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7
The Cartan–Dieudonné Theorem

7.1 Orthogonal Reflections

In this chapter the structure of the orthogonal group is studied in more
depth. In particular, we prove that every isometry in O(n) is the compo-
sition of at most n reflections about hyperplanes (for n ≥ 2, see Theorem
7.2.1). This important result is a special case of the “Cartan–Dieudonné
theorem” (Cartan [29], Dieudonné [47]). We also prove that every rotation
in SO(n) is the composition of at most n flips (for n ≥ 3).

Hyperplane reflections are represented by matrices called Householder
matrices. These matrices play an important role in numerical methods,
for instance for solving systems of linear equations, solving least squares
problems, for computing eigenvalues, and for transforming a symmetric
matrix into a tridiagonal matrix. We prove a simple geometric lemma that
immediately yields the QR-decomposition of arbitrary matrices in terms of
Householder matrices.

Affine isometries are defined, and their fixed points are investigated.
First, we characterize the set of fixed points of an affine map. Using this
characterization, we prove that every affine isometry f can be written
uniquely as

f = t ◦ g, with t ◦ g = g ◦ t,
where g is an isometry having a fixed point, and t is a translation by a

vector τ such that
−→
f (τ) = τ , and with some additional nice properties

(see Lemma 7.6.2). This is a generalization of a classical result of Chasles
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about (proper) rigid motions in R3 (screw motions). We also show that the
Cartan–Dieudonné theorem can be generalized to affine isometries: Every
rigid motion in Is(n) is the composition of at most n affine reflections if
it has a fixed point, or else of at most n + 2 affine reflections. We prove
that every rigid motion in SE(n) is the composition of at most n flips (for
n ≥ 3). Finally, the orientation of a Euclidean space is defined, and we
discuss volume forms and cross products.

Orthogonal symmetries are a very important example of isometries. First
let us review the definition of projections. Given a vector space E, let F
and G be subspaces of E that form a direct sum E = F ⊕G. Since every
u ∈ E can be written uniquely as u = v + w, where v ∈ F and w ∈ G,
we can define the two projections pF :E → F and pG:E → G such that
pF (u) = v and pG(u) = w. It is immediately verified that pG and pF are
linear maps, and that p2

F = pF , p2
G = pG, pF ◦ pG = pG ◦ pF = 0, and

pF + pG = id.

Definition 7.1.1 Given a vector space E, for any two subspaces F and
G that form a direct sum E = F ⊕ G, the symmetry (or reflection) with
respect to F and parallel to G is the linear map s:E → E defined such that

s(u) = 2pF (u) − u,

for every u ∈ E.

Because pF + pG = id, note that we also have

s(u) = pF (u) − pG(u)

and

s(u) = u− 2pG(u),

s2 = id, s is the identity on F , and s = −id on G. We now assume that E
is a Euclidean space of finite dimension.

Definition 7.1.2 Let E be a Euclidean space of finite dimension n. For
any two subspaces F and G, if F and G form a direct sum E = F ⊕ G
and F and G are orthogonal, i.e., F = G⊥, the orthogonal symmetry (or
reflection) with respect to F and parallel to G is the linear map s:E → E
defined such that

s(u) = 2pF (u) − u,

for every u ∈ E. When F is a hyperplane, we call s a hyperplane symmetry
with respect to F (or reflection about F ), and when G is a plane (and thus
dim(F ) = n− 2), we call s a flip about F .

A reflection about a hyperplane F is shown in Figure 7.1.
For any two vectors u, v ∈ E, it is easily verified using the bilinearity of

the inner product that

‖u+ v‖2 − ‖u− v‖2 = 4(u · v).
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Figure 7.1. A reflection about a hyperplane F

Then, since

u = pF (u) + pG(u)

and

s(u) = pF (u) − pG(u),

since F and G are orthogonal, it follows that

pF (u) · pG(v) = 0,

and thus,

‖s(u)‖ = ‖u‖,
so that s is an isometry.

Using Lemma 6.2.7, it is possible to find an orthonormal basis (e1, . . . , en)
of E consisting of an orthonormal basis of F and an orthonormal basis of
G. Assume that F has dimension p, so that G has dimension n− p. With
respect to the orthonormal basis (e1, . . . , en), the symmetry s has a matrix
of the form (

Ip 0
0 −In−p

)
.

Thus, det(s) = (−1)n−p, and s is a rotation iff n− p is even. In particular,
when F is a hyperplane H, we have p = n− 1 and n− p = 1, so that s is
an improper orthogonal transformation. When F = {0}, we have s = −id,
which is called the symmetry with respect to the origin. The symmetry
with respect to the origin is a rotation iff n is even, and an improper
orthogonal transformation iff n is odd. When n is odd, we observe that
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every improper orthogonal transformation is the composition of a rotation
with the symmetry with respect to the origin. When G is a plane, p = n−2,
and det(s) = (−1)2 = 1, so that a flip about F is a rotation. In particular,
when n = 3, F is a line, and a flip about the line F is indeed a rotation of
measure π.

Remark: Given any two orthogonal subspaces F,G forming a direct sum
E = F ⊕ G, let f be the symmetry with respect to F and parallel to G,
and let g be the symmetry with respect to G and parallel to F . We leave
as an exercise to show that

f ◦ g = g ◦ f = −id.

When F = H is a hyperplane, we can give an explicit formula for s(u)
in terms of any nonnull vector w orthogonal to H. Indeed, from

u = pH(u) + pG(u),

since pG(u) ∈ G and G is spanned by w, which is orthogonal to H, we have

pG(u) = λw

for some λ ∈ R, and we get

u · w = λ‖w‖2,

and thus

pG(u) =
(u · w)
‖w‖2

w.

Since

s(u) = u− 2pG(u),

we get

s(u) = u− 2
(u · w)
‖w‖2

w.

Such reflections are represented by matrices called Householder matrices,
and they play an important role in numerical matrix analysis (see Kincaid
and Cheney [100] or Ciarlet [33]). Householder matrices are symmetric and
orthogonal. It is easily checked that over an orthonormal basis (e1, . . . , en),
a hyperplane reflection about a hyperplane H orthogonal to a nonnull
vector w is represented by the matrix

H = In − 2
WW�

‖W‖2
= In − 2

WW�

W�W
,
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where W is the column vector of the coordinates of w over the basis
(e1, . . . , en), and In is the identity n× n matrix. Since

pG(u) =
(u · w)
‖w‖2

w,

the matrix representing pG is

WW�

W�W
,

and since pH + pG = id, the matrix representing pH is

In − WW�

W�W
.

These formulae will be used in Section 8.1 to derive a formula for a rotation
of R3, given the direction w of its axis of rotation and given the angle θ of
rotation.

The following fact is the key to the proof that every isometry can be
decomposed as a product of reflections.

Lemma 7.1.3 Let E be any nontrivial Euclidean space. For any two vec-
tors u, v ∈ E, if ‖u‖ = ‖v‖, then there is a hyperplane H such that the
reflection s about H maps u to v, and if u �= v, then this reflection is
unique.

Proof . If u = v, then any hyperplane containing u does the job. Otherwise,
we must have H = {v − u}⊥, and by the above formula,

s(u) = u− 2
(u · (v − u))
‖(v − u)‖2

(v − u) = u+
2‖u‖2 − 2u · v
‖(v − u)‖2

(v − u),

and since

‖(v − u)‖2 = ‖u‖2 + ‖v‖2 − 2u · v
and ‖u‖ = ‖v‖, we have

‖(v − u)‖2 = 2‖u‖2 − 2u · v,
and thus, s(u) = v.

� If E is a complex vector space and the inner product is Hermitian,
Lemma 7.1.3 is false. The problem is that the vector v−u does not

work unless the inner product u · v is real! We will see in the next chapter
that the lemma can be salvaged enough to yield the QR-decomposition in
terms of Householder transformations.

Using the above property, we can prove a fundamental property of
isometries: They are generated by reflections about hyperplanes.
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7.2 The Cartan–Dieudonné Theorem for Linear
Isometries

The fact that the group O(n) of linear isometries is generated by the re-
flections is a special case of a theorem known as the Cartan–Dieudonné
theorem. Elie Cartan proved a version of this theorem early in the twentieth
century. A proof can be found in his book on spinors [29], which appeared
in 1937 (Chapter I, Section 10, pages 10–12). Cartan’s version applies to
nondegenerate quadratic forms over R or C. The theorem was generalized
to quadratic forms over arbitrary fields by Dieudonné [47]. One should also
consult Emil Artin’s book [4], which contains an in-depth study of the
orthogonal group and another proof of the Cartan–Dieudonné theorem.

First, let us review the notions of eigenvalues and eigenvectors. Recall
that given any linear map f :E → E, a vector u ∈ E is called an eigenvector,
or proper vector, or characteristic vector, of f if there is some λ ∈ K such
that

f(u) = λu.

In this case, we say that u ∈ E is an eigenvector associated with λ. A scalar
λ ∈ K is called an eigenvalue, or proper value, or characteristic value, of
f if there is some nonnull vector u �= 0 in E such that

f(u) = λu,

or equivalently if Ker (f − λid) �= {0}. Given any scalar λ ∈ K, the set
of all eigenvectors associated with λ is the subspace Ker (f − λid), also
denoted by Eλ(f) or E(λ, f), called the eigenspace associated with λ, or
proper subspace associated with λ.

Theorem 7.2.1 Let E be a Euclidean space of dimension n ≥ 1. Every
isometry f ∈ O(E) that is not the identity is the composition of at most n
reflections. When n ≥ 2, the identity is the composition of any reflection
with itself.

Proof . We proceed by induction on n. When n = 1, every isometry f ∈
O(E) is either the identity or −id, but −id is a reflection about H = {0}.
When n ≥ 2, we have id = s ◦ s for every reflection s. Let us now consider
the case where n ≥ 2 and f is not the identity. There are two subcases.

Case 1. f admits 1 as an eigenvalue, i.e., there is some nonnull vector w
such that f(w) = w. In this case, let H be the hyperplane orthogonal to
w, so that E = H ⊕ Rw. We claim that f(H) ⊆ H. Indeed, if

v · w = 0

for any v ∈ H, since f is an isometry, we get

f(v) · f(w) = v · w = 0,
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and since f(w) = w, we get

f(v) · w = f(v) · f(w) = 0,

and thus f(v) ∈ H. Furthermore, since f is not the identity, f is not the
identity of H. Since H has dimension n − 1, by the induction hypothesis
applied to H, there are at most k ≤ n− 1 reflections s1, . . . , sk about some
hyperplanes H1, . . . , Hk in H, such that the restriction of f to H is the
composition sk ◦ · · · ◦ s1. Each si can be extended to a reflection in E as
follows: If H = Hi ⊕ Li (where Li = H⊥

i , the orthogonal complement of
Hi in H), L = Rw, and Fi = Hi ⊕ L, since H and L are orthogonal,
Fi is indeed a hyperplane, E = Fi ⊕ Li = Hi ⊕ L ⊕ Li, and for every
u = h+ λw ∈ H ⊕ L = E, since

si(h) = pHi
(h) − pLi

(h),

we can define si on E such that

si(h+ λw) = pHi
(h) + λw − pLi

(h),

and since h ∈ H, w ∈ L, Fi = Hi ⊕ L, and H = Hi ⊕ Li, we have

si(h+ λw) = pFi
(h+ λw) − pLi

(h+ λw),

which defines a reflection about Fi = Hi ⊕ L. Now, since f is the identity
on L = Rw, it is immediately verified that f = sk ◦ · · · ◦ s1, with k ≤ n− 1.

Case 2. f does not admit 1 as an eigenvalue, i.e., f(u) �= u for all u �= 0.
Pick any w �= 0 in E, and let H be the hyperplane orthogonal to f(w)−w.
Since f is an isometry, we have ‖f(w)‖ = ‖w‖, and by Lemma 7.1.3, we
know that s(w) = f(w), where s is the reflection about H, and we claim
that s ◦ f leaves w invariant. Indeed, since s2 = id, we have

s(f(w)) = s(s(w)) = w.

Since s2 = id, we cannot have s ◦ f = id, since this would imply that
f = s, where s is the identity on H, contradicting the fact that f is not
the identity on any vector. Thus, we are back to Case 1. Thus, there are
k ≤ n− 1 hyperplane reflections such that s ◦ f = sk ◦ · · · ◦ s1, from which
we get

f = s ◦ sk ◦ · · · ◦ s1,
with at most k + 1 ≤ n reflections.

