,d[→ ]a,b[ are Cp-functions. This
implies that g′(t) ̸= 0 for every t ∈ ]a,b[ .

Definition 19.4. Two regular curves f : ]a,b[→ E and g : ]c,d[→ E of class Cp,
with p≥ 1, are Cp-equivalent if there is a diffeomorphism θ : ]a,b[→ ]c,d[ of class
Cp such that f = g ◦θ .

It is immediately verified that Definition 19.4 yields an equivalence relation on
open curves. Definition 19.4 is adapted to curves, by extending the notion of Cp-
diffeomorphism to closed intervals in the obvious way.

Remark: Using Definition 19.4, we could define a geometric curve (or arc) of
class Cp as an equivalence class of (parametrized) curves. This is done in Berger
and Gostiaux [2].

From now on, in most cases we will drop the word “regular” when referring to
regular curves, and simply say “curves.” Also, when we refer to a point f (t) on a
curve, we mean that t ∈ ]a,b[ for an open curve f : ]a,b[→ E , and t ∈ [a,b] for a
curve f : [a,b]→ E . In the case of a closed curve f : R→ E , we can assume that
t ∈ [0,T ], where T is the period of f , and thus closed curves will be treated simply
as curves in the sequel. We now define tangent lines and osculating planes. Accord-
ing to Kreyszig [15], the term osculating plane was apparently first introduced by
Tinseau in 1780.

19.2 Tangent Lines and Osculating Planes

We begin with the definition of a tangent line.

Definition 19.5. For any open curve f : ]a,b[→ E of class Cp (or curve f : [a,b]→
E of class Cp), with p ≥ 1, given any point M0 = f (t) on the curve, if f is locally
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injective at M0 and if for any point M1 = f (t + h) near M0 the line Tt,h determined
by the points M0 and M1 has a limit Tt when h ̸= 0 approaches 0, we say that Tt is
the tangent line to f in M0 = f (t) at t.

More precisely, if there is an open interval ]t −η , t +η [⊆ ]a,b[ (with η > 0)
such that M1 = f (t +h) ̸= f (t) = M0 for all h ̸= 0 with h∈ ]−η , η [ and the line Tt,h

determined by the points M0 and M1 has a limit Tt when h ̸= 0 approaches 0 (with
h ∈ ]−η , η [ ), then Tt is the tangent line to f in M0 at t.

For simplicity we will often say “tangent,” instead of “tangent line.” The defi-
nition is simpler when f is a simple curve (there is no danger that M1 = M0 when
h ̸= 0). In this chapter there will be situations where it is notationally more con-

venient to denote the vector
−→
ab by b− a. The following lemma shows why regular

points are important.

Lemma 19.1. For any open curve f : ]a,b[→ E of class Cp (or curve f : [a,b]→ E

of class Cp), with p ≥ 1, given any point M0 = f (t) on the curve, if M0 is a regular

point at t, then the tangent line to f in M0 at t exists and is determined by the
derivative f ′(t) of f at t.

Proof. Provided that M0 ̸= M1, the line Tt,h is determined by the point M0 and the
vector M1−M0 = f (t + h)− f (t). By the definition of f ′(t), we have

f (t + h)− f (t) = h f ′(t)+ hε(h),

where limh→0,h ̸=0 ε(h) = 0. We claim that there must be an open interval ]t−η , t +
η [⊆ ]a,b[ (with η > 0) such that f (t + h) ̸= f (t) for all h ̸= 0 with −η < h < η .
Otherwise, since f ′(t) exists, for every α > 0 there is some η > 0 such that

∥∥∥∥
f (t + h)− f (t)

h
− f ′(t)

∥∥∥∥≤ α

for all h, with −η < h < η , and since f (t + h)− f (t) = 0 for some h ̸= 0 with
h ∈ ]−η , η [ , we would have ∥ f ′(t)∥ ≤ α . Since this holds for every α > 0, we
would have f ′(t) = 0, a contradiction. Thus, the line Tt,h is determined by the point
M0 and the vector f ′(t)+ε(h), which has the limit f ′(t) when h ̸= 0 tends to 0, with
h ∈ ]−η ,+η [ . Thus, the line Tt,h has for limit the line determined by M0 and the
derivative f ′(t) of f at t. ⊓.

Remark: If f ′(t) = 0, the above argument breaks down. However, if f is a Cp-
function and f (p)(t) ̸= 0 for some p ≥ 2, where p is the smallest integer with that
property, we can show that the line Tt,h has the limit determined by M0 and the

derivative f (p)(t). Thus, the tangent line may still exist at a stationary point. For
example, the curve f defined by the map t ,→ (t2, t3) is a C∞-function, but f ′(0) = 0.
Nevertheless, the tangent at the origin is defined for t = 0 (it is the x-axis). However,
some strange things can happen at a stationary point. Assuming that a curve is of
class Cp for p large enough, using Taylor’s formula it is possible to study precisely
the behavior of the curve at a stationary point.
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Note that the tangent at a point can exist, even when the derivative f ′ is not
continuous at this point.

Example 19.5. The C0-curve f defined such that

f (t) =

{
(t, t2 sin(1/t)) if t ̸= 0;
(0,0) if t = 0;

and shown in Figure 19.5 has a tangent at t = 0.
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Fig. 19.5 Curve with tangent at O and yet f ′ discontinuous at O.

Indeed, f (0) = (0, 0), and limt→0 t sin(1/t) = 0, and the derivative at t = 0 is the
vector (1,0). For t ̸= 0,

f ′(t) = (1, 2t sin(1/t)− cos(1/t)),

which has no limit as t tends to 0. Thus, f ′ is discontinuous at 0. What happens is
that f oscillates more and more near the origin, but the amplitude of the oscillations
decreases.

If g = f ◦θ is a curve Cp-equivalent to f , where θ is a Cp-diffeomorphism, the
tangent at θ (t) to f exists iff the tangent at t to g exists, and the two tangents are
identical. Indeed, g′(t) = f ′(u)θ ′(t), where u = θ (t), and since θ ′(t) ̸= 0 because θ
is a diffeomorphism, the result is clear. Thus, the notion of tangent is intrinsic to the
geometric curve defined by f . We now consider osculating planes.

Definition 19.6. For any open curve f : ]a,b[→ E of class Cp (or curve f : [a,b]→
E of class Cp), with p ≥ 2, given any point M0 = f (t) on the curve, if the tangent
Tt at M0 exists, the point M1 = f (t + h) is not on Tt for h ̸= 0 small enough, and
the plane Pt,h determined by the tangent Tt and the point M1 has a limit Pt as h ̸= 0
approaches 0, we say that Pt is the osculating plane to f in M0 = f (t) at t.
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More precisely, if the tangent Tt at M0 exists, there is an open interval ]t−η , t +
η [⊆ ]a,b[ (with η > 0) such that the point M1 = f (t +h) is not on Tt for every h ̸= 0
with h ∈ ]−η ,+η [ , and the plane Pt,h determined by the tangent Tt and the point
M1 has a limit Pt when h ̸= 0 approaches 0 (with h ∈ ]−η ,+η [ ), we say that Pt is
the osculating plane to f in M0 = f (t) at t.

Again, the definition is simpler when f is a simple curve. The following lemma
gives a simple condition for the existence of the osculating plane at a point.

Lemma 19.2. For any open curve f : ]a,b[→ E of class Cp (or curve f : [a,b]→ E

of class Cp), with p ≥ 2, given any point M0 = f (t) on the curve, if f ′(t) and f ′′(t)
are linearly independent (which implies that M0 is a regular point at t), then the
osculating plane to f in M0 at t exists and is determined by the first and second

derivatives f ′(t) and f ′′(t) of f at t.

Proof. The plane Pt,h is determined by the point M0, the vector f ′(t), and the vector
M1−M0 = f (t+h)− f (t), provided that M1−M0 and f ′(t) are linearly independent.
By Taylor’s formula, for h > 0 small enough we have

f (t + h)− f (t) = h f ′(t)+
h2

2
f ′′(t)+

h2

2
ε(h),

where limh→0,h ̸=0 ε(h) = 0. By an argument similar to that used in Lemma 19.1,
we can show that there is some open interval ]t −η , t +η [⊆ ]a,b[ (with η > 0)
such that for every h ̸= 0 with −η < h < η , the point M1 = f (t + h) is not on
the tangent Tt (otherwise, we could prove that f ′′(t) is the limit of a sequence of
vectors proportional to f ′(t), and thus that f ′(t) and f ′′(t) are linearly dependent, a
contradiction). Thus, for h ̸= 0 with h ∈ ]−η ,+η [ , the plane Pt,h is determined by
the point M0, the vector f ′(t), and the vector f ′′(t)+ε(h), which has the limit f ′′(t)
as h ̸= 0 tends to 0, with h ∈ ]−η ,+η [ . Thus, the plane Pt,h has for limit the plane
determined by M0 and the derivatives f ′(t) and f ′′(t) of f at t, since f ′(t) and f ′′(t)
are assumed to be linearly independent. ⊓.

When f ′(t) and f ′′(t) exist and are linearly independent, it is sometimes said that
f is biregular at t, and that f (t) is a biregular point at t. From the kinematic point
of view, the osculating plane at time t is determined by the position of the moving
particle f (t), the velocity vector f ′(t), and the acceleration vector f ′′(t).

Remark: If the curve f is a plane curve, then the osculating plane at every regular
point is the plane containing the curve. Even when f ′(t) and f ′′(t) are linearly de-
pendent, the osculating plane may still exist, for instance, if there are two derivatives
f (p)(t) ̸= 0 and f (q)(t) ̸= 0 that are linearly independent, with p < q, the smallest
integers with that property.

In general, the curve crosses its osculating plane at the point of contact t.
If g = f ◦θ is a curve Cp-equivalent to f , where θ is a Cp-diffeomorphism, the

osculating plane at θ (t) to f exists iff the osculating plane at t to g exists, and these
two planes are identical. Indeed, g′(t) = f ′(u)θ ′(t), and
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g′′(t) = f ′′(u)θ ′(t)2 + f ′(u)θ ′′(t),

where u = θ (t). Since θ ′(t) ̸= 0 because θ is a diffeomorphism, the planes defined
by ( f ′(u), f ′′(u)) and (g′(t),g′′(t)) are identical. Thus, the notion of osculating plane
is intrinsic to the geometric curve defined by f .

It should also be noted that the notions of tangent and osculating plane are affine
notions, that is, preserved under affine bijections.

We now consider the notion of arc length. For this, we assume that the affine
space E is a normed affine space of finite dimension with norm ∥ ∥. For simplicity,
we can assume that E = En.

19.3 Arc Length

Given an interval [a,b] (where a ̸= −∞ and b ̸= +∞), a subdivision of [a,b] is any
finite increasing sequence t0, . . . , tn such that t0 = a, tn = b, and ti < ti+1, for all i, 0≤
i≤ n−1, where n≥ 1. Given any curve f : [a,b]→E of class Cp, with p≥ 0, for any
subdivision σ = t0, . . . , tn of [a,b] we obtain a polygonal line f (t0), f (t1), . . . , f (tn)
with endpoints f (a) and f (b), and we define the length of this polygonal line as

l(σ) =
n−1

∑
i=0

∥ f (ti+1)− f (ti)∥.

Definition 19.7. For any curve f : [a,b]→ E of class Cp, with p≥ 0, if the set L ( f )
of the lengths l(σ) of the polygonal lines induced by all subdivisions σ = t0, . . . , tn
of [a,b] is bounded, we say that f is rectifiable, and we call the least upper bound
l( f ) of the set L ( f ) the length of f .

