
This is page 62
Printer: Opaque this

3
Properties of Convex Sets: A Glimpse

3.1 Convex Sets

Convex sets play a very important role in geometry. In this section we state
and prove some of the “classics” of convex affine geometry: Carathéodory’s
theorem, Radon’s theorem, and Helly’s theorem. These theorems share the
property that they are easy to state, but they are deep, and their proof,
although rather short, requires a lot of creativity. We will return to convex
sets when we study Euclidean geometry.

Given an affine space E, recall that a subset V of E is convex if for any
two points a, b ∈ V , we have c ∈ V for every point c = (1 − λ)a + λb, with
0 ≤ λ ≤ 1 (λ ∈ R). Given any two points a, b, the notation [a, b] is often
used to denote the line segment between a and b, that is,

[a, b] = {c ∈ E | c = (1 − λ)a + λb, 0 ≤ λ ≤ 1},

and thus a set V is convex if [a, b] ⊆ V for any two points a, b ∈ V (a = b
is allowed). The empty set is trivially convex, every one-point set {a} is
convex, and the entire affine space E is of course convex.

It is obvious that the intersection of any family (finite or infinite) of
convex sets is convex. Then, given any (nonempty) subset S of E, there is
a smallest convex set containing S denoted by C(S) and called the convex
hull of S (namely, the intersection of all convex sets containing S).

A good understanding of what C(S) is, and good methods for computing
it, are essential. First, we have the following simple but crucial lemma
analogous to Lemma 2.5.3.
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Lemma 3.1.1 Given an affine space
〈

E,
−→
E ,+

〉

, for any family (ai)i∈I of
points in E, the set V of convex combinations

∑

i∈I λiai (where
∑

i∈I λi =
1 and λi ≥ 0) is the convex hull of (ai)i∈I .

Proof . If (ai)i∈I is empty, then V = ∅, because of the condition
∑

i∈I λi =
1. As in the case of affine combinations, it is easily shown by induction
that any convex combination can be obtained by computing convex com-
binations of two points at a time. As a consequence, if (ai)i∈I is nonempty,
then the smallest convex subspace containing (ai)i∈I must contain the set
V of all convex combinations

∑

i∈I λiai. Thus, it is enough to show that V
is closed under convex combinations, which is immediately verified.

In view of Lemma 3.1.1, it is obvious that any affine subspace of E is
convex. Convex sets also arise in terms of hyperplanes. Given a hyperplane
H, if f :E → R is any nonconstant affine form defining H (i.e., H = Ker f),
we can define the two subsets

H+(f) = {a ∈ E | f(a) ≥ 0} and H−(f) = {a ∈ E | f(a) ≤ 0},

called (closed) half-spaces associated with f .
Observe that if λ > 0, then H+(λf) = H+(f), but if λ < 0, then

H+(λf) = H−(f), and similarly for H−(λf). However, the set

{H+(f), H−(f)}

depends only on the hyperplane H, and the choice of a specific f defining
H amounts to the choice of one of the two half-spaces. For this reason, we
will also say that H+(f) and H−(f) are the closed half-spaces associated
with H. Clearly, H+(f) ∪ H−(f) = E and H+(f) ∩ H−(f) = H. It is
immediately verified that H+(f) and H−(f) are convex. Bounded convex
sets arising as the intersection of a finite family of half-spaces associated
with hyperplanes play a major role in convex geometry and topology (they
are called convex polytopes).

It is natural to wonder whether Lemma 3.1.1 can be sharpened in two
directions: (1) Is it possible have a fixed bound on the number of points
involved in the convex combinations? (2) Is it necessary to consider convex
combinations of all points, or is it possible to consider only a subset with
special properties?

The answer is yes in both cases. In case 1, assuming that the affine space
E has dimension m, Carathéodory’s theorem asserts that it is enough to
consider convex combinations of m + 1 points. For example, in the plane
A

2, the convex hull of a set S of points is the union of all triangles (interior
points included) with vertices in S. In case 2, the theorem of Krein and
Milman asserts that a convex set that is also compact is the convex hull
of its extremal points (given a convex set S, a point a ∈ S is extremal
if S − {a} is also convex, see Berger [13] or Lang [109]). Next, we prove
Carathéodory’s theorem.
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3.2 Carathéodory’s Theorem

The proof of Carathéodory’s theorem is really beautiful. It proceeds by
contradiction and uses a minimality argument.