Remarks:

(1) A slightly different proof can be given. Either f is the identity, or
there is some nonnull vector u such that f(u) �= u. In the second
case, proceed as in the second part of the proof, to get back to the
case where f admits 1 as an eigenvalue.
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u

h

w

λw

H

H1

Hi

Hk

L

Fi

Figure 7.2. An isometry f as a composition of reflections, when 1 is an eigenvalue
of f

(2) Theorem 7.2.1 still holds if the inner product on E is replaced by
a nondegenerate symmetric bilinear form ϕ, but the proof is a lot
harder.

(3) The proof of Theorem 7.2.1 shows more than stated. If 1 is an eigen-
value of f , for any eigenvector w associated with 1 (i.e., f(w) = w,
w �= 0), then f is the composition of k ≤ n − 1 reflections about
hyperplanes Fi such that Fi = Hi ⊕ L, where L is the line Rw and
the Hi are subspaces of dimension n− 2 all orthogonal to L (the Hi

are hyperplanes in H). This situation is illustrated in Figure 7.2.
If 1 is not an eigenvalue of f , then f is the composition of k ≤ n
reflections about hyperplanes H,F1, . . . , Fk−1, such that Fi = Hi ⊕
L, where L is a line intersecting H, and the Hi are subspaces of
dimension n− 2 all orthogonal to L (the Hi are hyperplanes in L⊥).
This situation is illustrated in Figure 7.3.

(4) It is natural to ask what is the minimal number of hyperplane re-
flections needed to obtain an isometry f . This has to do with the
dimension of the eigenspace Ker (f − id) associated with the eigen-
value 1. We will prove later that every isometry is the composition of
k hyperplane reflections, where

k = n− dim(Ker (f − id)),

and that this number is minimal (where n = dim(E)).
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Figure 7.3. An isometry f as a composition of reflections when 1 is not an
eigenvalue of f

When n = 2, a reflection is a reflection about a line, and Theorem 7.2.1
shows that every isometry in O(2) is either a reflection about a line or a
rotation, and that every rotation is the product of two reflections about
some lines. In general, since det(s) = −1 for a reflection s, when n ≥ 3 is
odd, every rotation is the product of an even number less than or equal
to n − 1 of reflections, and when n is even, every improper orthogonal
transformation is the product of an odd number less than or equal to n−1
of reflections.

In particular, for n = 3, every rotation is the product of two reflections
about planes. When n is odd, we can say more about improper isometries.
Indeed, when n is odd, every improper isometry admits the eigenvalue −1.
This is because if E is a Euclidean space of finite dimension and f :E → E
is an isometry, because ‖f(u)‖ = ‖u‖ for every u ∈ E, if λ is any eigenvalue
of f and u is an eigenvector associated with λ, then

‖f(u)‖ = ‖λu‖ = |λ|‖u‖ = ‖u‖,
which implies |λ| = 1, since u �= 0. Thus, the real eigenvalues of an isometry
are either +1 or −1. However, it is well known that polynomials of odd
degree always have some real root. As a consequence, the characteristic
polynomial det(f − λid) of f has some real root, which is either +1 or
−1. Since f is an improper isometry, det(f) = −1, and since det(f) is
the product of the eigenvalues, the real roots cannot all be +1, and thus
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−1 is an eigenvalue of f . Going back to the proof of Theorem 7.2.1, since
−1 is an eigenvalue of f , there is some nonnull eigenvector w such that
f(w) = −w. Using the second part of the proof, we see that the hyperplane
H orthogonal to f(w) − w = −2w is in fact orthogonal to w, and thus
f is the product of k ≤ n reflections about hyperplanes H,F1, . . . , Fk−1

such that Fi = Hi ⊕ L, where L is a line orthogonal to H, and the Hi are
hyperplanes in H = L⊥ orthogonal to L. However, k must be odd, and so
k−1 is even, and thus the composition of the reflections about F1, . . . , Fk−1

is a rotation. Thus, when n is odd, an improper isometry is the composition
of a reflection about a hyperplaneH with a rotation consisting of reflections
about hyperplanes F1, . . . , Fk−1 containing a line, L, orthogonal to H. In
particular, when n = 3, every improper orthogonal transformation is the
product of a rotation with a reflection about a plane orthogonal to the axis
of rotation.

Using Theorem 7.2.1, we can also give a rather simple proof of the clas-
sical fact that in a Euclidean space of odd dimension, every rotation leaves
some nonnull vector invariant, and thus a line invariant.

If λ is an eigenvalue of f , then the following lemma shows that the or-
thogonal complement Eλ(f)⊥ of the eigenspace associated with λ is closed
under f .

Lemma 7.2.2 Let E be a Euclidean space of finite dimension n, and let
f :E → E be an isometry. For any subspace F of E, if f(F ) = F , then
f(F⊥) ⊆ F⊥ and E = F ⊕ F⊥.

Proof . We just have to prove that if w ∈ E is orthogonal to every u ∈ F ,
then f(w) is also orthogonal to every u ∈ F . However, since f(F ) = F , for
every v ∈ F , there is some u ∈ F such that f(u) = v, and we have

f(w) · v = f(w) · f(u) = w · u,
since f is an isometry. Since we assumed that w ∈ E is orthogonal to every
u ∈ F , we have

w · u = 0,

and thus

f(w) · v = 0,

and this for every v ∈ F . Thus, f(F⊥) ⊆ F⊥. The fact that E = F ⊕ F⊥

follows from Lemma 6.2.8.

Lemma 7.2.2 is the starting point of the proof that every orthogonal
matrix can be diagonalized over the field of complex numbers. Indeed, if λ is
any eigenvalue of f , then f(Eλ(f)) = Eλ(f), where Eλ(f) is the eigenspace
associated with λ, and thus the orthogonal Eλ(f)⊥ is closed under f , and
E = Eλ(f) ⊕ Eλ(f)⊥. The problem over R is that there may not be any
real eigenvalues. However, when n is odd, the following lemma shows that
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every rotation admits 1 as an eigenvalue (and similarly, when n is even,
every improper orthogonal transformation admits 1 as an eigenvalue).

Lemma 7.2.3 Let E be a Euclidean space.

(1) If E has odd dimension n = 2m+ 1, then every rotation f admits 1
as an eigenvalue and the eigenspace F of all eigenvectors left invari-
ant under f has an odd dimension 2p + 1. Furthermore, there is an
orthonormal basis of E, in which f is represented by a matrix of the
form (

R2(m−p) 0
0 I2p+1

)
,

where R2(m−p) is a rotation matrix that does not have 1 as an
eigenvalue.

(2) If E has even dimension n = 2m, then every improper orthogonal
transformation f admits 1 as an eigenvalue and the eigenspace F of
all eigenvectors left invariant under f has an odd dimension 2p +
1. Furthermore, there is an orthonormal basis of E, in which f is
represented by a matrix of the form(

S2(m−p)−1 0
0 I2p+1

)
,

where S2(m−p)−1 is an improper orthogonal matrix that does not have
1 as an eigenvalue.

Proof . We prove only (1), the proof of (2) being similar. Since f is a rota-
tion and n = 2m+ 1 is odd, by Theorem 7.2.1, f is the composition of an
even number less than or equal to 2m of reflections. From Lemma 2.11.1,
recall the Grassmann relation

dim(M) + dim(N) = dim(M +N) + dim (M ∩N),

where M and N are subspaces of E. Now, if M and N are hyperplanes,
their dimension is n−1, and thus dim (M ∩N) ≥ n−2. Thus, if we intersect
k ≤ n hyperplanes, we see that the dimension of their intersection is at least
n−k. Since each of the reflections is the identity on the hyperplane defining
it, and since there are at most 2m = n − 1 reflections, their composition
is the identity on a subspace of dimension at least 1. This proves that 1 is
an eigenvalue of f . Let F be the eigenspace associated with 1, and assume
that its dimension is q. Let G = F⊥ be the orthogonal of F . By Lemma
7.2.2, G is stable under f , and E = F ⊕ G. Using Lemma 6.2.7, we can
find an orthonormal basis of E consisting of an orthonormal basis for G
and orthonormal basis for F . In this basis, the matrix of f is of the form(

R2m+1−q 0
0 Iq

)
.
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Thus, det(f) = det(R), and R must be a rotation, since f is a rotation and
det(f) = 1. Now, if f left some vector u �= 0 in G invariant, this vector
would be an eigenvector for 1, and we would have u ∈ F , the eigenspace
associated with 1, which contradicts E = F ⊕G. Thus, by the first part of
the proof, the dimension of G must be even, since otherwise, the restriction
of f to G would admit 1 as an eigenvalue. Consequently, q must be odd,
and R does not admit 1 as an eigenvalue. Letting q = 2p+ 1, the lemma is
established.

An example showing that Lemma 7.2.3 fails for n even is the following
rotation matrix (when n = 2):

R =
(

cos θ − sin θ
sin θ cos θ

)
.

The above matrix does not have real eigenvalues for θ �= kπ.
It is easily shown that for n = 2, with respect to any chosen orthonormal

basis (e1, e2), every rotation is represented by a matrix of form

R =
(

cos θ − sin θ
sin θ cos θ

)
where θ ∈ [0, 2π[, and that every improper orthogonal transformation is
represented by a matrix of the form

S =
(

cos θ sin θ
sin θ − cos θ

)
.

In the first case, we call θ ∈ [0, 2π[ the measure of the angle of rotation
of R w.r.t. the orthonormal basis (e1, e2). In the second case, we have a
reflection about a line, and it is easy to determine what this line is. It is
also easy to see that S is the composition of a reflection about the x-axis
with a rotation (of matrix R).

� We refrained from calling θ “the angle of rotation,” because there
are some subtleties involved in defining rigorously the notion of

angle of two vectors (or two lines). For example, note that with respect
to the “opposite basis” (e2, e1), the measure θ must be changed to 2π − θ
(or −θ if we consider the quotient set R/2π of the real numbers modulo
2π). We will come back to this point after having defined the notion of
orientation (see Section 7.8).

It is easily shown that the group SO(2) of rotations in the plane is
abelian. First, recall that every plane rotation is the product of two reflec-
tions (about lines), and that every isometry in O(2) is either a reflection or
a rotation. To alleviate the notation, we will omit the composition operator
◦, and write rs instead of r ◦ s. Now, if r is a rotation and s is a reflection,
rs being in O(2) must be a reflection (since det(rs) = det(r) det(s) = −1),
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and thus (rs)2 = id, since a reflection is an involution, which implies that

srs = r−1.

Then, given two rotations r1 and r2, writing r1 as r1 = s2s1 for two
reflections s1, s2, we have

r1r2r
−1
1 = s2s1r2(s2s1)−1 = s2s1r2s

−1
1 s−1

2 = s2s1r2s1s2 = s2r
−1
2 s2 = r2,

since srs = r−1 for all reflections s and rotations r, and thus r1r2 = r2r1.
We could also perform the following calculation, using some elementary

trigonometry:(
cosϕ sinϕ
sinϕ − cosϕ

)(
cosψ sinψ
sinψ − cosψ

)
=

(
cos(ϕ+ ψ) sin(ϕ+ ψ)
sin(ϕ+ ψ) − cos(ϕ+ ψ)

)
.

The above also shows that the inverse of a rotation matrix

R =
(

cos θ − sin θ
sin θ cos θ

)
is obtained by changing θ to −θ (or 2π − θ). Incidentally, note that in
writing a rotation r as the product of two reflections r = s2s1, the first
reflection s1 can be chosen arbitrarily, since s21 = id, r = (rs1)s1, and rs1
is a reflection.

For n = 3, the only two choices for p are p = 1, which corresponds to
the identity, or p = 0, in which case f is a rotation leaving a line invariant.
This line D is called the axis of rotation. The rotation R behaves like a
two-dimensional rotation around the axis of rotation. Thus, the rotation
R is the composition of two reflections about planes containing the axis of
rotation D and forming an angle θ/2. This is illustrated in Figure 7.4.

The measure of the angle of rotation θ can be determined through its
cosine via the formula

cos θ = u ·R(u),

where u is any unit vector orthogonal to the direction of the axis of rotation.
However, this does not determine θ ∈ [0, 2π[ uniquely, since both θ and
2π − θ are possible candidates. What is missing is an orientation of the
plane (through the origin) orthogonal to the axis of rotation. We will come
back to this point in Section 7.8.

In the orthonormal basis of the lemma, a rotation is represented by a
matrix of the form

R =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1


 .

Remark: For an arbitrary rotation matrix A, since a1 1 + a2 2 + a3 3 (the
trace of A) is the sum of the eigenvalues of A, and since these eigenvalues
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u
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Figure 7.4. 3D rotation as the composition of two reflections

are cos θ+ i sin θ, cos θ− i sin θ, and 1, for some θ ∈ [0, 2π[, we can compute
cos θ from

1 + 2 cos θ = a1 1 + a2 2 + a3 3.