It is obvious that ∥ f (b)− f (a)∥ ≤ l( f ). If g = f ◦ θ is a curve Cp-equivalent to
f , where θ is a Cp-diffeomorphism, since θ ′(t) ̸= 0, θ is a strictly increasing or
decreasing function, and thus the set of sums of the form l(σ) is the same for both
f and g. Thus, the notion of length is intrinsic to the geometric curve defined by f .
This is false if θ is not strictly increasing or decreasing. The following lemma can
be shown.

Lemma 19.3. For any curve f : [a,b]→ E of class Cp, with p≥ 1, f is rectifiable.

Remark: In fact, Lemma 19.3 can be shown under the hypothesis that f is of class
C0, and that f ′(t) exists and ∥ f ′(t)∥ ≤M for some M ≥ 0, for all t ∈ [a,b].

Definition 19.8. For any open curve f : ]a,b[→ E of class Cp (or curve f : [a,b]→
E of class Cp), with p ≥ 1, for any closed interval [t0, t] ⊆ ]a,b[ (or [t0, t] ⊆ [a,b],
in the case of a curve), letting f[t0,t] be the restriction of f to [t0, t], the length
l( f[t0 ,t]) (which exists, by Lemma 19.3) is called the arc length of f[t0,t]. For any
fixed t0 ∈ ]a,b[ (or any fixed t0 ∈ [a,b], in the case of a curve), we define the func-
tion s : ]a,b[→ R (or s : [a,b]→ R, in the case of a curve), called algebraic arc
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length w.r.t. t0, as follows:

s(t) =

{
l( f[t0,t]) if [t0, t]⊆ ]a,b[ ;
−l( f[t0,t]) if [t, t0]⊆ ]a,b[ ;

(and similarly in the case of a curve, except that [t0, t]⊆ [a,b] or [t, t0]⊆ [a,b]).

For the sake of brevity, we will often call s the arc length, rather than algebraic
arc length w.r.t. t0.

Lemma 19.4. For any open curve f : ]a,b[→ E of class Cp (or curve f : [a,b]→ E

of class Cp), with p≥ 1, for any fixed t0 ∈ ]a,b[ (or t0 ∈ [a,b], in the case of a curve),

the algebraic arc length s(t) w.r.t. t0 is of class Cp, and furthermore, s′(t) = ∥ f ′(t)∥.

Thus, the arc length is given by the integral

s(t) =
∫ t

t0

∥ f ′(u)∥du.

In particular, when E = En and the norm is the Euclidean norm, we have

s(t) =
∫ t

t0

√
f ′1(u)

2 + · · ·+ f ′n(u)
2 du.

where f = ( f1, . . . , fn). The number ∥ f ′(t)∥ is often called the speed of f (t) at time
t. For every regular point at t, the unit vector

t =
f ′(t)

∥ f ′(t)∥

is called the unit tangent (vector) at t.
Now, if f : ]a,b[→E (or f : [a,b]→ E ) is a regular curve of class Cp, with p≥ 1,

since s′(t) = ∥ f ′(t)∥, and f ′(t) ̸= 0 for all t ∈ ]a,b[ (or t ∈ [a,b]), we have s′(t)> 0
for all t ∈ ]a,b[ (or t ∈ [a,b]). The mean value theorem implies that s is injective,
and that s : ]a,b[→ ]s(a),s(b)[ (or s : [a,b]→ [s(a),s(b)]) is a diffeomorphism of
class Cp. In particular, the curve f ◦ϕ : ]s(a),s(b)[→ E (or f ◦ϕ : [s(a),s(b)]→ E ),
with ϕ = s−1, is Cp-equivalent to the original curve f , but it is parametrized by the
arc length s ∈ ]s(a),s(b)[ (or s ∈ [s(a),s(b)]). As a consequence, since ϕ = s−1, we
have

ϕ ′(s(t)) = (s′(t))−1,

and letting g = f ◦ϕ , by the chain rule

g′(s(t)) = f ′(ϕ(s(t)))ϕ ′(s(t)) = f ′(t)(s′(t))−1 =
f ′(t)

∥ f ′(t)∥
.

This shows that ∥g′(s)∥ = 1, i.e., that when a regular curve is parametrized by arc
length, its velocity vector has unit length. From a kinematic point of view, when
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a curve is parametrized by arc length, the moving particle travels at constant unit
speed.

Remark: If a curve f (or a closed curve) is of class Cp, for p≥ 1, and it is a Jordan
arc, then the algebraic arc length s : [a,b]→R w.r.t. t0 is strictly increasing, and thus
injective. Thus, s−1 exists, and the curve can still be parametrized by arc length as
g = f ◦ s−1. However, g′(s) exists only when s(t) corresponds to a regular point at
t. Thus, it still seems necessary to restrict our attention to regular curves, in order to
avoid complications.

We now consider the notion of curvature. In order to do so, we assume that the
affine space E has a Euclidean structure (an inner product), and that the norm on E

is the norm induced by this inner product. For simplicity, we assume that E = En.

19.4 Curvature and Osculating Circles (Plane Curves)

In a Euclidean space, orthogonality makes sense, and we can define normal lines
and normal planes. We begin with plane curves, i.e., the case where E = E2.

Definition 19.9. Given a regular plane curve f : ]a,b[→ E (or f : [a,b]→ E ) of
class Cp, with p ≥ 1, the normal line Nt to f at t is the line through f (t) and
orthogonal to the tangent line Tt to f at t. Any nonnull vector defining the direction
of the normal line Nt is called a normal vector to f at t.

From now on, we also assume that we are dealing with curves f that are biregular
for all t. This means that f ′(t) and f ′′(t) always exist and are linearly independent.
A fairly intuitive way to introduce the notion of curvature is to study the variation
of the normal line Nt to a curve f at t, in a small neighborhood of t. The intuition
is that the normal Nt to f at t rotates around a certain point, and that the “speed”
of rotation of the normal measures how much the curve bends around t. In other
words, the rate at which the normal turns corresponds to the curvature of the curve
at t. Another way to look at it is to focus on the point around which the normal turns,
the center of curvature C at t, and to consider the radius R of the circle centered at C
and tangent to the curve at f (t) (i.e., tangent to the tangent line to f at t). Intuitively,
the smaller R is, the faster the curve bends, and thus the curvature can be defined
as 1/R.

Let us assume that some origin O is chosen in the affine plane, and to simplify
the notation, for any curve f let us denote f (t)−O by M(t) or M, for any point

P denote P−O by P, denote P−M by
−→
MP, and denote f ′(t) by M′(t) or M′. The

normal line Nt to f at t is the set of points P such that

M′ ·−→MP = 0,

or equivalently
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M′ ·P = M′ ·M.

Similarly, for any small δ ̸= 0 such that f (t +δ ) is defined, the normal line Nt+δ to
f at t + δ is the set of points Q such that

M′(t + δ ) ·Q = M′(t + δ ) ·M(t + δ ).

Thus, the intersection point P of Nt and Nt+δ , if it exists, is given by the equations

M′ ·P = M′ ·M,

M′(t + δ ) ·P = M′(t + δ ) ·M(t + δ ).

Thus, P would also satisfy the equation obtained by subtracting the first one from
the second, that is,

(M′(t + δ )−M′) ·P = M′(t + δ ) ·M(t + δ )−M′ ·M.

This equation can be written as

(
M′(t + δ )−M′

δ

)
·P =

(
M′(t + δ )−M′

δ

)
·M(t + δ )

+ M′ ·
(

M(t + δ )−M

δ

)
,

and as δ ̸= 0 tends to 0, it has the following equation for limit:

M′′ ·P = M′′ ·M+M′ ·M′,

that is,
M′′ ·−→MP = ∥M′∥2.

Consequently, if it exists, P is the intersection of the two lines of equations

M′ ·−→MP = 0

M′′ ·−→MP = ∥M′∥2.

Thus, if M′ and M′′ are linearly independent, which is equivalent to saying that
f ′(t) and f ′′(t) are linearly independent, i.e., f is biregular at t, the above two equa-
tions have a unique solution P. Also, the above analysis shows that the intersection
of the two normals Nt and Nt+δ , for δ ̸= 0 small enough, has a limit C (really, C(t)).
This limit is called the center of curvature of f at t. It is possible to compute the

distance R = ∥
−→
MC∥, the radius of curvature at t, and the coordinates of C, given

any affine frame for the plane. It is worth noting that the equation

M′′ ·P = M′′ ·M+M′ ·M′

is obtained by taking the derivative of the equation
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M′ ·P = M′ ·M

with respect to t. This observation can be used to compute the coordinates of the
center of curvature, but first we show that the radius of curvature has a very sim-
ple expression when the curve is parametrized by arc length. Indeed, in this case,
∥ f ′(s)∥ = ∥M′∥ = 1, that is, f ′(s) · f ′(s) = 1, and by taking the derivatives of both
sides, we get

f ′′(s) · f ′(s) = 0,

which shows that f ′′(s) = M′′ and f ′(s) = M′ are orthogonal, and since the center
of curvature C is determined by the equations

M′ ·
−→
MC = 0,

M′′ ·
−→
MC = ∥M′∥2,

the vector
−→
MC must be collinear with M′′ (since it is orthogonal to M′, which itself

is orthogonal to M′′). Then, letting

n =
M′′

∥M′′∥

be the unit vector associated with the acceleration vector M′′, we have
−→
MC = Rn,

and since ∥M′∥= 1, from M′′ ·
−→
MC = ∥M′∥2 we get

M′′ ·−→MC = M′′ ·R
M′′

∥M′′∥
= R

(M′′ ·M′′)
∥M′′∥

= R
∥M′′∥2

∥M′′∥
= R ∥M′′∥= 1,

that is,

R =
1

∥M′′∥
=

1

∥ f ′′(s)∥
.

Thus, the radius of curvature is the inverse of the norm of the acceleration vector
f ′′(s). We define the curvature κ as the inverse of the radius of curvature R, that is,
as

κ = ∥ f ′′(s)∥.

In summary, when the curve f is parametrized by arc length, we found that the
curvature κ and the radius of curvature R are defined by the equations

κ = ∥ f ′′(s)∥, R =
1

κ
.

We now come back to the general case. Assuming that M′ and M′′ are linearly

independent, we can write
−→
MC = αM′ + β M′′, for some unique α,β . Since C is

determined by the equations
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M′ ·−→MC = 0,

M′′ ·
−→
MC = ∥M′∥2,

we get the system

(M′ ·M′)α +(M′ ·M′′)β = 0,

(M′ ·M′′)α +(M′′ ·M′′)β = ∥M′∥2,

and we also note that

R
2 =
−→
MC ·

−→
MC =

−→
MC · (αM′+β M′′) = β∥M′∥2.

The reader can verify that we obtain

β =
∥M′∥4

∥M′∥2∥M′′∥2− (M′ ·M′′)2
,

and thus

R2 =
∥M′∥6

∥M′∥2∥M′′∥2− (M′ ·M′′)2
.

However, if we remember about the cross product of vectors and the Lagrange iden-
tity, we have

∥M′∥2∥M′′∥2− (M′ ·M′′)2 = ∥M′ ×M′′∥2,

and thus

R =
∥M′∥3

∥M′ ×M′′∥
=

∥ f ′(t)∥3

∥ f ′(t)× f ′′(t)∥
,

and the curvature is given by

κ =
∥M′ ×M′′∥
∥M′∥3

=
∥ f ′(t)× f ′′(t)∥
∥ f ′(t)∥3

.