Theorem 3.2.1 Given any affine space E of dimension m, for any (non-
void) family S = (ai)i∈L in E, the convex hull C(S) of S is equal to the set
of convex combinations of families of m + 1 points of S.

Proof . By Lemma 3.1.1,

C(S) =

{

∑

i∈I

λiai | ai ∈ S,
∑

i∈I

λi = 1, λi ≥ 0, I ⊆ L, I finite

}

.

We would like to prove that

C(S) =

{

∑

i∈I

λiai | ai ∈ S,
∑

i∈I

λi = 1, λi ≥ 0, I ⊆ L, |I| = m + 1

}

.

We proceed by contradiction. If the theorem is false, there is some point b ∈
C(S) such that b can be expressed as a convex combination b =

∑

i∈I λiai,
where I ⊆ L is a finite set of cardinality |I| = q with q ≥ m + 2, and b
cannot be expressed as any convex combination b =

∑

j∈J µjaj of strictly
fewer than q points in S, that is, where |J | < q. Such a point b ∈ C(S) is a
convex combination

b = λ1a1 + · · · + λqaq,

where λ1 + · · · + λq = 1 and λi > 0 (1 ≤ i ≤ q). We shall prove that b can
be written as a convex combination of q − 1 of the ai. Pick any origin O
in E. Since there are q > m + 1 points a1, . . . , aq, these points are affinely
dependent, and by Lemma 2.6.5, there is a family (µ1, . . . , µq) all scalars
not all null, such that µ1 + · · · + µq = 0 and

q
∑

i=1

µiOai = 0.

Consider the set T ⊆ R defined by

T = {t ∈ R | λi + tµi ≥ 0, µi 6= 0, 1 ≤ i ≤ q}.

The set T is nonempty, since it contains 0. Since
∑q

i=1 µi = 0 and the µi

are not all null, there are some µh, µk such that µh < 0 and µk > 0, which
implies that T = [α, β], where

α = max
1≤i≤q

{−λi/µi | µi > 0} and β = min
1≤i≤q

{−λi/µi | µi < 0}

(T is the intersection of the closed half-spaces {t ∈ R | λi + tµi ≥ 0, µi 6=
0}). Observe that α < 0 < β, since λi > 0 for all i = 1, . . . , q.
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We claim that there is some j (1 ≤ j ≤ q) such that

λj + αµj = 0.

Indeed, since

α = max
1≤i≤q

{−λi/µi | µi > 0},

as the set on the right hand side is finite, the maximum is achieved and
there is some index j so that α = −λj/µj . If j is some index such that
λj + αµj = 0, since

∑q
i=1 µiOai = 0, we have

b =

q
∑

i=1

λiai = O +

q
∑

i=1

λiOai + 0,

= O +

q
∑

i=1

λiOai + α

( q
∑

i=1

µiOai

)

,

= O +

q
∑

i=1

(λi + αµi)Oai,

=

q
∑

i=1

(λi + αµi)ai,

=

q
∑

i=1, i6=j

(λi + αµi)ai,

since λj + αµj = 0. Since
∑q

i=1 µi = 0,
∑q

i=1 λi = 1, and λj + αµj = 0, we
have

q
∑

i=1, i6=j

λi + αµi = 1,

and since λi + αµi ≥ 0 for i = 1, . . . , q, the above shows that b can be
expressed as a convex combination of q − 1 points from S. However, this
contradicts the assumption that b cannot be expressed as a convex combi-
nation of strictly fewer than q points from S, and the theorem is proved.

If S is a finite (of infinite) set of points in the affine plane A
2, Theorem

3.2.1 confirms our intuition that C(S) is the union of triangles (including
interior points) whose vertices belong to S. Similarly, the convex hull of a
set S of points in A

3 is the union of tetrahedra (including interior points)
whose vertices belong to S. We get the feeling that triangulations play a
crucial role, which is of course true!

We conclude this short chapter with two other classics of convex
geometry.
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3.3 Radon’s and Helly’s Theorems

We begin with Radon’s theorem.

Theorem 3.3.1 Given any affine space E of dimension m, for every sub-
set X of E, if X has at least m + 2 points, then there is a partition of X
into two nonempty disjoint subsets X1 and X2 such that the convex hulls
of X1 and X2 have a nonempty intersection.