It is also possible to determine the axis of rotation (see the problems).

An improper transformation is either a reflection about a plane or the
product of three reflections, or equivalently the product of a reflection about
a plane with a rotation, and we noted in the discussion following Theorem
7.2.1 that the axis of rotation is orthogonal to the plane of the reflection.
Thus, an improper transformation is represented by a matrix of the form

S =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 −1


 .

When n ≥ 3, the group of rotations SO(n) is not only generated by
hyperplane reflections, but also by flips (about subspaces of dimension n−
2). We will also see, in Section 7.4, that every proper affine rigid motion can



7.2. The Cartan–Dieudonné Theorem for Linear Isometries 211

be expressed as the composition of at most n flips, which is perhaps even
more surprising! The proof of these results uses the following key lemma.

Lemma 7.2.4 Given any Euclidean space E of dimension n ≥ 3, for any
two reflections h1 and h2 about some hyperplanes H1 and H2, there exist
two flips f1 and f2 such that h2 ◦ h1 = f2 ◦ f1.
Proof . If h1 = h2, it is obvious that

h1 ◦ h2 = h1 ◦ h1 = id = f1 ◦ f1
for any flip f1. If h1 �= h2, then H1 ∩H2 = F , where dim(F ) = n − 2 (by
the Grassmann relation). We can pick an orthonormal basis (e1, . . . , en)
of E such that (e1, . . . , en−2) is an orthonormal basis of F . We can also
extend (e1, . . . , en−2) to an orthonormal basis (e1, . . . , en−2, u1, v1) of E,
where (e1, . . . , en−2, u1) is an orthonormal basis of H1, in which case

en−1 = cos θ1 u1 + sin θ1 v1,
en = sin θ1 u1 − cos θ1 v1,

for some θ1 ∈ [0, 2π]. Since h1 is the identity on H1 and v1 is orthogonal
to H1, it follows that h1(u1) = u1, h1(v1) = −v1, and we get

h1(en−1) = cos θ1 u1 − sin θ1 v1,
h1(en) = sin θ1 u1 + cos θ1 v1.

After some simple calculations, we get

h1(en−1) = cos 2θ1 en−1 + sin 2θ1 en,

h1(en) = sin 2θ1 en−1 − cos 2θ1 en.

As a consequence, the matrix A1 of h1 over the basis (e1, . . . , en) is of the
form

A1 =


 In−2 0 0

0 cos 2θ1 sin 2θ1
0 sin 2θ1 − cos 2θ1


 .

Similarly, the matrix A2 of h2 over the basis (e1, . . . , en) is of the form

A2 =


 In−2 0 0

0 cos 2θ2 sin 2θ2
0 sin 2θ2 − cos 2θ2


 .

Observe that both A1 and A2 have the eigenvalues −1 and +1 with mul-
tiplicity n − 1. The trick is to observe that if we change the last entry in
In−2 from +1 to −1 (which is possible since n ≥ 3), we have the following
product A2A1:


In−3 0 0 0

0 −1 0 0
0 0 cos 2θ2 sin 2θ2
0 0 sin 2θ2 − cos 2θ2






In−3 0 0 0

0 −1 0 0
0 0 cos 2θ1 sin 2θ1
0 0 sin 2θ1 − cos 2θ1


 .
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Now, the two matrices above are clearly orthogonal, and they have the
eigenvalues −1,−1, and +1 with multiplicity n− 2, which implies that the
corresponding isometries leave invariant a subspace of dimension n−2 and
act as −id on its orthogonal complement (which has dimension 2). This
means that the above two matrices represent two flips f1 and f2 such that
h2 ◦ h1 = f2 ◦ f1.

Using Lemma 7.2.4 and the Cartan–Dieudonné theorem, we obtain the
following characterization of rotations when n ≥ 3.

Theorem 7.2.5 Let E be a Euclidean space of dimension n ≥ 3. Every
rotation f ∈ SO(E) is the composition of an even number of flips f =
f2k ◦ · · · ◦ f1, where 2k ≤ n. Furthermore, if u �= 0 is invariant under f
(i.e., u ∈ Ker (f − id)), we can pick the last flip f2k such that u ∈ F⊥

2k,
where F2k is the subspace of dimension n− 2 determining f2k.

Proof . By Theorem 7.2.1, the rotation f can be expressed as an even num-
ber of hyperplane reflections f = s2k ◦ s2k−1 ◦ · · · ◦ s2 ◦ s1, with 2k ≤ n.
By Lemma 7.2.4, every composition of two reflections s2i ◦ s2i−1 can be
replaced by the composition of two flips f2i ◦ f2i−1 (1 ≤ i ≤ k), which
yields f = f2k ◦ · · · ◦ f1, where 2k ≤ n.

Assume that f(u) = u, with u �= 0. We have already made the remark
that in the case where 1 is an eigenvalue of f , the proof of Theorem 7.2.1
shows that the reflections si can be chosen so that si(u) = u. In particu-
lar, if each reflection si is a reflection about the hyperplane Hi, we have
u ∈ H2k−1 ∩ H2k. Letting F = H2k−1 ∩ H2k, pick an orthonormal basis
(e1, . . . , en−3, en−2) of F , where

en−2 =
u

‖u‖ .

The proof of Lemma 7.2.4 yields two flips f2k−1 and f2k such that

f2k(en−2) = −en−2 and s2k ◦ s2k−1 = f2k ◦ f2k−1,

since the (n−2)th diagonal entry in both matrices is −1, which means that
en−2 ∈ F⊥

2k, where F2k is the subspace of dimension n− 2 determining f2k.
Since u = ‖u‖en−2, we also have u ∈ F⊥

2k.

Remarks:

(1) It is easy to prove that if f is a rotation in SO(3) and if D is its axis
and θ is its angle of rotation, then f is the composition of two flips
about lines D1 and D2 orthogonal to D and making an angle θ/2.

(2) It is natural to ask what is the minimal number of flips needed to
obtain a rotation f (when n ≥ 3). As for arbitrary isometries, we will
prove later that every rotation is the composition of k flips, where

k = n− dim(Ker (f − id)),
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and that this number is minimal (where n = dim(E)).

We now show that hyperplane reflections can be used to obtain another
proof of the QR-decomposition.

7.3 QR-Decomposition Using Householder
Matrices

First, we state the result geometrically. When translated in terms of House-
holder matrices, we obtain the fact advertised earlier that every matrix (not
necessarily invertible) has a QR-decomposition.

Lemma 7.3.1 Let E be a nontrivial Euclidean space of dimension n. For
any orthonormal basis (e1, . . ., en) and for any n-tuple of vectors (v1, . . .,
vn), there is a sequence of n isometries h1, . . . , hn such that hi is a hy-
perplane reflection or the identity, and if (r1, . . . , rn) are the vectors given
by

rj = hn ◦ · · · ◦ h2 ◦ h1(vj),

then every rj is a linear combination of the vectors (e1, . . . , ej), 1 ≤ j ≤ n.
Equivalently, the matrix R whose columns are the components of the rj
over the basis (e1, . . . , en) is an upper triangular matrix. Furthermore, the
hi can be chosen so that the diagonal entries of R are nonnegative.

Proof . We proceed by induction on n. For n = 1, we have v1 = λe1 for
some λ ∈ R. If λ ≥ 0, we let h1 = id, else if λ < 0, we let h1 = −id, the
reflection about the origin.

For n ≥ 2, we first have to find h1. Let

r1,1 = ‖v1‖.
If v1 = r1,1e1, we let h1 = id. Otherwise, there is a unique hyperplane
reflection h1 such that

h1(v1) = r1,1 e1,

defined such that

h1(u) = u− 2
(u · w1)
‖w1‖2

w1

for all u ∈ E, where

w1 = r1,1 e1 − v1.

The map h1 is the reflection about the hyperplane H1 orthogonal to the
vector w1 = r1,1 e1 − v1. Letting

r1 = h1(v1) = r1,1 e1,
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it is obvious that r1 belongs to the subspace spanned by e1, and r1,1 = ‖v1‖
is nonnegative.

Next, assume that we have found k linear maps h1, . . . , hk, hyperplane
reflections or the identity, where 1 ≤ k ≤ n−1, such that if (r1, . . . , rk) are
the vectors given by

rj = hk ◦ · · · ◦ h2 ◦ h1(vj),

then every rj is a linear combination of the vectors (e1, . . . , ej), 1 ≤ j ≤ k.
The vectors (e1, . . . , ek) form a basis for the subspace denoted by U ′

k, the
vectors (ek+1, . . . , en) form a basis for the subspace denoted by U ′′

k , the
subspaces U ′

k and U ′′
k are orthogonal, and E = U ′

k ⊕ U ′′
k . Let

uk+1 = hk ◦ · · · ◦ h2 ◦ h1(vk+1).

We can write

uk+1 = u′k+1 + u′′k+1,

where u′k+1 ∈ U ′
k and u′′k+1 ∈ U ′′

k . Let

rk+1,k+1 = ‖u′′k+1‖.
If u′′k+1 = rk+1,k+1 ek+1, we let hk+1 = id. Otherwise, there is a unique
hyperplane reflection hk+1 such that

hk+1(u′′k+1) = rk+1,k+1 ek+1,

defined such that

hk+1(u) = u− 2
(u · wk+1)
‖wk+1‖2

wk+1

for all u ∈ E, where

wk+1 = rk+1,k+1 ek+1 − u′′k+1.

The map hk+1 is the reflection about the hyperplane Hk+1 orthogonal to
the vector wk+1 = rk+1,k+1 ek+1 − u′′k+1. However, since u′′k+1, ek+1 ∈ U ′′

k

and U ′
k is orthogonal to U ′′

k , the subspace U ′
k is contained in Hk+1, and

thus, the vectors (r1, . . . , rk) and u′k+1, which belong to U ′
k, are invariant

under hk+1. This proves that

hk+1(uk+1) = hk+1(u′k+1) + hk+1(u′′k+1) = u′k+1 + rk+1,k+1 ek+1

is a linear combination of (e1, . . . , ek+1). Letting

rk+1 = hk+1(uk+1) = u′k+1 + rk+1,k+1 ek+1,

since uk+1 = hk ◦ · · · ◦ h2 ◦ h1(vk+1), the vector

rk+1 = hk+1 ◦ · · · ◦ h2 ◦ h1(vk+1)

is a linear combination of (e1, . . . , ek+1). The coefficient of rk+1 over ek+1

is rk+1,k+1 = ‖u′′k+1‖, which is nonnegative. This concludes the induction
step, and thus the proof.
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Remarks:

(1) Since every hi is a hyperplane reflection or the identity,

ρ = hn ◦ · · · ◦ h2 ◦ h1

is an isometry.

(2) If we allow negative diagonal entries in R, the last isometry hn may
be omitted.

(3) Instead of picking rk,k = ‖u′′k‖, which means that

wk = rk,k ek − u′′k ,

where 1 ≤ k ≤ n, it might be preferable to pick rk,k = −‖u′′k‖ if this
makes ‖wk‖2 larger, in which case

wk = rk,k ek + u′′k .

Indeed, since the definition of hk involves division by ‖wk‖2, it is
desirable to avoid division by very small numbers.

(4) The method also applies to anym-tuple of vectors (v1, . . . , vm), where
m is not necessarily equal to n (the dimension of E). In this case, R
is an upper triangular n×m matrix we leave the minor adjustments
to the method as an exercise to the reader (if m > n, the last m− n
vectors are unchanged).

Lemma 7.3.1 directly yields the QR-decomposition in terms of House-
holder transformations (see Strang [165, 166], Golub and Van Loan [75],
Trefethen and Bau [170], Kincaid and Cheney [100], or Ciarlet [33]).

Lemma 7.3.2 For every real n× n matrix A, there is a sequence H1, . . .,
Hn of matrices, where each Hi is either a Householder matrix or the
identity, and an upper triangular matrix R such that

R = Hn · · ·H2H1A.

As a corollary, there is a pair of matrices Q,R, where Q is orthogonal
and R is upper triangular, such that A = QR (a QR-decomposition of A).
Furthermore, R can be chosen so that its diagonal entries are nonnegative.