In summary, when the curve f is not necessarily parametrized by arc length, we
found that the curvature κ and the radius of curvature R are defined by the equations

κ =
∥ f ′(t)× f ′′(t)∥
∥ f ′(t)∥3

, R =
1

κ
.

Note that from an analytical point of view, the curvature has the advantage of
being defined at every regular point, since κ = 0 when either f ′′(t) = 0 or f ′′(t) is
collinear to f ′(t), whereas at such points, the radius of curvature goes to +∞.

We leave as an exercise to show that if g = f ◦ θ is a curve Cp-equivalent to f ,
where θ is a Cp-diffeomorphism, then

κ =
∥ f ′(u)× f ′′(u)∥
∥ f ′(u)∥3

=
∥g′(t)× g′′(t)∥
∥g′(t)∥3

,
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where u = θ (t), i.e., κ has the same value for both f and g. Thus, the curvature
is an invariant intrinsic to the geometric curve defined by f . In view of the above
considerations, we give the following definition of the curvature, which is more
intrinsic.

Definition 19.10. For any regular plane curve f : ]a,b[→ E (or f : [a,b]→ E ) of
class Cp parametrized by arc length, with p ≥ 2, the curvature κ at s is defined as
the nonnegative real number κ = ∥ f ′′(s)∥. For every s such that f ′′(s) ̸= 0, letting
n = f ′′(s)/∥ f ′′(s)∥ be the unit vector associated with f ′′(s), we have f ′′(s) = κn,
the point C defined such that C− f (s) = n/κ is the center of curvature at s, and
R = 1/κ is the radius of curvature at s. The circle of center C and of radius R is
called the osculating circle to f at s. When f ′′(s) = 0, by convention R = ∞, and
the center of curvature is undefined.

The locus of the center of curvature is a curve that is regular, except at points for
which R ′ = 0. Properties of this curve, called the evolute, will be given in Lemma
19.5.

Example 19.6. The evolute of an ellipse, the center of curvature corresponding to
a specific point on the ellipse, and the osculating circle at that point are shown in
Figure 19.6.

Fig. 19.6 The evolute of an ellipse, and an osculating circle.

It is also possible to define the notion of osculating circle more geometrically as
a limit, in the spirit of the definition of a tangent.
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Definition 19.11. Given any plane curve f : ]a,b[→ E (or f : [a,b]→ E ) of class
Cp, with p≥ 1, and given any point M0 = f (t) on the curve, if f is locally injective
at M0, the tangent Tt to f at t exists, and the circle Σt,h tangent to Tt and passing
through M1 has a limit Σt as h ̸= 0 approaches 0, we say that Σt is the osculating

circle to f in M0 = f (t) at t.
More precisely, if there is an open interval ]t −η , t +η [⊆ ]a,b[ (with η > 0)

such that, M1 = f (t +h) ̸= f (t) = M0 for all h ̸= 0 with h ∈ ]−η , η [ , the tangent Tt

to f at t exists, and the circle Σt,h tangent to Tt and passing through M1 has a limit
Σt as h ̸= 0 approaches 0 (with h ∈ ]−η , η [ ), we say that Σt is the osculating circle
to f in M0 = f (t) at t.

It is not hard to show that if the center of curvature C (and thus the radius of
curvature R) exists at t, then the osculating circle at t is indeed the circle of center
C and radius R (also called circle of curvature at t).

Remark: It is possible that the osculating circle exists at a point t but that the center
of curvature at t is undefined.

Example 19.7. Consider the curve defined such that

f (t) =

{
(t, t2 + t3 sin(1/t)) if t ̸= 0;
(0,0) if t = 0,

and shown in Figure 19.7.

-0.4 -0.2 0.2 0.4
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Fig. 19.7 Osculating circle at O exists and yet f ′′(0) is undefined.

We leave as an exercise to show that the osculating circle for t = 0 is the circle
of center

(
0, 1

2

)
, but f ′′(0) is undefined, so that the center of curvature is undefined

at t = 0. This is because the intersection point of the normal line N0 at t = 0 (the
y-axis) and the normal Nδ for δ small oscillates forever as δ goes to zero.
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In general, the osculating circle intersects the curve in another point besides the
point of contact, which means that near the point of contact, one of the two branches
of the curve is outside the osculating circle, and the other branch is inside. This
property fails for points on an axis of symmetry for the curve, such as the points on
the axes of an ellipse.

Osculating circles give a very good approximation of the curve around each
(biregular) point. We will see in later examples that plotting enough osculating cir-
cles gives the illusion that the curve is plotted, when in fact it is not!

Recalling that we denoted the (unit) tangent vector f ′(s) at s by t, and the unit
normal vector f ′′(s)/∥ f ′′(s)∥ by n, since

t′ = f ′′(s) = κn,

we have
t′ = κn.

Since t ·n = 0 and n ·n = 1, by taking derivatives of these equations we get n ·n′ = 0
and t′ ·n+ t ·n′= 0. Since n′ is orthognal to n, it is collinear to t, and from the second
equation, since t′ = κn, we get

κn ·n+ t ·n′= κ + t ·n′ = 0,

and thus
n′ =−κt.

Using the identity n′ =−κt, we can also show the following lemma, confirming
the geometric characterization of the center of curvature.

Lemma 19.5. For any regular plane curve f : ]a,b[→ E (or f : [a,b]→ E ) of class
Cp parametrized by arc length, with p ≥ 2, assuming that f ′′(s) ̸= 0, the center of

curvature is on a curve c of class C0 defined such that c(s)− f (s) = Rn, where

R = 1/∥ f ′′(s)∥ and n = f ′′(s)/∥ f ′′(s)∥, and whenever R ′(s) ̸= 0, c is regular at s
and c′(s) = R ′n, which means that the normal to f at s is the tangent to c at s.

Proof. Fixing any origin O in the plane, from c(s)− f (s) = Rn we have

c(s)−O = f (s)−O+Rn,

and thus
c′(s) = f ′(s)+R

′n+Rn′,

and since n′ =−κt, with κ = 1/R, we get

c′(s) = t+R
′n− t = R

′n.

⊓.

In other words, for every s where κ ′/κ2 is defined and not equal to zero, the point
c(s) is regular. This is not the case for points for which the curvature is minimal or
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maximal. The example of an ellipse is typical (see below). The curve c defined in
Lemma 19.5 is called the evolute of the curve f . Conversely, f is called the involute

of c.
Summarizing the discussion before Definition 19.10, we also have the following

lemma.

Lemma 19.6. For any regular plane curve f : ]a,b[→ E (or f : [a,b]→ E ) of class

Cp, with p≥ 2, the curvature at t is given by the expression

κ =
∥ f ′(t)× f ′′(t)∥
∥ f ′(t)∥3

.

Furthermore, whenever f ′(t)× f ′′(t) ̸= 0, the center of curvature C defined such that

C− f (t) = n/κ is the limit of the intersection of any normal Nt+δ and the normal
Nt at t as δ ̸= 0 small enough approaches 0.

Lemma 19.6 gives us a way of calculating the curvature at any point, for any
(regular) parametrization of a curve. Let us now determine the coordinates of the
center of curvature (when defined). Let (O, i, j) be an orthonormal frame for the
plane, and let the curve be defined by the map f (t) =O+u(t)i+v(t)j. The equation
of the normal to f at t is (x− u)u′+(y− v)v′ = 0, or

u′x+ v′y = uu′+ vv′.

As we noted earlier, the center of curvature is obtained by intersecting this normal
with the line whose equation is obtained by taking the derivative of the equation of
the normal w.r.t. t. Thus, the center of curvature is the solution of the system

u′x+ v′y = uu′+ vv′,

u′′x+ v′′y = uu′′+ vv′′+ u′2 + v′2.

We leave as an exercise to verify that the solution is given by

x = u−
v′(u′2 + v′2)

u′v′′ − v′u′′
,

y = v+
u′(u′2 + v′2)

u′v′′ − v′u′′
,

provided that u′v′′ − v′u′′ ̸= 0. One will also check that the radius of curvature is
given by

R =
(u′2 + v′2)3/2

|u′v′′ − v′u′′|
.

This result can also be obtained from Lemma 19.6, by calculating the coordinates
of the cross product f ′(t)× f ′′(t).

We now give a few examples.
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Example 19.8. If f is a straight line, then f ′′(t) = 0, and thus the curvature is null
for every point of a line.

Example 19.9. A circle of radius a can be defined by

x = acost,

y = asin t.

We have u′ =−asint, v′ = acost, u′′ =−acost, v′′ =−asint, and thus

u′v′′ − v′u′′ = (−asint)(−asin t)− (acost)(−acost) = a2

and
u′2 + v′2 = a2(sin2 t + cos2 t) = a2,

and thus

R =
(u′2 + v′2)3/2

|u′v′′ − v′u′′|
= a

and κ = 1/a. Thus, as expected, the circle has constant curvature 1/a, where a is
its radius, and the center of curvature is reduced to a single point, the center of the
circle. Indeed, every normal to the circle goes through it!

Example 19.10. An ellipse is defined by

x = a cosθ ,

y = b sinθ .

The equation of the normal to the ellipse at θ is

(x− a cosθ )(−asinθ )+ (y− b sinθ )(bcosθ ) = 0,

or
asinθ x− bcosθ y = sinθ cosθ (a2− b2).

Assuming that a ≥ b (the other case being similar), and letting c2 = a2− b2, the
above equation is

asinθ x− bcosθ y = c2 sinθ cosθ .

We leave as an exercise to show that the radius of curvature is

R =
(a2 sin2 θ + b2 cos2 θ )3/2

ab
,

and, that the center of curvature is on the curve defined by

x =
c2

a
cos3 θ , y =−

c2

b
sin3 θ .
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This curve has four cusps, corresponding to the two maxima and minima of the
curvature. Letting

N =

(
c2

a
cosθ ,0

)

be the intersection of the normal to the point M on the ellipse with Ox, and d =
∥MN∥ be the distance between M and N, we leave as an exercise to show that the
radius of curvature is given by

R =
a2

b4
d3.

It is fun to plot the locus of the center of curvature and enough osculating circles to
the ellipse. Figure 19.8 shows 64 osculating circles of the ellipse

x2

a2
+

y2

b2
= 1

(with a≥ b), for a = 4, b = 2, and the locus of the center of curvature. Although the
ellipse is not explicitly plotted, it seems to be present!

-8 -6 -4 -2 2 4 6 8

-10

-5

5

10

Fig. 19.8 Osculating circles of an ellipse.
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Example 19.11. The logarithmic spiral given in polar coordinates by r = aemθ , or
by

x = aemθ cosθ ,

y = aemθ sinθ

(with a > 0), is particularly interesting. We leave as an exercise to show that the
radius of curvature is

R = a
√

1+m2 emθ ,

and that the center of curvature is on the spiral (in fact, equal to the original spiral)
defined by

x =−maemθ sinθ ,

y = maemθ cosθ .

Fig. 19.9 Osculating circles of a logarithmic spiral.
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Figure 19.9 shows 50 osculating circles of the logarithmic spiral given in polar
coordinates by r = aemθ , for a = 0.6 and m = 0.1. The spiral definitely shows up
very clearly, even though it is not explicitly plotted. Also, note that since the radius
of curvature is increasing, no two osculating circles intersect!