Proof . The jth column of A can be viewed as a vector vj over the canonical
basis (e1, . . . , en) of En (where (ej)i = 1 if i = j, and 0 otherwise, 1 ≤
i, j ≤ n). Applying Lemma 7.3.1 to (v1, . . . , vn), there is a sequence of n
isometries h1, . . . , hn such that hi is a hyperplane reflection or the identity,
and if (r1, . . . , rn) are the vectors given by

rj = hn ◦ · · · ◦ h2 ◦ h1(vj),

then every rj is a linear combination of the vectors (e1, . . . , ej), 1 ≤ j ≤ n.
Letting R be the matrix whose columns are the vectors rj , and Hi the
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matrix associated with hi, it is clear that

R = Hn · · ·H2H1A,

where R is upper triangular and every Hi is either a Householder matrix
or the identity. However, hi ◦ hi = id for all i, 1 ≤ i ≤ n, and so

vj = h1 ◦ h2 ◦ · · · ◦ hn(rj)

for all j, 1 ≤ j ≤ n. But ρ = h1 ◦h2 ◦ · · · ◦hn is an isometry, and by Lemma
6.4.1, ρ is represented by an orthogonal matrix Q. It is clear that A = QR,
where R is upper triangular. As we noted in Lemma 7.3.1, the diagonal
entries of R can be chosen to be nonnegative.

Remarks:

(1) Letting

Ak+1 = Hk · · ·H2H1A,

with A1 = A, 1 ≤ k ≤ n, the proof of Lemma 7.3.1 can be in-
terpreted in terms of the computation of the sequence of matrices
A1, . . . , An+1 = R. The matrix Ak+1 has the shape

Ak+1 =




× × × uk+1
1 × × × ×

0 × ...
...

...
...

...
...

0 0 × uk+1
k × × × ×

0 0 0 uk+1
k+1 × × × ×

0 0 0 uk+1
k+2 × × × ×

...
...

...
...

...
...

...
...

0 0 0 uk+1
n−1 × × × ×

0 0 0 uk+1
n × × × ×




,

where the (k + 1)th column of the matrix is the vector

uk+1 = hk ◦ · · · ◦ h2 ◦ h1(vk+1),

and thus

u′k+1 =
(
uk+1

1 , . . . , uk+1
k

)
and

u′′k+1 =
(
uk+1

k+1, u
k+1
k+2, . . . , u

k+1
n

)
.

If the last n−k−1 entries in column k+1 are all zero, there is nothing
to do, and we let Hk+1 = I. Otherwise, we kill these n−k−1 entries
by multiplying Ak+1 on the left by the Householder matrix Hk+1

sending(
0, . . . , 0, uk+1

k+1, . . . , u
k+1
n

)
to (0, . . . , 0, rk+1,k+1, 0, . . . , 0),
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where rk+1,k+1 = ‖(uk+1
k+1, . . . , u

k+1
n )‖.

(2) If A is invertible and the diagonal entries of R are positive, it can be
shown that Q and R are unique.

(3) If we allow negative diagonal entries in R, the matrix Hn may be
omitted (Hn = I).

(4) The method allows the computation of the determinant of A. We
have

det(A) = (−1)mr1,1 · · · rn,n,

where m is the number of Householder matrices (not the identity)
among the Hi.

(5) The “condition number” of the matrix A is preserved (see Strang
[166], Golub and Van Loan [75], Trefethen and Bau [170], Kincaid
and Cheney [100], or Ciarlet [33]). This is very good for numerical
stability.

(6) The method also applies to a rectangular m× n matrix. In this case,
R is also an m× n matrix (and it is upper triangular).

We now turn to affine isometries.

7.4 Affine Isometries (Rigid Motions)

In the remaining sections we study affine isometries. First, we characterize
the set of fixed points of an affine map. Using this characterization, we
prove that every affine isometry f can be written uniquely as

f = t ◦ g, with t ◦ g = g ◦ t,
where g is an isometry having a fixed point, and t is a translation by a

vector τ such that
−→
f (τ) = τ , and with some additional nice properties (see

Theorem 7.6.2). This is a generalization of a classical result of Chasles about
(proper) rigid motions in R3 (screw motions). We prove a generalization of
the Cartan–Dieudonné theorem for the affine isometries: Every isometry in
Is(n) can be written as the composition of at most n reflections if it has
a fixed point, or else as the composition of at most n + 2 reflections. We
also prove that every rigid motion in SE(n) is the composition of at most
n flips (for n ≥ 3). This is somewhat surprising, in view of the previous
theorem.

Definition 7.4.1 Given any two nontrivial Euclidean affine spaces E and
F of the same finite dimension n, a function f :E → F is an affine isometry
(or rigid map) if it is an affine map and

‖f(a)f(b)‖ = ‖ab‖,
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for all a, b ∈ E. When E = F , an affine isometry f :E → E is also called a
rigid motion.

Thus, an affine isometry is an affine map that preserves the distance.
This is a rather strong requirement. In fact, we will show that for any
function f :E → F , the assumption that

‖f(a)f(b)‖ = ‖ab‖,
for all a, b ∈ E, forces f to be an affine map.

Remark: Sometimes, an affine isometry is defined as a bijective affine
isometry. When E and F are of finite dimension, the definitions are
equivalent.

The following simple lemma is left as an exercise.

Lemma 7.4.2 Given any two nontrivial Euclidean affine spaces E and
F of the same finite dimension n, an affine map f :E → F is an affine

isometry iff its associated linear map
−→
f :

−→
E → −→

F is an isometry. An
affine isometry is a bijection.

Let us now consider affine isometries f :E → E. If
−→
f is a rotation, we

call f a proper (or direct) affine isometry , and if
−→
f is an improper linear

isometry, we call f an improper (or skew) affine isometry . It is easily shown
that the set of affine isometries f :E → E forms a group, and those for

which
−→
f is a rotation is a subgroup. The group of affine isometries, or rigid

motions, is a subgroup of the affine group GA(E), denoted by Is(E) (or
Is(n) when E = En). In Snapper and Troyer [160] the group of rigid motions
is denoted by Mo(E). Since we denote the group of affine bijections as
GA(E), perhaps we should denote the group of affine isometries by IA(E)
(or EA(E)!). The subgroup of Is(E) consisting of the direct rigid motions
is also a subgroup of SA(E), and it is denoted by SE(E) (or SE(n), when

E = En). The translations are the affine isometries f for which
−→
f = id,

the identity map on
−→
E . The following lemma is the counterpart of Lemma

6.3.2 for isometries between Euclidean vector spaces.

Lemma 7.4.3 Given any two nontrivial Euclidean affine spaces E and F
of the same finite dimension n, for every function f :E → F , the following
properties are equivalent:

(1) f is an affine map and ‖f(a)f(b)‖ = ‖ab‖, for all a, b ∈ E.

(2) ‖f(a)f(b)‖ = ‖ab‖, for all a, b ∈ E.

Proof . Obviously, (1) implies (2). In order to prove that (2) implies (1), we
proceed as follows. First, we pick some arbitrary point Ω ∈ E. We define
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the map g:
−→
E → −→

F such that

g(u) = f(Ω)f(Ω + u)

for all u ∈ E. Since

f(Ω) + g(u) = f(Ω) + f(Ω)f(Ω + u) = f(Ω + u)

for all u ∈ −→
E , f will be affine if we can show that g is linear, and f will be

an affine isometry if we can show that g is a linear isometry.
Observe that

g(v) − g(u) = f(Ω)f(Ω + v) − f(Ω)f(Ω + u)
= f(Ω + u)f(Ω + v).

Then, the hypothesis

‖f(a)f(b)‖ = ‖ab‖
for all a, b ∈ E, implies that

‖g(v) − g(u)‖ = ‖f(Ω + u)f(Ω + v)‖ = ‖(Ω + u)(Ω + v)‖ = ‖v − u‖.
Thus, g preserves the distance. Also, by definition, we have

g(0) = 0.

Thus, we can apply Lemma 6.3.2, which shows that g is indeed a linear
isometry, and thus f is an affine isometry.

In order to understand the structure of affine isometries, it is important
to investigate the fixed points of an affine map.

7.5 Fixed Points of Affine Maps

Recall that E
(
1,
−→
f

)
denotes the eigenspace of the linear map

−→
f associated

with the scalar 1, that is, the subspace consisting of all vectors u ∈ −→
E

such that
−→
f (u) = u. Clearly, Ker

(−→
f − id

)
= E

(
1,
−→
f

)
. Given some origin

Ω ∈ E, since

f(a) = f(Ω + Ωa) = f(Ω) +
−→
f (Ωa),

we have f(Ω)f(a) =
−→
f (Ωa), and thus

Ωf(a) = Ωf(Ω) +
−→
f (Ωa).

From the above, we get

Ωf(a) − Ωa = Ωf(Ω) +
−→
f (Ωa) − Ωa.
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Using this, we show the following lemma, which holds for arbitrary affine
spaces of finite dimension and for arbitrary affine maps.

Lemma 7.5.1 Let E be any affine space of finite dimension. For every
affine map f :E → E, let Fix(f) = {a ∈ E | f(a) = a} be the set of fixed
points of f . The following properties hold:

(1) If f has some fixed point a, so that Fix(f) �= ∅, then Fix(f) is an
affine subspace of E such that

Fix(f) = a+ E
(
1,
−→
f

)
= a+ Ker

(−→
f − id

)
,

where E
(
1,
−→
f

)
is the eigenspace of the linear map

−→
f for the

eigenvalue 1.

(2) The affine map f has a unique fixed point iff E
(
1,
−→
f

)
= Ker

(−→
f − id

)
= {0}.

Proof . (1) Since the identity

Ωf(b) − Ωb = Ωf(Ω) +
−→
f (Ωb) − Ωb

holds for all Ω, b ∈ E, if f(a) = a, then af(a) = 0, and thus, letting Ω = a,
for any b ∈ E,

f(b) = b

iff

af(b) − ab = 0

iff
−→
f (ab) − ab = 0

iff

ab ∈ E
(
1,
−→
f

)
= Ker

(−→
f − id

)
,

which proves that

Fix(f) = a+ E
(
1,
−→
f

)
= a+ Ker

(−→
f − id

)
.

(2) Again, fix some origin Ω. Some a satisfies f(a) = a iff

Ωf(a) − Ωa = 0

iff

Ωf(Ω) +
−→
f (Ωa) − Ωa = 0,

which can be rewritten as(−→
f − id

)
(Ωa) = −Ωf(Ω).
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We have E
(
1,
−→
f

)
= Ker

(−→
f − id

)
= {0} iff

−→
f − id is injective, and since

−→
E has finite dimension,

−→
f − id is also surjective, and thus, there is indeed

some a ∈ E such that (−→
f − id

)
(Ωa) = −Ωf(Ω),

and it is unique, since
−→
f − id is injective. Conversely, if f has a unique

fixed point, say a, from (−→
f − id

)
(Ωa) = −Ωf(Ω),

we have
(−→
f − id

)
(Ωa) = 0 iff f(Ω) = Ω, and since a is the unique fixed

point of f , we must have a = Ω, which shows that
−→
f − id is injective.

Remark: The fact that E has finite dimension is used only to prove (2),
and (1) holds in general.

If an isometry f leaves some point fixed, we can take such a point Ω as the
origin, and then f(Ω) = Ω and we can view f as a rotation or an improper

orthogonal transformation, depending on the nature of
−→
f . Note that it is

quite possible that Fix(f) = ∅. For example, nontrivial translations have
no fixed points. A more interesting example is provided by the composition
of a plane reflection about a line composed with a a nontrivial translation
parallel to this line.

Otherwise, we will see in Theorem 7.6.2 that every affine isometry is the
(commutative) composition of a translation with an isometry that always
has a fixed point.

7.6 Affine Isometries and Fixed Points

Let E be an affine space. Given any two affine subspaces F,G, if F and

G are orthogonal complements in E, which means that
−→
F and

−→
G are

orthogonal subspaces of
−→
E such that

−→
E =

−→
F ⊕−→

G , for any point Ω ∈ F ,

we define q:E → −→
G such that

q(a) = p−→
G

(Ωa).

Note that q(a) is independent of the choice of Ω ∈ F , since we have

Ωa = p−→
F

(Ωa) + p−→
G

(Ωa),

and for any Ω1 ∈ F , we have

Ω1a = Ω1Ω + p−→
F

(Ωa) + p−→
G

(Ωa),
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and since Ω1Ω ∈ −→
F , this shows that

p−→
G

(Ω1a) = p−→
G

(Ωa).

Then the map g:E → E such that g(a) = a− 2q(a), or equivalently

ag(a) = −2q(a) = −2p−→
G

(Ωa),

does not depend on the choice of Ω ∈ F . If we identify E to
−→
E by choosing

any origin Ω in F , we note that g is identified with the symmetry with

respect to
−→
F and parallel to

−→
G . Thus, the map g is an affine isometry, and

it is called the orthogonal symmetry about F . Since

g(a) = Ω + Ωa − 2p−→
G

(Ωa)

for all Ω ∈ F and for all a ∈ E, we note that the linear map −→g associated

with g is the (linear) symmetry about the subspace
−→
F (the direction of

F ), and parallel to
−→
G (the direction of G).