Example 19.12. The cardioid given in polar coordinates by r = a(1+ cosθ ), or by

x = a(1+ cosθ )cosθ ,

y = a(1+ cosθ )sinθ ,

is also a neat example. Figure 19.10 shows 50 osculating circles of the cardioid
given in polar coordinates by r = a(1+cosθ ), for a = 2, and the locus of the center
of curvature.

-1 1
2

3 4

-3

-2

-1

1

2

3

Fig. 19.10 Osculating circles of a cardioid.

We leave as an exercise to show that the radius of curvature is

R =

∣∣∣∣
2a

3
cos(θ/2)

∣∣∣∣,
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and that the center of curvature is on the cardioid defined by

x =
2a

3
+

a

3
(1− cosθ )cosθ ,

y =
a

3
(1− cosθ )sin θ .

We conclude our discussion of the curvature of plane curves with a brief look at
the algebraic curvature. Since a plane can be oriented, it is possible to give a sign
to the curvature. Let us assume that the plane is oriented by an othonormal frame
(O, i, j), assumed to have a positive orientation, and that the curve f is parametrized
by arc length. Then, given any unit tangent vector t at s to a curve f , there exists a
unit normal vector ν such that (O, t,ν) has positive orientation. In fact, if θ is the
angle (mod 2π) between i and t, so that

t = cosθ i+ sinθ j,

we have
ν = cos(θ +π/2) i+ sin(θ +π/2) j =−sinθ i+ cosθ j.

Note that this normal vector ν is not necessarily equal to the unit normal vector
n = f ′′(s)/∥ f ′′(s)∥: It can be of the opposite direction. Furthermore, ν exists for
every regular point, even when f ′′(s) = 0, which is not true of n. We define the
algebraic curvature k at s as the real number (negative, null, or positive) such that

f ′′(s) = kν.

We also define the algebraic radius of curvature R as R = 1/k. Clearly, κ = |k| and
R = |R|. Thus, we also have

t′ = kν,

and it is immediately verified that the center of curvature is still given by C− f (s) =
Rν , and that

ν ′ =−kt.

The algebraic curvature plays an important role in some global theorems of dif-
ferential geometry. It is also possible to prove that if c : ]a, b[→ R is a continuous
function and s0 ∈ ]a, b[ , then there is a unique curve f : ]a, b[→ E such that f (s0)
is any given point, f ′(s0) is any given vector, and such that c(s) is the algebraic
curvature of f . Roughly speaking, the algebraic curvature k determines the curve
completely, up to rigid motion.

! One should be careful to note that this result fails if we consider the cur-
vature κ instead of the algebraic curvature k. Indeed, it is possible that

k(s) = c(s) = 0, and thus that κ(s) = 0. Such points may be inflection points, and
counterexamples to the above result with κ instead of k are easily found. However,
if we require c(s)> 0 for all s, the above result holds for the curvature κ .

We now consider curves in affine Euclidean 3D spaces (i.e. E = E3).
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19.5 Normal Planes and Curvature (3D Curves)

The first thing to do is to define the notion of a normal plane.

Definition 19.12. Given any regular 3D curve f : ]a,b[→ E (or f : [a,b]→ E ) of
class Cp, with p ≥ 2, the normal plane Nt to f at t is the plane through f (t) and
orthogonal to the tangent line Tt to f at t. The intersection of the normal plane and
the osculating plane (if it exists) is called the principal normal line to f at t.

In order to get an intuitive idea of the notion of curvature, we need to look at
the variation of the normal plane around t, since there are infinitely many normal
lines to a given line in 3-space. This time, we will see that the normal plane rotates
around a line perpendicular to the osculating plane (called the polar axis at t). The
intersection of this line with the osculating plane is the center of curvature. But
now, not only does the normal plane rotate around an axis, so do the osculating
plane and the plane containing the tangent line and normal to the osculating plane,
called the rectifying plane. Thus, a second quantity, called the torsion, will make its
appearance. But let us go back to the intersection of normal planes around t.

Actually, the treatment that we gave for the plane extends immediately to space
(in 3D). Indeed, the normal plane Nt to f at t is the set of points P such that

M′ ·−→MP = 0,

or equivalently
M′ ·P = M′ ·M.

Similarly, for any small δ ̸= 0 such that f (t + δ ) is defined, the normal plane Nt+δ

to f at t + δ is the set of points Q such that

M′(t + δ ) ·Q = M′(t + δ ) ·M(t + δ ).

Thus, the intersection points P of Nt and Nt+δ , if they exist, are given by the equa-
tions

M′ ·P = M′ ·M,

M′(t + δ ) ·P = M′(t + δ ) ·M(t + δ ).

As in the planar case, for δ very small, the intersection of the two planes Nt and
Nt+δ is given by the equations

M′ ·−→MP = 0,

M′′ ·−→MP = ∥M′∥2.

Thus, if M′ and M′′ are linearly independent, which is equivalent to saying that
f ′(t) and f ′′(t) are linearly independent, i.e., f is biregular at t, the above two equa-
tions define a unique line ∆ orthogonal to the osculating plane. This line is called
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the polar axis at t. Also, the above analysis shows that the intersection of the two
normal planes Nt and Nt+δ , for δ ̸= 0 small enough, has the limit ∆ . Since the line ∆
is perpendicular to the osculating plane, it intersects the osculating plane in a single

point C (really, C(t)), the center of curvature of f at t. The distance R = ∥
−→
MC∥ is

the radius of curvature at t, and its inverse κ = 1/R is the curvature at t. Note that
C is on the normal line to the curve f at t contained in the osculating plane, i.e., on
the principal normal at t.

19.6 The Frenet Frame (3D Curves)

When f ′(t) and f ′′(t) are linearly independent, we can find a unit vector in the
plane spanned by f ′(t) and f ′′(t) and orthogonal to the unit tangent vector t =
f ′(t)/∥ f ′(t)∥ at t, and equal to the unit vector f ′′(t)/∥ f ′′(t)∥ when f ′(t) and f ′′(t)
are orthogonal, namely the unit vector

n =
−( f ′(t) · f ′′(t)) f ′(t)+ ∥ f ′(t)∥2 f ′′(t)

∥− ( f ′(t) · f ′′(t)) f ′(t)+ ∥ f ′(t)∥2 f ′′(t)∥
.

The unit vector n is called the principal normal vector to f at t. Note that n defines
the direction of the principal normal at t. We define the binormal vector b at t
as b = t× n. Thus, the triple (t,n,b) is a basis of orthogonal unit vectors. It is
usually called the Frenet (or Frenet–Serret) frame at t (this concept was introduced
independently by Frenet, in 1847, and Serret, in 1850). This concept is sufficiently
important to warrant the following definition.

Definition 19.13. Given a biregular 3D curve f : ]a,b[→ E (or f : [a,b]→ E ) of
class Cp, with p≥ 2, the Frenet frame (or Frenet trihedron) at t is the triple (t,n,b)
consisting of the three orthogonal unit vectors such that t = f ′(t)/∥ f ′(t)∥ is the unit
tangent vector at t,

n =
−( f ′(t) · f ′′(t)) f ′(t)+ ∥ f ′(t)∥2 f ′′(t)

∥− ( f ′(t) · f ′′(t)) f ′(t)+ ∥ f ′(t)∥2 f ′′(t)∥

is a unit vector orthogonal to t called the principal normal vector to f at t, and
b = t× n is the binormal vector at t. The plane containing t and b is called the
rectifying plane at t.

As we will see shortly, the principal normal n has a simpler expression when the
curve is parametrized by arc length. The calculations of R are still valid, since the
cross product M′ ×M′′ makes sense in 3-space, and thus we have

R =
∥M′∥3

∥M′ ×M′′∥
=

∥ f ′(t)∥3

∥ f ′(t)× f ′′(t)∥
,

and the curvature is given by
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κ =
∥M′ ×M′′∥
∥M′∥3

=
∥ f ′(t)× f ′′(t)∥
∥ f ′(t)∥3

.

Example 19.13. Consider the curve given by

f (t) = (t, t2, t3),

known as the twisted cubic. We have f ′(t) = (1,2t,3t2) and f ′′(t) = (0,2,6t), and
thus at t = 0 (the origin), the vectors

f ′(t) = (1,0,0) and f ′′(t) = (0,2,0)

are orthogonal, and the Frenet frame (t,n,b) consists of the three unit vectors i =
(1,0,0), j = (0,1,0), and k = (0,0,1). Thus, the osculating plane is the xy-plane,
the normal plane is the yz-plane, and the rectifying plane is the xz-plane. It is easily
checked that

f ′ × f ′′ = (6t2,−6t,2),

and the curvature at t is given by

κ(t) =
2(9t4 + 9t2+ 1)1/2

(9t4 + 4t2 + 1)3/2
.

In particular, κ(0) = 2, and the polar line is the vertical line in the yz-plane passing
through the point C =

(
0, 1

2 ,0
)
, the center of curvature.

When the curve is parametrized by arc length, t = f ′(s), and we obtain the same
results as in the planar case, namely,

R =
1

∥M′′∥
=

1

∥ f ′′(s)∥
.

The radius of curvature is the inverse of the norm of the acceleration vector f ′′(s),
and the curvature κ is

κ = ∥ f ′′(s)∥.

Again, as in the planar case, the curvature is an invariant intrinsic to the geometric
curve defined by f .

We now consider how the rectifying plane varies. This will uncover the torsion.
According to Kreyszig [15], the term torsion was first used by de la Vallée in 1825.
We leave as an easy exercise to show that the osculating plane rotates around the
tangent line for points t + δ close enough to t.
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19.7 Torsion (3D Curves)

Recall that the rectifying plane is the plane orthogonal to the principal normal at t
passing through f (t). Thus, its equation is

n ·−→MP = 0,

where n is the principal normal vector. However, things get a bit messy when we
take the derivative of n, because of the denominator, and it is easier to use the vector

N =−( f ′(t) · f ′′(t)) f ′(t)+ ∥ f ′(t)∥2 f ′′(t),

which is collinear to n, but not necessarily a unit vector. Still, we have N ·M′ = 0,

which is the important fact. Since the equation of the rectifying plane is N ·−→MP = 0
or

N ·P = N ·M,

by familiar reasoning, the equation of a rectifying plane for δ ̸= 0 small enough is

N(t + δ ) ·P = N(t + δ ) ·M(t + δ ),

and we can easily prove that the intersection of these two planes is given by the
equations

N ·−→MP = 0,

N′ ·−→MP = N ·M′ = 0,

since N ·M′= 0. Thus, if N and N′ are linearly independent, the intersection of these
two planes is a line in the rectifying plane, passing through the point M = f (t). We
now have to take a closer look at N′. It is easily seen that

N′ =−(∥M′′∥2 +M′ ·M′′′)M′+(M′ ·M′′)M′′+ ∥M′∥2M′′′.

Thus, N and N′ are linearly independent iff M′, M′′, and M′′′ are linearly indepen-
dent. Now, since the line in question is in the rectifying plane, every point P on this
line can be expressed as

−→
MP = αb+β t,

where α and β are related by the equation

(N′ ·b)α +(N′ · t)β = 0,

obtained from N′ ·−→MP = 0. However, t = M′/∥M′∥, and it is immediate that

b =
M′ ×M′′

∥M′ ×M′′∥
.
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Recalling that the radius of curvature is given by R = ∥M′∥3/∥M′ ×M′′∥, it is
tempting to investigate the value of α when β = R. Then the equation

(N′ ·b)α +(N′ · t)β = 0

becomes
(N′ · (M′ ×M′′))α + ∥M′∥2(N′ ·M′) = 0.