Remark: The map p:E → F such that p(a) = a− q(a), or equivalently

ap(a) = −q(a) = −p−→
G

(Ωa),

is also independent of Ω ∈ F , and it is called the orthogonal projection onto
F .

The following amusing lemma shows the extra power afforded by affine
orthogonal symmetries: Translations are subsumed! Given two parallel

affine subspaces F1 and F2 in E, letting
−→
F be the common direction of

F1 and F2 and
−→
G =

−→
F

⊥
be its orthogonal complement, for any a ∈ F1,

the affine subspace a +
−→
G intersects F2 in a single point b (see Lemma

2.11.2). We define the distance between F1 and F2 as ‖ab‖. It is easily seen
that the distance between F1 and F2 is independent of the choice of a in
F1, and that it is the minimum of ‖xy‖ for all x ∈ F1 and all y ∈ F2.

Lemma 7.6.1 Given any affine space E, if f :E → E and g:E → E are
orthogonal symmetries about parallel affine subspaces F1 and F2, then g ◦f
is a translation defined by the vector 2ab, where ab is any vector perpen-

dicular to the common direction
−→
F of F1 and F2 such that ‖ab‖ is the

distance between F1 and F2, with a ∈ F1 and b ∈ F2. Conversely, every
translation by a vector τ is obtained as the composition of two orthogonal
symmetries about parallel affine subspaces F1 and F2 whose common direc-
tion is orthogonal to τ = ab, for some a ∈ F1 and some b ∈ F2 such that
the distance between F1 and F2 is ‖ab‖/2.
Proof . We observed earlier that the linear maps

−→
f and −→g associated

with f and g are the linear reflections about the directions of F1 and F2.
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However, F1 and F2 have the same direction, and so
−→
f = −→g . Since

−−→
g ◦ f =

−→g ◦ −→
f and since

−→
f ◦ −→g =

−→
f ◦ −→

f = id, because every reflection is an

involution, we have
−−→
g ◦ f = id, proving that g ◦ f is a translation. If we

pick a ∈ F1, then g ◦ f(a) = g(a), the reflection of a ∈ F1 about F2, and
it is easily checked that g ◦ f is the translation by the vector τ = ag(a)
whose norm is twice the distance between F1 and F2. The second part of
the lemma is left as an easy exercise.

We conclude our quick study of affine isometries by proving a result that
plays a major role in characterizing the affine isometries. This result may
be viewed as a generalization of Chasles’s theorem about the direct rigid
motions in E3.

Theorem 7.6.2 Let E be a Euclidean affine space of finite dimension n.
For every affine isometry f :E → E, there is a unique isometry g:E → E

and a unique translation t = tτ , with
−→
f (τ) = τ (i.e., τ ∈ Ker

(−→
f − id

)
),

such that the set Fix(g) = {a ∈ E | g(a) = a} of fixed points of g is a
nonempty affine subspace of E of direction

−→
G = Ker

(−→
f − id

)
= E

(
1,
−→
f

)
,

and such that

f = t ◦ g and t ◦ g = g ◦ t.
Furthermore, we have the following additional properties:

(a) f = g and τ = 0 iff f has some fixed point, i.e., iff Fix(f) �= ∅.

(b) If f has no fixed points, i.e., Fix(f) = ∅, then dim
(
Ker

(−→
f − id

)) ≥
1.

Proof . The proof rests on the following two key facts:

(1) If we can find some x ∈ E such that xf(x) = τ belongs to

Ker
(−→
f − id

)
, we get the existence of g and τ .

(2)
−→
E = Ker

(−→
f − id

)⊕ Im
(−→
f − id

)
, and the spaces Ker

(−→
f − id

)
and

Im
(−→
f − id

)
are orthogonal. This implies the uniqueness of g and τ .

First, we prove that for every isometry h:
−→
E → −→

E , Ker (h− id) and
Im (h− id) are orthogonal and that

−→
E = Ker (h− id) ⊕ Im (h− id).

Recall that

dim
(−→
E

)
= dim(Kerϕ) + dim(Imϕ),
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for any linear map ϕ:
−→
E → −→

E (for instance, see Lang [107], or Strang
[166]). To show that we have a direct sum, we prove orthogonality. Let

u ∈ Ker (h− id), so that h(u) = u, let v ∈ −→
E , and compute

u · (h(v) − v) = u · h(v) − u · v = h(u) · h(v) − u · v = 0,

since h(u) = u and h is an isometry.
Next, assume that there is some x ∈ E such that xf(x) = τ belongs to

Ker
(−→
f − id

)
. If we define g:E → E such that

g = t(−τ) ◦ f,
we have

g(x) = f(x) − τ = x,

since xf(x) = τ is equivalent to x = f(x) − τ . As a composition of isome-

tries, g is an isometry, x is a fixed point of g, and since τ ∈ Ker
(−→
f − id

)
,

we have
−→
f (τ) = τ,

and since

g(b) = f(b) − τ

for all b ∈ E, we have −→g =
−→
f . Since g has some fixed point x, by Lemma

7.5.1, Fix(g) is an affine subspace of E with direction Ker
(−→g − id

)
=

Ker
(−→
f − id

)
. We also have f(b) = g(b) + τ for all b ∈ E, and thus

(g ◦ tτ )(b) = g(b+ τ) = g(b) + −→g (τ) = g(b) +
−→
f (τ) = g(b) + τ = f(b),

and

(tτ ◦ g)(b) = g(b) + τ = f(b),

which proves that t ◦ g = g ◦ t.
To prove the existence of x as above, pick any arbitrary point a ∈ E.

Since
−→
E = Ker

(−→
f − id

) ⊕ Im
(−→
f − id

)
,

there is a unique vector τ ∈ Ker
(−→
f − id

)
and some v ∈ −→

E such that

af(a) = τ +
−→
f (v) − v.

For any x ∈ E, since we also have

xf(x) = xa + af(a) + f(a)f(x) = xa + af(a) +
−→
f (ax),
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we get

xf(x) = xa + τ +
−→
f (v) − v +

−→
f (ax),

which can be rewritten as

xf(x) = τ +
(−→
f − id

)
(v + ax).

If we let ax = −v, that is, x = a− v, we get

xf(x) = τ,

with τ ∈ Ker
(−→
f − id

)
.

Finally, we show that τ is unique. Assume two decompositions (g1, τ1)

and (g2, τ2). Since
−→
f = −→g1 , we have Ker (−→g1 − id) = Ker

(−→
f − id

)
. Since

g1 has some fixed point b, we get

f(b) = g1(b) + τ1 = b+ τ1,

that is, bf(b) = τ1, and bf(b) ∈ Ker
(−→
f − id

)
, since τ1 ∈ Ker

(−→
f − id

)
.

Similarly, for some fixed point c of g2, we get cf(c) = τ2 and cf(c) ∈
Ker

(−→
f − id

)
. Then we have

τ2 − τ1 = cf(c) − bf(b) = cb − f(c)f(b) = cb −−→
f (cb),

which shows that

τ2 − τ1 ∈ Ker
(−→
f − id

) ∩ Im
(−→
f − id

)
,

and thus that τ2 = τ1, since we have shown that
−→
E = Ker

(−→
f − id

) ⊕ Im
(−→
f − id

)
.

The fact that (a) holds is a consequence of the uniqueness of g and τ ,
since f and 0 clearly satisfy the required conditions. That (b) holds follows
from Lemma 7.5.1 (2), since the affine map f has a unique fixed point iff

E
(
1,
−→
f

)
= Ker

(−→
f − id

)
= {0}.

The determination of x is illustrated in Figure 7.5.

Remarks:

(1) Note that Ker
(−→
f − id

)
= {0} iff τ = 0, iff Fix(g) consists of a single

element, which is the unique fixed point of f . However, even if f is
not a translation, f may not have any fixed points. For example, this
happens when E is the affine Euclidean plane and f is the composition
of a reflection about a line composed with a nontrivial translation
parallel to this line.

(2) The fact that E has finite dimension is used only to prove (b).
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a

f(a)

τ

v
−→
f (v)

a+
−→
f (v) − v

x

f(x)

a+ Im
(−→
f − id

)

f(a) + Ker
(−→
f − id

)

Figure 7.5. Rigid motion as f = t ◦ g, where g has some fixed point x

(3) It is easily checked that Fix(g) consists of the set of points x such
that ‖xf(x)‖ is minimal.

In the affine Euclidean plane it is easy to see that the affine isometries
(besides the identity) are classified as follows. An isometry f that has a
fixed point is a rotation if it is a direct isometry; otherwise, it is a reflection
about a line. If f has no fixed point, then it is either a nontrivial translation
or the composition of a reflection about a line with a nontrivial translation
parallel to this line.

In an affine space of dimension 3 it is easy to see that the affine isometries
(besides the identity) are classified as follows. There are three kinds of
isometries that have a fixed point. A proper isometry with a fixed point is
a rotation around a line D (its set of fixed points), as illustrated in Figure
7.6.

An improper isometry with a fixed point is either a reflection about a
plane H (the set of fixed points) or the composition of a rotation followed
by a reflection about a plane H orthogonal to the axis of rotation D, as
illustrated in Figures 7.7 and 7.8. In the second case, there is a single fixed
point O = D ∩H.

There are three types of isometries with no fixed point. The first kind is
a nontrivial translation. The second kind is the composition of a rotation
followed by a nontrivial translation parallel to the axis of rotation D. Such
a rigid motion is proper, and is called a screw motion. A screw motion is
illustrated in Figure 7.9.

The third kind is the composition of a reflection about a plane followed
by a nontrivial translation by a vector parallel to the direction of the plane
of the reflection, as illustrated in Figure 7.10.
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a

f(a)

D

Figure 7.6. 3D proper rigid motion with line D of fixed points (rotation)

a

f(a)
H

Figure 7.7. 3D improper rigid motion with a plane H of fixed points (reflection)

This last transformation is an improper isometry.

7.7 The Cartan–Dieudonné Theorem for Affine
Isometries

The Cartan–Dieudonné theorem also holds for affine isometries, with a
small twist due to translations. The reader is referred to Berger [12], Snap-
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O a

f(a)
H

D

Figure 7.8. 3D improper rigid motion with a unique fixed point

a

a+ τ
g(a)

f(a)

τ

D

Figure 7.9. 3D proper rigid motion with no fixed point (screw motion)

per and Troyer [160], or Tisseron [169] for a detailed treatment of the
Cartan–Dieudonné theorem and its variants.

Theorem 7.7.1 Let E be an affine Euclidean space of dimension n ≥ 1.
Every isometry f ∈ Is(E) that has a fixed point and is not the identity is
the composition of at most n reflections. Every isometry f ∈ Is(E) that has
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a a+ τ

τg(a) f(a)
H

Figure 7.10. 3D improper rigid motion with no fixed points

no fixed point is the composition of at most n+ 2 reflections. When n ≥ 2,
the identity is the composition of any reflection with itself.

Proof . First, we use Theorem 7.6.2. If f has a fixed point Ω, we choose Ω
as an origin and work in the vector space EΩ. Since f behaves as a linear
isometry, the result follows from Theorem 7.2.1. More specifically, we can

write
−→
f = −→sk ◦ · · · ◦ −→s1 for k ≤ n hyperplane reflections −→si . We define the

affine reflections si such that

si(a) = Ω + −→si (Ωa)

for all a ∈ E, and we note that f = sk ◦ · · · ◦ s1, since

f(a) = Ω + −→sk ◦ · · · ◦ −→s1 (Ωa)

for all a ∈ E. If f has no fixed point, then f = t ◦ g for some isometry

g that has a fixed point Ω and some translation t = tτ , with
−→
f (τ) = τ .

By the argument just given, we can write g = sk ◦ · · · ◦ s1 for some affine
reflections (at most n). However, by Lemma 7.6.1, the translation t = tτ
can be achieved by two reflections about parallel hyperplanes, and thus
f = sk+2 ◦ · · · ◦ s1, for some affine reflections (at most n+ 2).

When n ≥ 3, we can also characterize the affine isometries in SE(n) in
terms of flips. Remarkably, not only we can do without translations, but
we can even bound the number of flips by n.

Theorem 7.7.2 Let E be a Euclidean affine space of dimension n ≥ 3.
Every rigid motion f ∈ SE(E) is the composition of an even number of
flips f = f2k ◦ · · · ◦ f1, where 2k ≤ n.
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Proof . As in the proof of Theorem 7.7.1, we distinguish between the two
cases where f has some fixed point or not. If f has a fixed point Ω, we

apply Theorem 7.2.5. More specifically, we can write
−→
f =

−→
f2k ◦ · · · ◦−→f1 for

some flips
−→
fi . We define the affine flips fi such that

fi(a) = Ω +
−→
fi (Ωa)

for all a ∈ E, and we note that f = f2k ◦ · · · ◦ f1, since

f(a) = Ω +
−→
f2k ◦ · · · ◦ −→f1 (Ωa)

for all a ∈ E.
If f does not have a fixed point, as in the proof of Theorem 7.7.1, we get

f = tτ ◦ f2k ◦ · · · ◦ f1,

for some affine flips fi. We need to get rid of the translation. However,
−→
f (τ) = τ , and by the second part of Theorem 7.2.5, we can assume that

τ ∈ −→
F2k

⊥
, where

−→
F2k is the direction of the affine subspace defining the

affine flip f2k. Finally, appealing to Lemma 7.6.1, since τ ∈ −→
F2k

⊥
, the

translation tτ can be expressed as the composition f ′2k ◦ f ′2k−1 of two flips

f ′2k−1 and f ′2k about the two parallel subspaces Ω+
−→
F2k and Ω+ τ/2+

−→
F2k,

whose distance is ‖τ‖/2. However, since f ′2k−1 and f2k are both the identity

on Ω +
−→
F2k, we must have f ′2k−1 = f2k, and thus

f = tτ ◦ f2k ◦ f2k−1 ◦ · · · ◦ f1
= f ′2k ◦ f ′2k−1 ◦ f2k ◦ f2k−1 ◦ · · · ◦ f1
= f ′2k ◦ f2k−1 ◦ · · · ◦ f1,

since f ′2k−1 = f2k and f ′2k−1 ◦ f2k = f2k ◦ f2k = id, since f2k is a symmetry.

Remark: It is easy to prove that if f is a screw motion in SE(3), D its
axis, θ is its angle of rotation, and τ the translation along the direction of
D, then f is the composition of two flips about lines D1 and D2 orthogonal
to D, at a distance ‖τ‖/2 and making an angle θ/2.

There is one more topic that we would like to cover, since it is often
useful in practice: The concept of cross product of vectors, also called vector
product. But first, we need to discuss the question of orientation of bases.
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7.8 Orientations of a Euclidean Space, Angles

In this section we return to vector spaces. In order to deal with the no-
tion of orientation correctly, it is important to assume that every family
(u1, . . . , un) of vectors is ordered (by the natural ordering on {1, 2, . . . , n}).
Thus, we will assume that all families (u1, . . . , un) of vectors, in particular
bases and orthonormal bases, are ordered.

Let E be a vector space of finite dimension n over R, and let (u1, . . . , un)
and (v1, . . . , vn) be any two bases for E. Recall that the change of basis
matrix from (u1, . . . , un) to (v1, . . . , vn) is the matrix P whose columns are
the coordinates of the vectors vj over the basis (u1, . . . , un). It is imme-
diately verified that the set of alternating n-linear forms on E is a vector
space, which we denote by Λ(E) (see Lang [107]).

We now show that Λ(E) has dimension 1. For any alternating n-linear
form ϕ:E × · · · × E → K and any two sequences of vectors (u1, . . . , un)
and (v1, . . . , vn), if

(v1, . . . , vn) = (u1, . . . , un)P,

then

ϕ(v1, . . . , vn) = det(P )ϕ(u1, . . . , un).

In particular, if we consider nonnull alternating n-linear forms ϕ:E×· · ·×
E → K, we must have ϕ(u1, . . . , un) �= 0 for every basis (u1, . . . , un). Since
for any two alternating n-linear forms ϕ and ψ we have

ϕ(v1, . . . , vn) = det(P )ϕ(u1, . . . , un)

and

ψ(v1, . . . , vn) = det(P )ψ(u1, . . . , un),

we get

ϕ(u1, . . . , un)ψ(v1, . . . , vn) − ψ(u1, . . . , un)ϕ(v1, . . . , vn) = 0.

Fixing (u1, . . . , un) and letting (v1, . . . , vn) vary, this shows that ϕ and ψ
are linearly dependent, and since Λ(E) is nontrivial, it has dimension 1.

We now define an equivalence relation on Λ(E) − {0} (where we let 0
denote the null alternating n-linear form):

ϕ and ψ are equivalent if ψ = λϕ for some λ > 0.

It is immediately verified that the above relation is an equivalence
relation. Furthermore, it has exactly two equivalence classes O1 and O2.

The first way of defining an orientation of E is to pick one of these
two equivalence classes, say O (O ∈ {O1, O2}). Given such a choice of
a class O, we say that a basis (w1, . . . , wn) has positive orientation iff
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ϕ(w1, . . . , wn) > 0 for any alternating n-linear form ϕ ∈ O. Note that this
makes sense, since for any other ψ ∈ O, ϕ = λψ for some λ > 0.

According to the previous definition, two bases (u1, . . . , un) and (v1, . . .,
vn) have the same orientation iff ϕ(u1, . . . , un) and ϕ(v1, . . . , vn) have the
same sign for all ϕ ∈ Λ(E) − {0}. From

ϕ(v1, . . . , vn) = det(P )ϕ(u1, . . . , un)

we must have det(P ) > 0. Conversely, if det(P ) > 0, the same argument
shows that (u1, . . . , un) and (v1, . . . , vn) have the same orientation. This
leads us to an equivalent and slightly less contorted definition of the notion
of orientation. We define a relation between bases of E as follows: Two
bases (u1, . . . , un) and (v1, . . . , vn) are related if det(P ) > 0, where P is
the change of basis matrix from (u1, . . . , un) to (v1, . . . , vn).

Since det(PQ) = det(P ) det(Q), and since change of basis matrices are
invertible, the relation just defined is indeed an equivalence relation, and it
has two equivalence classes. Furthermore, from the discussion above, any
nonnull alternating n-linear form ϕ will have the same sign on any two
equivalent bases.

The above discussion motivates the following definition.

Definition 7.8.1 Given any vector space E of finite dimension over R,
we define an orientation of E as the choice of one of the two equivalence
classes of the equivalence relation on the set of bases defined such that
(u1, . . . , un) and (v1, . . . , vn) have the same orientation iff det(P ) > 0,
where P is the change of basis matrix from (u1, . . . , un) to (v1, . . . , vn).
A basis in the chosen class is said to have positive orientation, or to be
positive. An orientation of a Euclidean affine space E is an orientation of

its underlying vector space
−→
E .

In practice, to give an orientation, one simply picks a fixed basis consid-
ered as having positive orientation. The orientation of every other basis is
determined by the sign of the determinant of the change of basis matrix.

Having the notation of orientation at hand, we wish to go back briefly to
the concept of (oriented) angle. Let E be a Euclidean space of dimension
n = 2, and assume a given orientation. In any given positive orthonormal
basis for E, every rotation r is represented by a matrix

R =
(

cos θ − sin θ
sin θ cos θ

)
.

Actually, we claim that the matrix R representing the rotation r is the same
in all orthonormal positive bases. This is because the change of basis matrix
from one positive orthonormal basis to another positive orthonormal basis
is a rotation represented by some matrix of the form

P =
(

cosψ − sinψ
sinψ cosψ

)
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u1

u2

u4

u3

Figure 7.11. Defining angles

and that we have

P−1 =
(

cos(−ψ) − sin(−ψ)
sin(−ψ) cos(−ψ)

)
,

and after calculations, we find that PRP−1 is the rotation matrix associ-
ated with ψ + θ − ψ = θ. We can choose θ ∈ [0, 2π[, and we call θ the
measure of the angle of rotation of r (and R). If the orientation is changed,
the measure changes to 2π − θ.

We now let E be a Euclidean space of dimension n = 2, but we do not
assume any orientation. It is easy to see that given any two unit vectors
u1, u2 ∈ E (unit means that ‖u1‖ = ‖u2‖ = 1), there is a unique rotation
r such that

r(u1) = u2.

It is also possible to define an equivalence relation of pairs of unit vectors
such that

〈u1, u2〉 ≡ 〈u3, u4〉
iff there is some rotation r such that r(u1) = u3 and r(u2) = u4.

Then the equivalence class of 〈u1, u2〉 can be taken as the definition of
the (oriented) angle of 〈u1, u2〉, which is denoted by û1u2.

Furthermore, it can be shown that there is a rotation mapping the pair
〈u1, u2〉 to the pair 〈u3, u4〉 iff there is a rotation mapping the pair 〈u1, u3〉
to the pair 〈u2, u4〉 (all vectors being unit vectors), as illustrated in Figure
7.11.

As a consequence of all this, since for any pair 〈u1, u2〉 of unit vectors
there is a unique rotation r mapping u1 to u2, the angle û1u2 of 〈u1, u2〉
corresponds bijectively to the rotation r, and there is a bijection between
the set of angles of pairs of unit vectors and the set of rotations in the plane.
As a matter of fact, the set of angles forms an abelian group isomorphic to
the (abelian) group of rotations in the plane.
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Thus, even though we can consider angles as oriented, note that the
notion of orientation is not necessary to define angles. However, to define
the measure of an angle, the notion of orientation is needed.

If we now assume that an orientation of E (still a Euclidean plane) is
given, the unique rotation r associated with an angle û1u2 corresponds to
a unique matrix

R =
(

cos θ − sin θ
sin θ cos θ

)
.

The number θ is defined up to 2kπ (with k ∈ Z) and is called a measure of
the angle û1u2. There is a unique θ ∈ [0, 2π[ that is a measure of the angle
û1u2. It is also immediately seen that

cos θ = u1 · u2.

In fact, since cos θ = cos(2π − θ) = cos(−θ), the quantity cos θ does not
depend on the orientation.

Now, still considering a Euclidean plane, given any pair 〈u1, u2〉 of non-
null vectors, we define their angle as the angle of the unit vectors u1/‖u1‖
and u2/‖u2‖, and if E is oriented, we define the measure θ of this angle as
the measure of the angle of these unit vectors. Note that

cos θ =
u1 · u2

‖u1‖‖u2‖ ,

and this independently of the orientation.
Finally, if E is a Euclidean space of dimension n ≥ 2, we define the

angle of a pair 〈u1, u2〉 of nonnull vectors as the angle of this pair in the
Euclidean plane spanned by 〈u1, u2〉 if they are linearly independent, or
any Euclidean plane containing u1 if they are collinear.

If E is a Euclidean affine space of dimension n ≥ 2, for any two pairs
〈a1, b1〉 and 〈a2, b2〉 of points in E, where a1 �= b1 and a2 �= b2, we define the
angle of the pair 〈〈a1, b1〉, 〈a2, b2〉〉 as the angle of the pair 〈a1b1,a2b2〉.

As for the issue of measure of an angle when n ≥ 3, all we can do is to
define the measure of the angle û1u2 as either θ or 2π−θ, where θ ∈ [0, 2π[.
For a detailed treatment, see Berger [12] or Cagnac, Ramis, and Commeau
[25]. In particular, when n = 3, one should note that it is not enough to give
a line D through the origin (the axis of rotation) and an angle θ to specify a
rotation! The problem is that depending on the orientation of the plane H
(through the origin) orthogonal to D, we get two different rotations: one of
angle θ, the other of angle 2π− θ. Thus, to specify a rotation, we also need
to give an orientation of the plane orthogonal to the axis of rotation. This
can be done by specifying an orientation of the axis of rotation by some
unit vector ω, and chosing the basis (e1, e2, ω) (where (e1, e2) is a basis of
H) such that it has positive orientation w.r.t. the chosen orientation of E.

We now return to alternating multilinear forms on a Euclidean space.
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When E is a Euclidean space, we have an interesting situation regarding
the value of determinants over orthornormal bases described by the fol-
lowing lemma. Given any basis B = (u1, . . . , un) for E, for any sequence
(w1, . . . , wn) of n vectors, we denote by detB(w1, . . . , wn) the determinant
of the matrix whose columns are the coordinates of the wj over the basis
B = (u1, . . . , un).

Lemma 7.8.2 Let E be a Euclidean space of dimension n, and assume
that an orientation of E has been chosen. For any sequence (w1, . . . , wn)
of n vectors and any two orthonormal bases B1 = (u1, . . . , un) and B2 =
(v1, . . . , vn) of positive orientation, we have

detB1(w1, . . . , wn) = detB2(w1, . . . , wn).