Since
N′ =−(∥M′′∥2 +M′ ·M′′′)M′+(M′ ·M′′)M′′+ ∥M′∥2M′′′,

we get
N′ · (M′ ×M′′) = ∥M′∥2(M′,M′′,M′′′),

where (M′,M′′,M′′′) is the mixed product of the three vectors, i.e., their determi-
nant, and since N ·M′ = 0, we get N′ ·M′+N ·M′′ = 0. Thus,

N′ ·M′ =−N ·M′′ = (M′ ·M′′)2−∥M′∥2∥M′′∥2 =−∥M′ ×M′′∥2,

and finally, we get

∥M′∥2(M′,M′′,M′′′)α−∥M′∥2∥M′ ×M′′∥2 = 0,

which yields

α =
∥M′ ×M′′∥2

(M′,M′′,M′′′)
.

So finally, we have shown that the axis of rotation of the rectifying planes for t + δ
close to t is determined by the vector

−→
MP = αb+Rt,

or equivalently, that

(κt+ τb) ·−→MP = 0,

where κ is the curvature and τ =−1/α is called the torsion at t, and is given by

τ =−
(M′,M′′,M′′′)

∥M′ ×M′′∥2
.

Its inverse T = 1/τ is called the radius of torsion at t. The vector −τt+κb giving
the direction of the axis or rotation of the rectifying plane is called the Darboux

vector. In summary, we have obtained the following formulae for the curvature and
the torsion of a 3D-curve:

κ =
∥ f ′(t)× f ′′(t)∥
∥ f ′(t)∥3

, τ =−
( f ′(t), f ′′(t), f ′′′(t))

∥ f ′(t)× f ′′(t)∥2
.

Example 19.14. Returning to the example of the twisted cubic
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f (t) = (t, t2, t3),

since f ′(t) = (1,2t,3t2), f ′′(t) = (0,2,6t), and f ′′′(t) = (0,0,6), we get

( f ′, f ′′, f ′′′) = 12,

and since
f ′ × f ′′ = (6t2,−6t,2),

the torsion at t is given by

τ(t) =−
3

9t4 + 9t2+ 1
.

In particular, τ(0) =−3, and the rectifying plane rotates around the line through the
origin and of direction

−τt+κb = (3,2,0).

The twisted cubic, the locus of the centers of curvature, the Frenet frame, the polar
line (D), and the Darboux vector (Db) corresponding to t = 0 are shown in Figure
19.11.
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Fig. 19.11 The twisted cubic, the centers of curvature, a Frenet frame, a polar line, and a Darboux
vector.



19.8 The Frenet Equations (3D Curves) 559

If g = f ◦ θ is a curve Cp-equivalent to f , where θ is a Cp-diffeomorphism, we
leave as an exercise to prove that

τ =−
( f ′(u), f ′′(u), f ′′′(u))

∥ f ′(u)× f ′′(u)∥2
=−

(g′(t),g′′(t),g′′′(t))

∥g′(t)× g′′(t)∥2
,

where u = θ (t), i.e., τ has the same value for both f and g. Thus, the torsion is an
invariant intrinsic to the geometric curve defined by f .

19.8 The Frenet Equations (3D Curves)

Assuming that curves are parametrized by arc length, we are now going to see how
κ and τ reappear naturally when we determine how the Frenet frame (t,n,b) varies
with s, and more specifically, in expressing (t′,n′,b′) over the basis (t,n,b). We
claim that

t′ = κn,

n′ =−κt− τb,

b′ = τn,

where κ is the curvature, and τ turns out to be the torsion.
We have t′= κn by definition of the curvature. Since ∥b∥= b ·b = 1 and t ·b= 0,

by taking derivatives we get
b ·b′ = 0

and
t′ ·b =−t ·b′,

and thus
t ·b′ =−t′ ·b =−κn ·b = 0.

This shows that b′ is collinear to n, and thus that

b′ = τn,

for some real τ . From ∥n∥= n ·n = 1, n · t = 0, and n ·b = 0, by taking derivatives
we get

n ·n′ = 0, n′ · t =−n · t′, n′ ·b =−n ·b′.

Since t′ = κn and b′ = τn, we get

n′ · t =−n · t′ =−n ·κn =−κ

and
n′ ·b =−n ·b′ =−n · τn =−τ.
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But the components of n′ over (t,n,b) are indeed n′ · t, n′ ·n, and n′ ·b, and thus

n′ =−κt− τb.

In matrix form we can write the equations know as the Frenet (or Frenet–Serret)
equations as

(t′,n′,b′) = (t,n,b)

⎛

⎝
0 −κ 0
κ 0 τ
0 −τ 0

⎞

⎠ .

We can now verify that τ agrees with the geometric interpretation given before.
The axis of rotation of the rectifying plane is the line given by the intersection of
the two planes of equations

n ·−→MP = 0,

n′ ·−→MP = 0,

and since
n′ =−κt− τb,

the second equation is equivalent to

(κt+ τb) ·−→MP = 0.

This is exactly the equation that we found earlier with τ =−1/α , where

α =
∥M′ ×M′′∥2

(M′,M′′,M′′′)
.

Remarks:

(1) Some authors, including Darboux ([6], Livre I, Chapter 1) and Élie Cartan ([5],
Chapter VII, Section 2), define the torsion as −τ , in which case

τ =
(M′,M′′,M′′′)

∥M′ ×M′′∥2
,

and the Frenet equations take the form

(t′,n′,b′) = (t,n,b)

⎛

⎝
0 −κ 0
κ 0 −τ
0 τ 0

⎞

⎠ .

A possible advantage of this choice is the elimination of the negative sign in the
expression for τ above, and the fact that it may be slightly easier to remember
the Frenet matrix, since signs on descending diagonals remain the same. An-
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other possible advantage is that the Frenet matrix has a similar shape in higher
dimension (≥ 4). Books on Computer-Aided Gemetric Design seem to prefer
this choice. On the other hand, do Carmo [7] and Berger and Gostiaux [2] use
the opposite convention (as we do).

(2) It should also be noted that if we let

ω = τt+κb,

often called the Darboux vector, then (abbreviating three equations in one using
a slight abuse of notation)

(t′,n′,b′) = ω× (t,n,b),

which shows that the vectors t′,n′,b′ are the velocities of the tips of the unit
frame, and that the unit frame rotates around an instantaneous axis of rotation
passing through the origin of the frame, whose direction is the vector ω = τt+
κb.

We now summarize the above considerations in the following definition and
lemma.

Definition 19.14. Given a biregular 3D curve f : ]a,b[→ E (or f : [a,b]→ E ) of
class Cp parametrized by arc length, with p ≥ 3, given the Frenet frame (t,n,b)
at s, the curvature κ at s is the nonnegative real number such that t′ = κn, the
torsion τ at s is the real number such that b′ = τn, the radius of curvature at s is
the nonnegative real number R = 1/κ , the radius of torsion at s is the real number
T = 1/τ , the center of curvature at s is the point C on the principal normal such
that C− f (s) = Rn, and the polar axis at s is the line orthogonal to the osculating
plane passing through the center of curvature.

Again, we stress that the curvature κ and the torsion τ are intrinsic invariants of
the geometric curve defined by f .

Lemma 19.7. Given a biregular 3D curve f : ]a,b[→ E (or f : [a,b]→ E ) of class

Cp parametrized by arc length, with p ≥ 3, given the Frenet frame (t,n,b) at s, we
have the Frenet (or Frenet–Serret) equations

(t′,n′,b′) = (t,n,b)

⎛

⎝
0 −κ 0
κ 0 τ
0 −τ 0

⎞

⎠ .

Given any parametrization for f , the curvature κ and the torsion τ are given by
the expressions

κ =
∥ f ′(t)× f ′′(t)∥
∥ f ′(t)∥3

and

τ =−
( f ′(t), f ′′(t), f ′′′(t))

∥ f ′(t)× f ′′(t)∥2
.
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Furthermore, for δ small enough, the normal plane at t + δ rotates around the

polar axis, a line othogonal to the osculating plane and passing through the center

of curvature, and the rectifying plane at t + δ rotates around the line defined by the
point of contact at t and the vector −τt+κb (the Darboux vector).

The torsion measures how the osculating plane rotates around the tangent. Let
us show that if f is a biregular curve and if τ = 0 for all t, then f is a plane curve.
We can assume that f is parametrized by arc length. Since b′ = τn, and we are
assuming that τ = 0, we have b′ = 0, which means that b is a constant vector. Since
f is biregular, b ̸= 0. But now, choosing any origin O and observing that

(O f (s) ·b)′ = f ′(s) ·b+O f (s) ·b′ = t ·b+ 0 = 0,

we conclude that O f (s) ·b = λ for some constant λ . Since b ̸= 0, we conclude that
f (s) is in a plane.

! One should be careful to note that the above result is false if f has points
that are not biregular, i.e., if f ′′(s) = 0 for some s. We leave as an exercise

to find an example of a regular nonplanar curve such that τ = 0.

As an example of the computation of the torsion, consider the circular helix de-
fined by

f (t) = (acost, asin t, kt).

It is easy to show that the curvature is given by

κ =
a

a2 + k2

and that the torsion is given by

τ =−
k

a2 + k2
.

Thus, both the curvature and the torsion are constant!
The intrinsic nature of the curvature and the torsion is illustrated by the follow-

ing result. If c : ]a, b[→ R+ is a continuous positive C1 function, d : ]a, b[→ R
is a continuous function, and s0 ∈ ]a, b[ , then there is a unique biregular 3D curve
f : ]a, b[→ E such that f (s0) is any given point, f ′(s0) is any given vector, f ′′(s0)
is any given vector, and such that c(s) is the curvature of f , and d(s) is the torsion
of f . Roughly speaking, the curvature and the torsion determine a biregular curve
completely, up to rigid motion.

! The hypothesis that c(s) > 0 for all s is crucial, and the above result is
false if this condition is not satisfied everywhere.
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19.9 Osculating Spheres (3D Curves)

We conclude our discussion of curves in 3-space by discussing briefly the notion of
osculating sphere. According to Kreyszig [15], osculating spheres were first consid-
ered by Fuss in 1806.

Definition 19.15. For any 3D curve f : ]a,b[→ E (or f : [a,b]→ E ) of class Cp,
with p ≥ 3, and given any point M0 = f (t) on the curve, if the polar axis at t exists,
f is locally injective at M0, and the sphere Σt,h centered on the polar axis and passing
through the points M0 and M1 = f (t + h) has a limit Σt as h ̸= 0 approaches 0, we
say that Σt is the osculating sphere to f in M0 = f (t) at t. More precisely, if the polar
axis at t exists and if there is an open interval ]t−η , t+η [⊆ ]a,b[ (with η > 0) such
that the point M1 = f (t +h) is distinct from M0 for every h ̸= 0 with h ∈ ]−η ,+η [
and the sphere Σt,h centered on the polar axis and passing through the points M0 and
M1 has a limit Σt as h ̸= 0 approaches 0 (with h ∈ ]−η ,+η [ ), we say that Σt is the
osculating sphere to f in M0 = f (t) at t.

Again, the definition is simpler when f is a simple curve. The following lemma
gives a simple condition for the existence of the osculating sphere at a point.

Lemma 19.8. For any 3D curve f : ]a,b[→ E (or f : [a,b] → E ) of class Cp

parametrized by arc length, with p ≥ 3, given any point M0 = f (s) on the curve,

if M0 is a biregular point at s and if R ′ is defined, then the osculating sphere to f in
M0 at s exists and has its center Ω on the polar axis ∆ , such that Ω−C =−T R ′b,

where T is the radius of torsion, R is the radius of curvature, C is the center of

curvature, and b is the binormal, at s.

According to Kreyszig [15], the formula

Ω −M = Rn−T R ′b

is due to de Saint Venant (1845). When s varies, the polar axis generates a surface,
and the center Ω of the osculating sphere generates a curve on this surface. In gen-
eral, this surface consists of the tangents to this curve (called line of striction or edge

of regression of the ruled surface).
Figure 19.12 illustrates the Frenet frame, the polar axis, the center of curvature,

and the osculating sphere. It also shows the osculating plane, the normal plane, and
the rectifying plane.

The twisted cubic and the locus of the centers of osculating spheres are shown
in Figure 19.13. The tangent surface, that is, the surface consisting of the tangent
lines to the twisted cubic; the curve of centers of osculating spheres; and two great
circles of osculating spheres corresponding to t = 1

5 , are shown in Figure 19.14. The
tangent surface is the envelope of the osculating planes. The surface generated by
the polar lines is shown in Figure 19.15. This surface is the envelope of the normal
planes to the twisted cubic. The curve of the centers of osculating spheres is a line
of striction (or edge of regression) on this surface.

Finally, we discuss the case of curves in Euclidean spaces of dimension n≥ 4.
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Fig. 19.12 The Frenet frame, polar axis, center of curvature, and osculating sphere.

19.10 The Frenet Frame for nD Curves (n≥ 4)

Given a curve f : ]a,b[→ En (or f : [a,b]→ En) of class Cp, with p ≥ n, it is in-
teresting to consider families (e1(t), . . . ,en(t)) of orthonormal frames. Moreover, if
for every k, with 1 ≤ k ≤ n, the kth derivative f (k)(t) of the curve f (t) is a linear
combination of (e1(t), . . . ,ek(t)) for every t ∈ ]a,b[ , then such a frame plays the role
of a generalized Frenet frame. This leads to the following definition:

Definition 19.16. Let f : ]a,b[→En (or f : [a,b]→ En) be a curve of class Cp, with
p≥ n. A family (e1(t), . . . ,en(t)) of orthonormal frames, where each ei : ]a,b[→En

is Cn−i-continuous for i = 1, . . . ,n− 1 and en is C1-continuous, is called a moving

frame along f . Furthermore, a moving frame (e1(t), . . . ,en(t)) along f such that for
every k, with 1≤ k ≤ n, the kth derivative f (k)(t) of f (t) is a linear combination of
(e1(t), . . . ,ek(t)) for every t ∈ ]a,b[ , is called a Frenet n-frame or Frenet frame.

If (e1(t), . . . ,en(t)) is a moving frame, then

ei(t) · e j(t) = δi j for all i, j, 1≤ i, j ≤ n.
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Fig. 19.13 The twisted cubic and the curve of centers of osculating spheres.

Lemma 19.9. Let f : ]a,b[→ En (or f : [a,b]→ En) be a curve of class Cp, with

p≥ n, such that the derivatives f (1)(t), . . . , f (n−1)(t) of f (t) are linearly independent
for all t ∈ ]a,b[ . Then there is a unique Frenet n-frame (e1(t), . . . ,en(t)) satisfying

the following conditions:

(1) The k-frames ( f (1)(t), . . . , f (k)(t)) and (e1(t), . . . ,ek(t)) have the same orienta-
tion for all k, with 1≤ k ≤ n− 1.

(2) The frame (e1(t), . . . ,en(t)) has positive orientation.

Proof. Since ( f (1)(t), . . . , f (n−1)(t)) is linearly independent, we can use the Gram–
Schmidt orthonormalization procedure (see Lemma 6.7) to construct (e1(t), . . .,
en−1(t)) from ( f (1)(t), . . . , f (n−1)(t)). We use the generalized cross product to define
en, where

en = e1× · · ·× en−1.

From the Gram–Schmidt procedure, it is easy to check that ek(t) is Cn−k for 1 ≤
k ≤ n− 1, and since the components of en are certain determinants involving the
components of (e1, . . . ,en−1), it is also clear that en is C1. ⊓.

The Frenet n-frame given by Lemma 19.9 is called the distinguished Frenet n-
frame. We can now prove a generalization of the Frenet–Serret formula that gives an
expression of the derivatives of a moving frame in terms of the moving frame itself.
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Fig. 19.14 The tangent surface and the centers of osculating spheres.

Lemma 19.10. Let f : ]a,b[→ En (or f : [a,b]→ En) be a curve of class Cp, with
p≥ n, such that the derivatives f (1)(t), . . . , f (n−1)(t) of f (t) are linearly independent

for all t ∈ ]a,b[ . Then for any moving frame (e1(t), . . . ,en(t)), if we write ωi j(t) =
e′i(t) · e j(t), we have

e′i(t) =
n

∑
j=1

ωi j(t)e j(t),

with
ω ji(t) =−ωi j(t),

and there are some functions αi(t) such that

f ′(t) =
n

∑
i=1

αi(t)ei(t).

Furthermore, if (e1(t), . . . ,en(t)) is the distinguished Frenet n-frame associated with
f , then we also have

α1(t) = ∥ f ′(t)∥, αi(t) = 0 for i≥ 2,

and



19.10 The Frenet Frame for nD Curves (n≥ 4) 567

-1
0

1

-4

-2

0

2

-4

-2

0

2

4

-1
0

1

-4

-2

0

2

Fig. 19.15 The polar surface and the twisted cubic.

ωi j(t) = 0 for j > i+ 1.

Proof. Since (e1(t), . . . ,en(t)) is a moving frame, it is an orthonormal basis, and
thus f ′(t) and e′i(t) are linear combinations of (e1(t), . . . ,en(t)). Also, we know that

e′i(t) =
n

∑
j=1

(e′i(t) · e j(t))e j(t),

and since ei(t) · e j(t) = δi j, by differentiating, if we write ωi j(t) = e′i(t) · e j(t), we
get

ω ji(t) =−ωi j(t).

Now if (e1(t), . . . ,en(t)) is the distinguished Frenet frame, by construction, ei(t) is
a linear combination of f (1)(t), . . . , f (i)(t), and so e′i(t) is a linear combination of

f (2)(t), . . . , f (i+1)(t), hence of (e1(t), . . . ,ei+1(t)). ⊓.

In matrix form, when (e1(t), . . . ,en(t)) is the distinguished Frenet frame, the row
vector (e′1(t), . . . ,e

′
n(t)) can be expressed in terms of the row vector (e1(t), . . . ,en(t))

via a skew-symmetric matrix ω , as shown below:

(e′1(t), . . . ,e
′
n(t)) =−(e1(t), . . . ,en(t))ω(t),
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where

ω =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 ω12

−ω12 0 ω23

−ω23 0
. . .

. . .
. . . ωn−1n

−ωn−1n 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The next lemma shows the effect of a reparametrization and of a rigid motion.

Lemma 19.11. Let f : ]a,b[→ En (or f : [a,b]→ En) be a curve of class Cp, with
p≥ n, such that the derivatives f (1)(t), . . . , f (n−1)(t) of f (t) are linearly independent

for all t ∈ ]a,b[ . Let h : En→ En be a rigid motion, and assume that the correspond-

ing linear isometry is R. Let f̃ = h ◦ f . The following properties hold:

(1) For any moving frame (e1(t), . . . ,en(t)), the n-tuple (ẽ1(t), . . . , ẽn(t)), where

ẽi(t) = R(ei(t)), is a moving frame along f̃ , and we have

ω̃i j(t) = ωi j(t) and ∥ f̃ ′(t)∥= ∥ f ′(t)∥.

(2) For any orientation-preserving diffeormorphism ρ : ]c,d[→ ]a,b[ (i.e., ρ ′(t)> 0

for all t ∈ ]c,d[ ), if we write f̃ = f ◦ ρ , then for any moving frame (e1(t), . . .,
en(t)) on f , the n-tuple (ẽ1(t), . . . , ẽn(t)), where ẽi(t) = ei(ρ(t)), is a moving

frame on f̃ . Furthermore, if ∥ f̃ ′(t)∥ ̸= 0, then

ω̃i j(t)

∥ f̃ ′(t)∥
=

ωi j(ρ(t))

∥ f ′(ρ(t))∥
.

The proof is straightforward and is omitted.
The above lemma suggests the definition of the curvatures κ1, . . . ,κn−1.

Definition 19.17. Let f : ]a,b[→En (or f : [a,b]→ En) be a curve of class Cp, with
p≥ n, such that the derivatives f (1)(t), . . . , f (n−1)(t) of f (t) are linearly independent
for all t ∈ ]a,b[ . If (e1(t), . . . ,en(t)) is the distinguished Frenet frame associated with
f , we define the ith curvature κi of f by

κi(t) =
ωi i+1(t)

∥ f ′(t)∥
,

with 1≤ i≤ n− 1.

Observe that the matrix ω(t) can be written as

ω(t) = ∥ f ′(t)∥κ(t),

where
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κ =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 κ12

−κ12 0 κ23

−κ23 0
. . .

. . .
. . . κn−1n

−κn−1n 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The matrix κ is sometimes called the Cartan matrix.

Lemma 19.12. Let f : ]a,b[→ En (or f : [a,b]→ En) be a curve of class Cp, with

p≥ n, such that the derivatives f (1)(t), . . . , f (n−1)(t) of f (t) are linearly independent
for all t ∈ ]a,b[ . Then for every i, with 1≤ i≤ n− 2, we have κi(t)> 0.

Proof. Lemma 19.9 shows that e1, . . . ,en−1 are expressed in terms of f (1), . . ., f (n−1)

by a triangular matrix (ai j) whose diagonal entries aii are strictly positive, i.e., we
have

ei =
i

∑
j=1

ai j f ( j),

for i = 1, . . . ,n− 1, and thus

f (i) =
i

∑
j=1

bi je j,

for i = 1, . . . ,n− 1, with bii = a−1
i i > 0. Then, since ei+1 · f ( j) = 0 for j ≤ i, we get

∥ f ′∥κi = ωi i+1 = e′i · ei+1 = aii f (i+1) · ei+1 = aiibi+1 i+1,

and since aiibi+1 i+1 > 0, we get κi > 0 (i = 1, . . . ,n− 2). ⊓.

Our previous reasoning in the 3D case is immediately extended to show that the
limit of the intersection of the normal hyperplane at t+δ with the normal hyperplane
at t (for δ small) with the osculating plane is a pointC such that C− f (t) = (1/κ1)e1.
Thus, we obtain a geometric interpretation for the curvature κ1, and it is also possi-
ble to obtain an interpretation for the other κi.

We conclude by exploring to what extent the curvatures κ1, . . ., κn−1 determine
a curve satisfying the nondegeneracy conditions of Lemma 19.9. Basically, such
curves are defined up to a rigid motion.

Lemma 19.13. Let f : ]a,b[→ En and f̃ : ]a,b[→ En (or f : [a,b] → En and

f̃ : [a,b]→ En) be two curves of class Cp, with p ≥ n, and satisfying the nondegen-

eracy conditions of Lemma 19.9. Denote the distinguished Frenet frames associated
with f and f̃ by (e1(t), . . . ,en(t)) and (ẽ1(t), . . . , ẽn(t)). If κi(t) = κ̃i(t) for every i,

with 1 ≤ i ≤ n− 1, and ∥ f ′(t)∥ = ∥ f̃ ′(t)∥ for all t ∈ ]a,b[ , then there is a unique

rigid motion h such that

f̃ = h ◦ f .