Proof . Let P be the change of basis matrix from B1 = (u1, . . . , un) to
B2 = (v1, . . . , vn). Since B1 = (u1, . . . , un) and B2 = (v1, . . . , vn) are or-
thonormal, P is orthogonal, and we must have det(P ) = +1, since the
bases have positive orientation. Let U1 be the matrix whose columns are
the coordinates of the wj over the basis B1 = (u1, . . . , un), and let U2 be
the matrix whose columns are the coordinates of the wj over the basis
B2 = (v1, . . . , vn). Then, by definition of P , we have

(w1, . . . , wn) = (u1, . . . , un)U2P,

that is,

U1 = U2P.

Then, we have

detB1(w1, . . . , wn) = det(U1) = det(U2P ) = det(U2) det(P )
= detB2(w1, . . . , wn) det(P ) = detB2(w1, . . . , wn),

since det(P ) = +1.

By Lemma 7.8.2, the determinant detB(w1, . . . , wn) is independent of
the base B, provided that B is orthonormal and of positive orientation.
Thus, Lemma 7.8.2 suggests the following definition.

7.9 Volume Forms, Cross Products

In this section we generalize the familiar notion of cross product of vectors
in R3 to Euclidean spaces of any finite dimension. First, we define the mixed
product, or volume form.

Definition 7.9.1 Given any Euclidean space E of finite dimension n over
R and any orientation of E, for any sequence (w1, . . . , wn) of n vectors in
E, the common value λE(w1, . . . , wn) of the determinant detB(w1, . . . , wn)
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over all positive orthonormal bases B of E is called the mixed product (or
volume form) of (w1, . . . , wn).

The mixed product λE(w1, . . . , wn) will also be denoted by (w1, . . . , wn),
even though the notation is overloaded. The following properties hold.

• The mixed product λE(w1, . . . , wn) changes sign when the orientation
changes.

• The mixed product λE(w1, . . . , wn) is a scalar, and Definition 7.9.1
really defines an alternating multilinear form from En to R.

• λE(w1, . . . , wn) = 0 iff (w1, . . . , wn) is linearly dependent.

• A basis (u1, . . . , un) is positive or negative iff λE(u1, . . . , un) is
positive or negative.

• λE(w1, . . . , wn) is invariant under every isometry f such that det(f)
= 1.

The terminology “volume form” is justified because λE(w1, . . . , wn) is
indeed the volume of some geometric object. Indeed, viewing E as an affine
space, the parallelotope defined by (w1, . . . , wn) is the set of points

{λ1w1 + · · · + λnwn | 0 ≤ λi ≤ 1, 1 ≤ i ≤ n}.
Then, it can be shown (see Berger [12], Section 9.12) that the volume
of the parallelotope defined by (w1, . . . , wn) is indeed λE(w1, . . . , wn). If(
E,

−→
E

)
is a Euclidean affine space of dimension n, given any n+ 1 affinely

independent points (a0, . . . , an), the set

{a0 + λ1a0a1 + · · · + λna0an | where 0 ≤ λi ≤ 1, 1 ≤ i ≤ n}
is called the parallelotope spanned by (a0, . . . , an). Then the volume of the
parallelotope spanned by (a0, . . . , an) is λ−→

E
(a0a1, . . . ,a0an). It can also

be shown that the volume vol(a0, . . . , an) of the n-simplex (a0, . . . , an) is

vol(a0, . . . , an) =
1
n!
λ−→

E
(a0a1, . . . ,a0an).

Now, given a sequence (w1, . . . , wn−1) of n− 1 vectors in E, the map

x �→ λE(w1, . . . , wn−1, x)

is a linear form. Thus, by Lemma 6.2.4, there is a unique vector u ∈ E such
that

λE(w1, . . . , wn−1, x) = u · x
for all x ∈ E. The vector u has some interesting properties that motivate
the next definition.
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Definition 7.9.2 Given any Euclidean space E of finite dimension n over
R, for any orientation of E and any sequence (w1, . . . , wn−1) of n−1 vectors
in E, the unique vector w1 × · · · × wn−1 such that

λE(w1, . . . , wn−1, x) = w1 × · · · × wn−1 · x
for all x ∈ E is the cross product, or vector product, of (w1, . . . , wn−1).

The following properties hold.

• The cross product w1 ×· · ·×wn−1 changes sign when the orientation
changes.

• The cross product w1 × · · · × wn−1 is a vector, and Definition 7.9.2
really defines an alternating multilinear map from En−1 to E.

• w1 × · · · × wn−1 = 0 iff (w1, . . . , wn−1) is linearly dependent. This is
because

w1 × · · · × wn−1 = 0

iff

λE(w1, . . . , wn−1, x) = 0

for all x ∈ E, and thus if (w1, . . . , wn−1) were linearly independent,
we could find a vector x ∈ E to complete (w1, . . . , wn−1) into a basis
of E, and we would have

λE(w1, . . . , wn−1, x) �= 0.

• The cross product w1 × · · · × wn−1 is orthogonal to each of the wj .

• If (w1, . . . , wn−1) is linearly independent, then the sequence

(w1, . . . , wn−1, w1 × · · · × wn−1)

is a positive basis of E.

We now show how to compute the coordinates of u1 × · · · × un−1 over
an orthonormal basis.

Given an orthonormal basis (e1, . . . , en), for any sequence (u1, . . . , un−1)
of n− 1 vectors in E, if

uj =
n∑

i=1

ui,jei,

where 1 ≤ j ≤ n−1, for any x = x1e1+· · ·+xnen, consider the determinant

λE(u1, . . . , un−1, x) =

∣∣∣∣∣∣∣∣
u1 1 . . . u1 n−1 x1

u2 1 . . . u2 n−1 x2

...
...

. . .
...

un 1 . . . un n−1 xn

∣∣∣∣∣∣∣∣ .
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Calling the underlying matrix above A, we can expand det(A) according to
the last column, using the Laplace formula (see Strang [166]), where Ai j is
the (n− 1)× (n− 1) matrix obtained from A by deleting row i and column
j, and we get∣∣∣∣∣∣∣∣

u1 1 . . . u1 n−1 x1

u2 1 . . . u2 n−1 x2

...
...

. . .
...

un 1 . . . un n−1 xn

∣∣∣∣∣∣∣∣ = (−1)n+1x1 det(A1 n) + · · · + xn det(An n).

Each (−1)i+n det(Ai n) is called the cofactor of xi. We note that det(A)
is in fact the inner product

det(A) = ((−1)n+1 det(A1 n)e1 + · · · + (−1)n+n det(An n)en) · x.
Since the cross product u1 × · · · × un−1 is the unique vector u such that

u · x = λE(u1, . . . , un−1, x),

for all x ∈ E, the coordinates of the cross product u1 × · · · × un−1 must be

((−1)n+1 det(A1 n), . . . , (−1)n+n det(An n)),

the sequence of cofactors of the xi in the determinant det(A).
For example, when n = 3, the coordinates of the cross product u× v are

given by the cofactors of x1, x2, x3, in the determinant∣∣∣∣∣∣
u1 v1 x1

u2 v2 x2

u3 v3 x3

∣∣∣∣∣∣ ,
or, more explicitly, by

(−1)3+1

∣∣∣∣u2 v2
u3 v3

∣∣∣∣ , (−1)3+2

∣∣∣∣u1 v1
u3 v3

∣∣∣∣ , (−1)3+3

∣∣∣∣u1 v1
u2 v2

∣∣∣∣ ,
that is,

(u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

It is also useful to observe that if we let U be the matrix

U =


 0 −u3 u2

u3 0 −u1

−u2 u1 0


 ,

then the coordinates of the cross product u× v are given by
 0 −u3 u2

u3 0 −u1

−u2 u1 0





 v1
v2
v3


 =


u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1


 .

We finish our discussion of cross products by mentioning without proof
a few more of their properties, in the case n = 3. Firstly, the following
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so-called Lagrange identity holds:

(u · v)2 + ‖u× v‖2 = ‖u‖2‖v‖2.

If u and v are linearly independent, and if θ (or 2π − θ) is a measure of
the angle ûv, then

| sin θ| =
‖u× v‖
‖u‖‖v‖ .

It can also be shown that u×v is the only vector w such that the following
properties hold:

(1) w · u = 0, and w · v = 0.

(2) λE(u, v, w) ≥ 0.

(3) (u · v)2 + ‖w‖2 = ‖u‖2‖v‖2.

Recall that the mixed product λE(w1, w1, w3) is also denoted by (w1, w2,
w3), and that

w1 · (w2 × w3) = (w1, w2, w3).

7.10 Problems

Problem 7.1 Prove Lemma 7.4.2.

Problem 7.2 This problem is a warm-up for the next problem. Consider
the set of matrices of the form (

0 −a
a 0

)
,

where a ∈ R.
(a) Show that these matrices are invertible when a �= 0 (give the inverse

explicitly). Given any two such matrices A,B, show that AB = BA. De-
scribe geometrically the action of such a matrix on points in the affine plane
A2, with its usual Euclidean inner product. Verify that this set of matrices
is a vector space isomorphic to (R,+). This vector space is denoted by
so(2).

(b) Given an n× n matrix A, we define the exponential eA as

eA = In +
∑
k≥1

Ak

k!
,

where In denotes the n×n identity matrix. It can be shown rigorously that
this power series is indeed convergent for every A (over R or C), so that
eA makes sense (and you do not have to prove it!).
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Given any matrix

A =
(

0 −θ
θ 0

)
,

prove that

eA = cos θ
(

1 0
0 1

)
+ sin θ

(
0 −1
1 0

)
=

(
cos θ − sin θ
sin θ cos θ

)
.

Hint . Check that(
0 −θ
θ 0

)
= θ

(
0 −1
1 0

)
and

(
0 −θ
θ 0

)2

= −θ2
(

1 0
0 1

)
,

and use the power series for cos θ and sin θ. Conclude that the exponential
map provides a surjective map exp: so(2) → SO(2) from so(2) onto the
group SO(2) of plane rotations. Is this map injective? How do you need to
restrict θ to get an injective map?

Remark: By the way, so(2) is the Lie algebra of the (Lie) group SO(2).

(c) Consider the set U(1) of complex numbers of the form cos θ+ i sin θ.
Check that this is a group under multiplication. Assuming that we use the
standard affine frame for the affine plane A2, every point (x, y) corresponds
to the complex number z = x+ iy, and this correspondence is a bijection.
Then, every α = cos θ + i sin θ ∈ U(1) induces the map Rα: A2 → A2

defined such that

Rα(z) = αz.

Prove that Rα is the rotation of matrix(
cos θ − sin θ
sin θ cos θ

)
.

Prove that the map R:U(1) → SO(2) defined such that R(α) = Rα is
an isomorphism. Deduce that topologically, SO(2) is a circle. Using the
exponential map from R to U(1) defined such that θ �→ eiθ = cos θ+ i sin θ,
prove that there is a surjective homomorphism from (R,+) to SO(2). What
is the connection with the exponential map from so(2) to SO(2)?

Problem 7.3 (a) Recall that the coordinates of the cross product u × v
of two vectors u = (u1, u2, u3) and v = (v1, v2, v3) in R3 are

(u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

Letting U be the matrix

U =


 0 −u3 u2

u3 0 −u1

−u2 u1 0


 ,
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check that the coordinates of the cross product u× v are given by
 0 −u3 u2

u3 0 −u1

−u2 u1 0





 v1
v2
v3


 =


u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1


 .

(b) Show that the set of matrices of the form

U =


 0 −u3 u2

u3 0 −u1

−u2 u1 0




is a vector space isomorphic to (R3+). This vector space is denoted by
so(3). Show that such matrices are never invertible. Find the kernel of the
linear map associated with a matrix U . Describe geometrically the action
of the linear map defined by a matrix U . Show that when restricted to the
plane orthogonal to u = (u1, u2, u3) through the origin, it is a rotation by
π/2.

(c) Consider the map ψ: (R3,×) → so(3) defined by the formula

ψ(u1, u2, u3) =


 0 −u3 u2

u3 0 −u1

−u2 u1 0


 .

For any two matrices A,B ∈ so(3), defining [A, B] as

[A, B] = AB −BA,

verify that

ψ(u× v) = [ψ(u), ψ(v)].

Show that [−, −] is not associative. Show that [A, A] = 0, and that the
so-called Jacobi identity holds:

[A, [B, C]] + [C, [A, B]] + [B, [C, A]] = 0.

Show that [AB] is bilinear (linear in both A and B).

Remark: [A, B] is called a Lie bracket , and under this operation, the
vector space so(3) is called a Lie algebra. In fact, it is the Lie algebra of
the (Lie) group SO(3).