Proof. Fix t0 ∈ ]a,b[ . First of all, there is a unique rigid motion h such that
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h( f (t0)) = f̃ (t0) and R(ei(t0)) = ẽi(t0),

for all i, with 1 ≤ i≤ n, where R is the linear isometry associated with h (in fact, a
rotation). Consider the curve f = h ◦ f . The hypotheses of the lemma and Lemma
19.11 imply that

ωi j(t) = ω̃i j(t) = ωi j(t), ∥ f
′
(t)∥= ∥ f̃ ′(t)∥= ∥ f ′(t)∥,

and, by construction, (e1(t0), . . . ,en(t0)) = (ẽ1(t0), . . . , ẽn(t0)) and f (t0) = f̃ (t0). Let

δ (t) =
n

∑
i=1

(ei(t)− ẽi(t)) · (ei(t)− ẽi(t)).

Then we have

δ ′(t) = 2
n

∑
i=1

(ei(t)− ẽi(t)) · (ei
′(t)− ẽi

′(t))

=−2
n

∑
i=1

(ei(t) · ẽi
′(t)+ ẽi(t) · ei

′(t)).

Using the Frenet equations, we get

δ ′(t) =−2
n

∑
i=1

n

∑
j=1

ωi jei · ẽ j− 2
n

∑
i=1

n

∑
j=1

ωi je j · ẽi

=−2
n

∑
i=1

n

∑
j=1

ωi jei · ẽ j− 2
n

∑
j=1

n

∑
i=1

ω jiei · ẽ j

=−2
n

∑
i=1

n

∑
j=1

ωi jei · ẽ j + 2
n

∑
j=1

n

∑
i=1

ωi jei · ẽ j

= 0,

since ω is skew-symmetric. Thus, δ (t) is constant, and since the Frenet frames at t0
agree, we get δ (t) = 0. Then ei(t) = ẽi(t) for all i, and since ∥ f

′
(t)∥ = ∥ f̃ ′(t)∥, we

have
f
′
(t) = ∥ f

′
(t)∥e1(t) = ∥ f̃ ′(t)∥ẽ1(t) = f̃ ′(t),

so that f (t)− f̃ (t) is constant. However, f (t0) = f̃ (t0), and so f (t) = f̃ (t) and f̃ =
f = h ◦ f . ⊓.

Finally, the lemma below settles the issue of the existence of a curve with pre-
scribed curvature functions.

Lemma 19.14. Let κ1, . . . ,κn−1 be functions defined on some open ]a,b[ containing
0 with κi Cn−i−1-continuous for i = 1, . . . ,n−1, and with κi(t)> 0 for i = 1, . . . ,n−
2 and all t ∈ ]a,b[ . Then there is curve f : ]a,b[→ En of class Cp, with p ≥ n,
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satisfying the nondegeneracy conditions of Lemma 19.9 such that ∥ f ′(t)∥ = 1 and

f has the n− 1 curvatures κ1(t), . . . ,κn−1(t).

Proof. Let X(t) be the matrix whose columns consist of the vectors e1(t), . . ., en(t)
of the Frenet frame along f . Consider the system of ODEs,

X ′(t) =−X(t)κ(t),

with initial conditions X(0) = I, where κ(t) is the skew-symmetric matrix of curva-
tures. By a standard result in ODEs, there is a unique solution X(t).

We claim that X(t) is an orthogonal matrix. For this, note that

(XX⊤)′ = X ′X⊤+X(X⊤)′ =−XκX⊤−Xκ⊤X⊤

= −XκX⊤+XκX⊤ = 0.

Since X(0) = I, we get XX⊤ = I. If F(t) is the first column of X(t), we define the
curve f by

f (s) =
∫ s

0
F(t)dt,

with s ∈ ]a,b[ . It is easily checked that f is a curve parametrized by arc length, with
Frenet frame X(s), and with curvatures κis. ⊓.

19.11 Applications

Many engineering problems can be reduced to finding curves having some desired
properties. This is certainly true of mechanical engineering and robotics, where var-
ious trajectories must be computed, and of computer graphics and medical imaging,
where contours of shapes, for instance organs, are modeled as curves. In most prac-
tical applications it is necessary to consider curves composed of various segments.
The problem then arises to join these segments as smoothly as possible, without
restricting too much the number of degrees of freedom required for the design. Var-
ious kinds of splines were invented to solve this problem. If the curve segments are
defined parametrically in terms of polynomials, a simple way to achieve continuity
is to enforce the agreement of enough derivatives at junction points. This leads to
parametric Cn-continuity and to B-splines. The theory of B-splines is quite exten-
sive. Among the many references, we recommend Farin [10, 9], Hoschek and Lasser
[14], Bartels, Beatty, and Barsky [1], Fiorot and Jeannin [11, 12], Piegl and Tiller
[17], or Gallier [13].

Because parametric continuity is easy to formulate, piecewise curves based on
parametric continuity are popular. Additionally, there are occasions in which para-
metric continuity is required. For example, if a spline is used to represent the trajec-
tory of an object, parametric continuity guarantees that the object moves smoothly
at the junction between two curve segments. However, there are applications for
which parametric continuity is too constraining, since it depends on details of the
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parametrization that are not relevant to the shape of the curve. For example, if a
curve is used to represent the boundary of an object, then only the outline of the
curve is important. Thus, more flexible continuity conditions (usually called geo-
metric continuity) based only on the geometry of the curve have been investigated.
For plane curves, one may consider tangent continuity, or curvature continuity. For
space curves, one may consider tangent continuity, curvature continuity, or torsion
continuity. One may also want to consider higher-order continuity of the curvature
κ and of the torsion τ , which means considering the continuity of higher deriva-
tives of κ and τ . Another notion is geometric continuity, or Gn-continuity. Roughly
speaking, two curves join with Gn-continuity if there is a reparametrization (a dif-
feomorphism) after which the curves join with parametric Cn-continuity. As a con-
sequence, geometric continuity may be defined using the chain rule, in terms of
a certain connection matrix. Yet another notion is Frenet frame continuity. Again,
there is a vast literature on these topics, and we refer the readers to Farin [10, 9],
Hoschek and Lasser [14], Bartels, Beatty, and Barsky [1], and Piegl and Tiller [17].

Complex shapes are usually represented in a piecewise fashion, composed of
primitive elements smoothly joined. Traditional methods focus on achieving a spe-
cific level of interelement continuity, but the resulting shapes often possess bulges
and undulations, and thus are of poor quality. They lack fairness. Fairness refers to
the quality of regularity of the curvature (and torsion, for a space curve) of a curve.
For a curve to be fair, it is required that the curvature vary gradually and oscillate as
little as possible. Furthermore, the maximum rate of change of curvature should be
minimized. This suggests several approaches.

• Minimal energy curve (which bends as little as possible): Minimize

∫

C
κ2ds

where κ is the curvature.
• Minimal variation curve (which bends as smoothly as possible): Minimize

∫

C

(
d(κn)

ds

)2

ds

where κ is the curvature and n is the principal normal.

Another possibility is to minimize

∫

C

[(
dκ

ds

)2

+

(
dτ

ds

)2
]

ds

where κ is the curvature and τ is the torsion.
These problems may be cast as constrained optimization problems. Interelement

continuity is solved by incorporating a penalty function. Interested readers are re-
ferred to the Ph.D. dissertations of Moreton [16] and Welch [18] for more details.
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It should also be mentioned that it is possible to define a notion of affine normal
and a notion of affine curvature without appealing to the concept of an inner prod-
uct. For some interesting applications, see Calabi, Olver, and Tannenbaum [4] and
Calabi, Olver, Shakiban, Tannenbaum, and Haker [3].

19.12 Problems

19.1. Plot the curve f defined by

f (t) =

⎧
⎨

⎩

(−e1/t , e1/t sin(e−1/t)) if t < 0;
(0, 0) if t = 0;
(e−1/t , e−1/t sin(e1/t)) if t > 0.

Verify that f ′(0) = 0 and that the curve oscillates around the origin.

19.2. Plot the curve f defined by

f (t) =

{
(t, t2 sin(1/t)) if t ̸= 0;
(0,0) if t = 0.

Show that f ′(0) = (1,0) and that f ′(t) = (1, 2t sin(1/t)−cos(1/t)) for t ̸= 0. Verify
that f ′ is discontinuous at 0.

19.3. Let f : ]a,b[→ E be and open curve of class C∞. For some t ∈ ]a,b[ , assume
that f ′(t) = 0, but also that there exist some integers p,q with 1 ≤ p < q such that
f (p)(t) is the first derivative not equal to 0 and f (q)(t) is the first derivative not equal
to 0 and not collinear to f (p)(t). Show that by Taylor’s formula, for h > 0 small
enough, we have

f (t + h)− f (t) =

(
hp

p!
+λp+1

hp+1

(p+ 1)!
+ · · ·+λq−1

hq−1

(q− 1)!

)
f (p)(t)

+
hq

q!
f (q)(t)+

hq

q!
ε(h),

where limh→0,h ̸=0 ε(h) = 0.

As a consequence, the curve is tangent to the line of direction f (p)(t) passing
through f (t). Show that the curve has the following appearance locally at t:

1. p is odd. The curve traverses every secant through f (t).
1a. q is even. Locally, the curve is entirely on the same side of its tangent at f (t).

This looks like an ordinary point.
1b. q is odd. Locally, the curve has an inflection point at f (t), i.e., the two arcs of

the curve meeting at f (t) are on different sides of the tangent.
2. p is even. The curve does not traverse any secant through f (t). It has a cusp.
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2a. q is even. In this case, the two arcs of the curve meeting at f (t) are on the same
side of the tangent. We say that we have a cusp of the second kind.

2b. q is odd. In this case, the two arcs of the curve meeting at f (t) are on different
sides of the tangent. We say that we have a cusp of the first kind.

Draw examples for (p = 1,q= 2), (p = 1,q= 3), (p = 2,q= 3), and (p = 2,q=
4).

19.4. Draw the curve defined such that

x(t) =
2t2

1+ t2
,

y(t) =
2t3

1+ t2
.

Show that the point (0,0) is a cusp and that the line of equation x = 2 is an asymp-
tote. This curve is called the cissoid of Diocles.

19.5. (a) Draw the curve defined such that

x(t) = sin t,

y(t) = cost + logtan
t

2
.

Show that the point (1,0) is a cusp and that the line of equation x = 0 is an asymp-
tote.

(b) Show that the length of the segment of the tangent of the curve between the
point of contact and the y-axis is of constant length 1. For this reason, this curve is
called a tractrix.

19.6. (a) Given a tractrix specified by

x(t) = asin t,

y(t) = acost + a logtan
t

2
,

show that the curvature is given by κ = | tan t|.
(b) Show that the center of curvature is on the curve

x(t) =
a

sin t
,

y(t) = a logtan
t

2
.

Show that this curve has the implicit equation

x = acosh

(
y

a

)
.

Draw this curve, called a catenary.
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Note. Recall that the hyperbolic functions cosh and sinh are defined by

coshu =
eu + e−u

2
and sinhu =

eu− e−u

2
.

19.7. (a) Draw the curve f defined such that

x(t) = ae−bt cost,

y(t) = ae−bt sin t,

where a,b > 0.
Show that the curve approaches the origin (0,0) as t →+∞, spiraling around it.

This curve is called a logarithmic spiral.
(b) Show that f ′(t)→ (0,0) as t→+∞, and that

lim
t→+∞

∫ t

t0

√
x′(u)2 + y′(u)2 du

is finite. Conclude that f has finite arc length in [t0,∞[.

19.8. (A square-filling curve due to Hilbert) This version of the Hilbert curve is
defined in terms of four maps f1, f2, f3, f4 defined by

x′ =
1

2
x−

1

2
, y′ =

1

2
y+ 1,

x′ =
1

2
x+

1

2
, y′ =

1

2
y+ 1,

x′ =−
1

2
y+ 1, y′ =

1

2
x+

1

2
,

x′ =
1

2
y− 1, y′ =−

1

2
x+

1

2
.

(a) Prove that these maps are affine. Can you describe geometrically what their
action is (rotation, translation, scaling?)

(b) Given any polygonal line L, define the following sequence of poygonal lines:

S0 = L,

Sn+1 = f1(Sn)∪ f2(Sn)∪ f3(Sn)∪ f4(Sn).

Construct S1 starting from the polygonal line L=((−1,0),(0,1)), ((0,1), (1,0)).
Can you figure out what Sn looks like in general? (you may want to write a

computer program, and iterate at least 6 times).
(c) Prove that Sn has a limit that is a continuous curve not C1 anywhere and that

is space–filling, in the sense that its image is the entire unit square.
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19.9. Consider the curve f over [0,1] defined such that

f (t) =

{
(t, t sin(π/t) if t ̸= 0,
(0,0) if t = 0.

Show geometrically that the arc length of the portion of curve corresponding to
the interval [1/(n+ 1), 1/n] is at least 1/

(
n+ 1

2

)
. Use this to show that the length

of the curve in the interval [1/N, 1] is greater than 2∑N
n=1 1/(n+ 1). Conclude that

this curve is not rectifiable.

19.10. Consider a polynomial curve of degree m defined by the control points
(b0, . . . ,bm) over [0,1]. Prove that the curvature at b0 is

κ(0) =
m− 1

m

∥
−−→
b0b1×

−−→
b1b2∥

∥
−−→
b0b1∥3

,

and that the curvature at bm is given by

κ(1) =
m− 1

m

∥
−−−−→
bm−1bm×

−−−−−−→
bm−2bm−1∥

∥
−−−−→
bm−1bm∥3

.

Show that the torsion at b0 is given by

τ(0) =−
m− 2

m

(
−−→
b0b1,

−−→
b0b2,

−−→
b0b3)

∥
−−→
b0b1×

−−→
b1b2∥2

.

If a = ∥
−−→
b0b1∥ and h is the distance from b2 to the line (b0,b1), show that

κ(0) =
m− 1

m

h

a2
.

If c is the distance from b3 to the plane spanned by (b0,b1,b2) (the osculating plane),
show that

|τ(0)|=
m− 2

m

c

ah
.

19.11. Consider the curve defined such that

f (t) =

{
(t, t2 + t3 sin(1/t)) if t ̸= 0;
(0,0) if t = 0.

Show that the osculating circle for t = 0 is the circle of center
(
0, 1

2

)
and that f ′′(0)

is undefined, so that the center of curvature is undefined at t = 0.

19.12. Show that the solution of the system

u′x+ v′y = uu′+ vv′,

u′′x+ v′′y = uu′′+ vv′′+ u′2 + v′2,
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is given by

x = u−
v′(u′2 + v′2)

u′v′′ − v′u′′
,

y = v+
u′(u′2 + v′2)

u′v′′ − v′u′′
,

provided that u′v′′ − v′u′′ ̸= 0. Show that the radius of curvature is given by

R =
(u′2 + v′2)3/2

|u′v′′ − v′u′′|
.

19.13. (a) Given an ellipse

x = a cosθ ,

y = b sinθ ,

show that the radius of curvature is given by

R =
(a2 sin2 θ + b2 cos2 θ )3/2

ab
,

and that the center of curvature is on the curve defined by

x =
c2

a
cos3 θ ,

y =−
c2

b
sin3 θ .

This curve is called an astroid.
(b) Letting N =

(
c2

a cosθ ,0
)

be the intersection of the normal to the point M on

the ellipse with Ox, and d = ∥MN∥ be the distance between M and N, show that the
radius of curvature is given by

R =
a2

b4
d3.

19.14. Given a parabola of equation y2 = 2px, compute the radius of curvature and
show that the center of curvature is on the curve of equation

y2 =
8

27p
(x− p)3.

Show that this is a cuspidal cubic with a cusp at (p,0).

19.15. Given a hyperbola

x = a coshθ ,

y = b sinhθ ,
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compute the radius of curvature and show that the center of curvature is on the curve
defined by

x =
c2

a
cosh3 θ ,

y =−
c2

b
sinh3 θ .

Note. The function cosh and sinh are defined in Problem 19.6.

19.16. Given a logarithmic spiral specified by

x = aemθ cosθ ,

y = aemθ sinθ ,

where a > 0, show that the radius of curvature is

R = a
√

1+m2 emθ ,

and that the center of curvature is on the spiral defined by

x =−maemθ sinθ ,

y = maemθ cosθ .

Show that this is the original spiral

19.17. Given a cardioid

x = a(1+ cosθ )cosθ ,

y = a(1+ cosθ )sinθ ,

show that the radius of curvature is

R =

∣∣∣∣
2a

3
cos(θ/2)

∣∣∣∣,

and that the center of curvature is on the cardioid defined by

x =
2a

3
+

a

3
(1− cosθ )cosθ ,

y =
a

3
(1− cosθ )sin θ .

19.18. A plane curve is defined in polar coordinates if

x = ρ(θ )cosθ ,

y = ρ(θ )sinθ ,
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for some function ρ of the polar angle θ .
(a) Prove that the element of arc length is given by

ds =
√

ρ2 +(ρ ′)2 dθ .

(b) Prove that the curvature is given by

κ =
2(ρ ′)2−ρρ ′′+ρ2

[(ρ ′)2 +ρ2]3/2
.

19.19. Give an example of a regular nonplanar curve such that τ = 0.

19.20. A circular helix is defined by

f (t) = (acost, asin t, kt).

Show that the curvature is given by

κ =
a

a2 + k2

and that the torsion is given by

τ =−
k

a2 + k2
.

19.21. If C is a regular plane curve parametrized by arc length, let C′(s) = t be the
tangent vector at s, and write

t = cosϕ i+ sinϕj,

where (i, j) is an orthonormal basis.
(a) Show that the algebraic curvature k(s) is given by

k =
dϕ

ds
.

(b) Letting
C(s) = x(s)i+ y(s)j,

we have dx = cosϕ ds and dy = sinϕ ds. If k(s) = f (s) for some C0-function f ,
show that

ϕ =
∫

f (s)ds+ϕ0

and thus that

x =
∫

cosϕ(s)ds+ a,

y =
∫

sinϕ(s)ds+ b,
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for some constants ϕ0,a,b.

Remark: Integrals of the above form are known as Fresnel integrals, and were first
encountered by Fresnel (1788–1827) in the context of refraction problems.

(c) Study the curves defined such that k = cs+ d, for some constants c,d (such
curves are called clothoids, or Cornu spirals).

19.22. Write a computer program that takes as input the parametric equation (not
necessarily arc length parametrized) of a curve. Your program will generate a graph
of the curve and animate the Frenet frame, osculating circle, and osculating sphere,
along the curve. Try your program on a C2-continuous B-spline to observe disconti-
nuities of the osculating sphere.

19.23. Given a circle C and a point O on C, consider the set of all lines ∆ such that
if p ̸= O is any point on C, the line ∆ is the line passing through p and forming an
angle with the normal Np at p equal to the angle of Np with pO (in other words, ∆ is
obtained by reflecting pO about the normal Np at p). When p = O, the line ∆ is the
diameter through O. Prove that the lines ∆ are tangent to a cardioid (see Problem
19.17).

Remark: The above problem can be viewed as a problem of optics. If a light source
is placed at O, the reflections of the light rays emanating from O will have a cardioid
as envelope. Such curves are also called caustics.

19.24. Using a recursion scheme in which [0,1] is initially subdivided into four
equal intervals and the square [0,1]× [0,1] is initially subdivided into four equal
subsquares, give an analytic definition for the functions hn : [0,1]→ [0,1]× [0,1]
involved in defining the Hilbert curve (see Figure 19.1). Prove that the sequence hn

converges to a continuous function h. Prove that the hn can be chosen to be injective
but that h cannot be injective.

19.25. Two biregular curves f and g in E3 are called Bertrand curves if they have a
common principal normal at any of their points.

(a) If f is a plane biregular curve, then prove that any involute of the locus of
centers of curvatures of f is a Bertrand curve of f . Any two Bertrand curves are
parallel, in the sense that the distance measured along the common principal normal,
between corresponding points of the two Bertrand curves, is constant.

(b) If f ∗ and f are Bertrand curves, then f ∗ has an equation of the form

f ∗(t) = f (t)+ a(t)n,

where n is the principal normal to f at t. We will prove shortly that a(t) must be a
constant.

Assuming that f and f ∗ are Bertrand curves, using the fact that

f ∗(t) = f (t)+ a(t)n,
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observe that
a2(t) = ( f ∗ − f ) · ( f ∗ − f ),

and prove that

d

dt
(a2) = 2( f ∗ − f ) ·

(
d

dt
( f ∗)−

d

dt
( f )

)
= 0.

Conlude that a(t) is constant.
Let t and t∗ be the unit tangent vectors to f and f ∗, respectively. Using the fact

that
d

dt
(t∗ · t) =

dt∗

dt
· t+ t∗ ·

dt

dt
,

prove that
d

dt
(t∗ · t) = 0.

Let
t∗ · t = cosα,

a constant. Observe that α is the constant angle between the tangents at correspond-
ing points of the Bertrand curves.

Now, assuming that f and f ∗ are both parametrized by arc lengths, s and s∗,
respectively, we have

f ∗(s) = f (s)+ a(s)n.

Prove that

cosα =
ds

ds∗
(1− aκ).

Also prove that

∥t∗× t∥=
∥∥∥∥

ds

ds∗
aτn

∥∥∥∥ .

Conclude that

aτ
ds

ds∗
= sinα,

where the sign of α is suitably chosen. From

ds

ds∗
(1− aκ) = cosα and aτ

ds

ds∗
= sinα,

prove that
1− aκ

aτ
= cotα,

and thus, letting c1 = a, c2 = acotα , that the linear equation

c1κ + c2τ = 1

holds between κ and τ .
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(c) Conversely, assume that that the linear equation

c1κ + c2τ = 1

holds between κ and τ . We shall prove that f has the Bertrand curve

f ∗(s) = f (s)+ c1n.

Prove that
d f ∗

ds
= (1− c1κ)t+ c1τb.

In view of the equation
c1κ + c2τ = 1,

letting c = c2/c1, prove that

d f ∗

ds
= c1τ(ct+b).

Conclude that the unit tangent vector to C∗ is

t∗ =
ct+b√
1+ c2

,

that
dt∗

ds
=

1√
1+ c2

(cκ− τ)n,

and that C and C∗ are Bertrand curves.
Thus, we have proved that a curve C has a Bertrand curve iff a linear equation

c1κ + c2τ = 1

holds between κ and τ (Bertrand, 1850).

Extra Credit: Prove that a circular helix is the only nonplanar biregular curve hav-
ing more than one Bertrand curve.
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