(d) For any matrix

A =


 0 −c b

c 0 −a
−b a 0


 ,



242 7. The Cartan–Dieudonné Theorem

letting θ =
√
a2 + b2 + c2 and

B =


 a2 ab ac
ab b2 bc
ac bc c2


 ,

prove that

A2 = −θ2I +B,

AB = BA = 0.

From the above, deduce that

A3 = −θ2A,
and for any k ≥ 0,

A4k+1 = θ4kA,

A4k+2 = θ4kA2,

A4k+3 = −θ4k+2A,

A4k+4 = −θ4k+2A2.

Then prove that the exponential map exp: so(3) → SO(3) is given by

expA = eA = cos θ I3 +
sin θ
θ

A+
(1 − cos θ)

θ2
B,

or, equivalently, by

eA = I3 +
sin θ
θ

A+
(1 − cos θ)

θ2
A2,

if θ �= k2π (k ∈ Z), with exp(03) = I3.

Remark: This formula is known as Rodrigues’s formula (1840).

(e) Prove that expA is a rotation of axis (a, b, c) and of angle θ =√
a2 + b2 + c2.

Hint . Check that eA is an orthogonal matrix of determinant +1, etc., or
look up any textbook on kinematics or classical dynamics!

(f) Prove that the exponential map exp: so(3) → SO(3) is surjective.
Prove that if R is a rotation matrix different from I3, letting ω = (a, b, c)
be a unit vector defining the axis of rotation, if tr(R) = −1, then

(exp(R))−1 =


±π


 0 −c b

c 0 −a
−b a 0





 ,

and if tr(R) �= −1, then

(exp(R))−1 =
{

θ

2 sin θ
(R−RT )

∣∣∣∣ 1 + 2 cos θ = tr(R)
}
.
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(Recall that tr(R) = r1 1 + r2 2 + r3 3, the trace of the matrix R). Note that
both θ and 2π − θ yield the same matrix exp(R).

Problem 7.4 Prove that for any plane isometry f such that
−→
f is a re-

flection, f is the composition of a reflection about a line with a translation
(possibly null) parallel to this line.

Problem 7.5 (1) Given a unit vector (− sin θ, cos θ), prove that the
Householder matrix determined by the vector (− sin θ, cos θ) is(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)
.

Give a geometric interpretation (i.e., why the choice (− sin θ, cos θ)?).
(2) Given any matrix

A =
(
a b
c d

)
,

prove that there is a Householder matrix H such that AH is lower
triangular, i.e.,

AH =
(
a′ 0
c′ d′

)
for some a′, c′, d′ ∈ R.

Problem 7.6 Given a Euclidean space E of dimension n, if h is a reflection
about some hyperplane orthogonal to a nonnull vector u and f is any
isometry, prove that f ◦ h ◦ f−1 is the reflection about the hyperplane
orthogonal to f(u).

Problem 7.7 Let E be a Euclidean space of dimension n = 2. Prove that
given any two unit vectors u1, u2 ∈ E (unit means that ‖u1‖ = ‖u2‖ = 1),
there is a unique rotation r such that

r(u1) = u2.

Prove that there is a rotation mapping the pair 〈u1, u2〉 to the pair
〈u3, u4〉 iff there is a rotation mapping the pair 〈u1, u3〉 to the pair 〈u2, u4〉
(all vectors being unit vectors).

Problem 7.8 (1) Recall that

det(v1, . . . , vn) =

∣∣∣∣∣∣∣∣
v1 1 v1 2 . . . v1 n

v2 1 v2 2 . . . v2 n
...

...
. . .

...
vn 1 vn 2 . . . vn n

∣∣∣∣∣∣∣∣ ,
where vi has coordinates (vi 1, . . . , vi n) with respect to a basis (e1, . . . , en).
Prove that the volume of the parallelotope spanned by (a0, . . . , an) is given
by
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λE(a0, . . . , an) = (−1)n

∣∣∣∣∣∣∣∣
a0 1 a0 2 . . . a0 n 1
a1 1 a1 2 . . . a1 n 1
...

...
. . .

...
...

an 1 an 2 . . . an n 1

∣∣∣∣∣∣∣∣ ,
and letting λE(a0, . . . , an) = λ−→

E
(a0a1, . . . ,a0an), that

λE(a0, . . . , an) =

∣∣∣∣∣∣∣∣
a1 1 − a0 1 a1 2 − a0 2 . . . a1 n − a0 n

a2 1 − a0 1 a2 2 − a0 2 . . . a2 n − a0 n
...

...
. . .

...
an 1 − a0 1 an 2 − a0 2 . . . an n − a0 n

∣∣∣∣∣∣∣∣ ,
where ai has coordinates (ai 1, . . . , ai n) with respect to the affine frame
(O, (e1, . . . , en)).

(2) Prove that the volume vol(a0, . . . , an) of the n-simplex (a0, . . . , an)
is

vol(a0, . . . , an) =
1
n!
λ−→

E
(a0a1, . . . ,a0an).

Problem 7.9 Prove that the so-called Lagrange identity holds:

(u · v)2 + ‖u× v‖2 = ‖u‖2‖v‖2.

Problem 7.10 Given p vectors (u1, . . . , up) in a Euclidean space E of
dimension n ≥ p, the Gram determinant (or Gramian) of the vectors
(u1, . . . , up) is the determinant

Gram(u1, . . . , up) =

∣∣∣∣∣∣∣∣∣

‖u1‖2 〈u1, u2〉 . . . 〈u1, up〉
〈u2, u1〉 ‖u2‖2

. . . 〈u2, up〉
...

...
. . .

...
〈up, u1〉 〈up, u2〉 . . . ‖up‖2

∣∣∣∣∣∣∣∣∣
.

(1) Prove that

Gram(u1, . . . , un) = λE(u1, . . . , un)2.

Hint . By a previous problem, if (e1, . . . , en) is an orthonormal basis of E
and A is the matrix of the vectors (u1, . . . , un) over this basis,

det(A)2 = det(A�A) = det(Ai ·Aj),

where Ai denotes the ith column of the matrix A, and (Ai · Aj) denotes
the n× n matrix with entries Ai ·Aj .

(2) Prove that

‖u1 × · · · × un−1‖2 = Gram(u1, . . . , un−1).

Hint . Letting w = u1 × · · · × un−1, observe that

λE(u1, . . . , un−1, w) = 〈w,w〉 = ‖w‖2,
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and show that

‖w‖4 = λE(u1, . . . , un−1, w)2 = Gram(u1, . . . , un−1, w)
= Gram(u1, . . . , un−1)‖w‖2.

Problem 7.11 Given a Euclidean space E, let U be a nonempty affine
subspace of E, and let a be any point in E. We define the distance d(a, U)
of a to U as

d(a, U) = inf{‖ab‖ | b ∈ U}.
(a) Prove that the affine subspace U⊥

a defined such that

U⊥
a = a+

−→
U

⊥

intersects U in a single point b such that d(a, U) = ‖ab‖.
Hint . Recall the discussion after Lemma 2.11.2.

(b) Let (a0, . . . , ap) be a frame for U (not necessarily orthonormal). Prove
that

d(a, U)2 =
Gram(a0a,a0a1, . . . ,a0ap)

Gram(a0a1, . . . ,a0ap)
.

Hint . Gram is unchanged when a linear combination of other vectors is
added to one of the vectors, and thus

Gram(a0a,a0a1, . . . ,a0ap) = Gram(ba,a0a1, . . . ,a0ap),

where b is the unique point defined in question (a).
(c) If D and D′ are two lines in E that are not coplanar, a, b ∈ D are

distinct points on D, and a′, b′ ∈ D′ are distinct points on D′, prove that
if d(D,D′) is the shortest distance between D and D′ (why does it exist?),
then

d(D,D′)2 =
Gram(aa′,ab,a′b′)

Gram(ab,a′b′)
.

Problem 7.12 Given a hyperplane H in En of equation

u1x1 + · · · + unxn − v = 0,

for any point a = (a1, . . . , an), prove that the distance d(a,H) of a to H
(see problem 7.11) is given by

d(a,H) =
|u1a1 + · · · + unan − v|√

u2
1 + · · · + u2

n

.

Problem 7.13 Given a Euclidean space E, let U and V be two nonempty
affine subspaces such that U ∩ V = ∅. We define the distance d(U, V ) of U
and V as

d(U, V ) = inf{‖ab‖ | a ∈ U, b ∈ V }.
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(a) Prove that dim
(−→
U +

−→
V

) ≤ dim
(−→
E

) − 1, and that
−→
U

⊥
∩ −→
V

⊥
=(−→

U +
−→
V

)⊥ �= {0}.
Hint . Recall the discussion after Lemma 2.11.2 in Chapter 2.

(b) Let
−→
W =

−→
U

⊥
∩ −→
V

⊥
=

(−→
U +

−→
V

)⊥. Prove that U ′ = U +
−→
W is an

affine subspace with direction
−→
U ⊕ −→

W , V ′ = V +
−→
W is an affine subspace

with direction
−→
V ⊕−→

W , and that W ′ = U ′∩V ′ is a nonempty affine subspace

with direction (
−→
U ∩−→

V )⊕−→
W such that U ∩W ′ �= ∅ and V ∩W ′ �= ∅. Prove

that U ∩W ′ and V ∩W ′ are parallel affine subspaces such that

−−−−→
U ∩W ′ =

−−−−→
V ∩W ′ =

−→
U ∩ −→

V .

Prove that if a, c ∈ U , b, d ∈ V , and ab, cd ∈ (−→
U +

−→
V

)⊥, then ab = cd

and ac = bd. Prove that if c ∈W ′, then c+
(−→
U +

−→
V

)⊥ intersects U ∩W ′

and V ∩ W ′ in unique points a ∈ U ∩ W ′ and b ∈ V ∩ W ′ such that

ab ∈ (−→
U +

−→
V

)⊥.
Prove that for all a ∈ U ∩W ′ and all b ∈ V ∩W ′,

d(U, V ) = ‖ab‖ iff ab ∈ (−→
U +

−→
V

)⊥
.

Prove that a ∈ U and b ∈ V as above are unique iff
−→
U ∩ −→

V = {0}.
(c) If m = dim

(−→
U +

−→
V

)
, (e1, . . . , em) is any basis of

−→
U +

−→
V , and a0 ∈ U

and b0 ∈ V are any two points, prove that

d(U, V )2 =
Gram(a0b0, e1, . . . , em)

Gram(e1, . . . , em)
.

Problem 7.14 Let E be a real vector space of dimension n, and let ϕ:E×
E → R be a symmetric bilinear form. Recall that ϕ is nondegenerate if for
every u ∈ E,

if ϕ(u, v) = 0 for all v ∈ E, then u = 0.

A linear map f :E → E is an isometry w.r.t. ϕ if

ϕ(f(x), f(y)) = ϕ(x, y)

for all x, y ∈ E. The purpose of this problem is to prove that the Cartan–
Dieudonné theorem still holds when ϕ is nondegenerate. The difficulty
is that there may be isotropic vectors, i.e., nonnull vectors u such that
ϕ(u, u) = 0. A vector u is called nonisotropic if ϕ(u, u) �= 0. Of course, a
nonisotropic vector is nonnull.

(a) Assume that ϕ is nonnull and that f is an isometry w.r.t. ϕ. Prove
that f(u) − u and f(u) + u are conjugate w.r.t. ϕ, i.e.,

ϕ(f(u) − u, f(u) + u) = 0.
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Prove that there is some nonisotropic vector u ∈ E such that either f(u)−u
or f(u) + u is nonisotropic.

(b) Let ϕ be nondegenerate. Prove the following version of the Cartan–
Dieudonné theorem:

Every isometry f ∈ O(ϕ) that is not the identity is the composition of
at most 2n − 1 reflections w.r.t. hyperplanes. When n ≥ 2, the identity is
the composition of any reflection with itself.

Proceed by induction. In the induction step, consider the following three
cases:

(1) f admits 1 as an eigenvalue.

(2) f admits −1 as an eigenvalue.

(3) f(u) �= u and f(u) �= −u for every nonnull vector u ∈ E.

Argue that there is some nonisotropic vector u such that either f(u)−u or
f(u)+u is nonisotropic, and use a suitable reflection s about the hyperplane
orthogonal to f(u) − u or f(u) + u, such that s ◦ f admits 1 or −1 as an
eigenvalue.

(c) What goes wrong with the argument in (b) if ϕ is nonnull but possibly
degenerate? Is O(ϕ) still a group?

Remark: A stronger version of the Cartan–Dieudonné theorem holds: in
fact, at most n reflections are needed, but the proof is much harder (for
instance, see Dieudonné [47]).