Proof . Pick some origin O in E. Write X = (xi)i∈L for some index set L
(we can let L = X). Since by assumption |X| ≥ m + 2 where m = dim(E),
X is affinely dependent, and by Lemma 2.6.5, there is a family (µk)k∈L (of
finite support) of scalars, not all null, such that

∑

k∈L

µk = 0 and
∑

k∈L

µkOxk = 0.

Since
∑

k∈L µk = 0, the µk are not all null, and (µk)k∈L has finite support,
the sets

I = {i ∈ L | µi > 0} and J = {j ∈ L | µj < 0}

are nonempty, finite, and obviously disjoint. Let

X1 = {xi ∈ X | µi > 0} and X2 = {xi ∈ X | µi ≤ 0}.

Again, since the µk are not all null and
∑

k∈L µk = 0, the sets X1 and X2

are nonempty, and obviously

X1 ∩ X2 = ∅ and X1 ∪ X2 = X.

Furthermore, the definition of I and J implies that (xi)i∈I ⊆ X1 and
(xj)j∈J ⊆ X2. It remains to prove that C(X1) ∩ C(X2) 6= ∅. The definition
of I and J implies that

∑

k∈L

µkOxk = 0

can be written as
∑

i∈I

µiOxi +
∑

j∈J

µjOxj = 0,

that is, as
∑

i∈I

µiOxi =
∑

j∈J

−µjOxj,

where
∑

i∈I

µi =
∑

j∈J

−µj = µ,
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with µ > 0. Thus, we have
∑

i∈I

µi

µ
Oxi =

∑

j∈J

−
µj

µ
Oxj,

with
∑

i∈I

µi

µ
=
∑

j∈J

−
µj

µ
= 1,

proving that
∑

i∈I(µi/µ)xi ∈ C(X1) and
∑

j∈J −(µj/µ)xj ∈ C(X2) are
identical, and thus that C(X1) ∩ C(X2) 6= ∅.

Finally, we prove a version of Helly’s theorem.

Theorem 3.3.2 Given any affine space E of dimension m, for every fam-
ily {K1, . . . ,Kn} of n convex subsets of E, if n ≥ m+2 and the intersection
⋂

i∈I Ki of any m + 1 of the Ki is nonempty (where I ⊆ {1, . . . , n},
|I| = m + 1), then

⋂n
i=1 Ki is nonempty.

Proof . The proof is by induction on n ≥ m+1 and uses Radon’s theorem in
the induction step. For n = m+1, the assumption of the theorem is that the
intersection of any family of m+1 of the Ki’s is nonempty, and the theorem
holds trivially. Next, let L = {1, 2, . . . , n+1}, where n+1 ≥ m+2. By the
induction hypothesis, Ci =

⋂

j∈(L−{i}) Kj is nonempty for every i ∈ L.

We claim that Ci ∩ Cj 6= ∅ for some i 6= j. If so, as Ci ∩ Cj =
⋂n+1

k=1 Kk,
we are done. So, let us assume that the Ci’s are pairwise disjoint. Then, we
can pick a set X = {a1, . . . , an+1} such that ai ∈ Ci, for every i ∈ L. By
Radon’s Theorem, there are two nonempty disjoint sets X1, X2 ⊆ X such
that X = X1 ∪ X2 and C(X1) ∩ C(X2) 6= ∅. However, X1 ⊆ Kj for every j
with aj /∈ X1. This is because aj /∈ Kj for every j, and so, we get

X1 ⊆
⋂

aj /∈X1

Kj .

Symetrically, we also have

X2 ⊆
⋂

aj /∈X2

Kj .

Since the Kj ’s are convex and




⋂

aj /∈X1

Kj



 ∩





⋂

aj /∈X2

Kj



 =
n+1
⋂

i=1

Ki,

it follows that C(X1) ∩ C(X2) ⊆
⋂n+1

i=1 Ki, so that
⋂n+1

i=1 Ki is nonempty,
contradicting the fact that Ci ∩ Cj = ∅ for all i 6= j.
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A more general version of Helly’s theorem is proved in Berger [13]. An
amusing corollary of Helly’s theorem is the following result: Consider n ≥ 4
parallel line segments in the affine plane A

2. If every three of these line
segments meet a line, then all of these line segments meet a common line.

3.4 Problems

Problem 3.1 Let a, b, c, be any distinct points in A
3, and assume that

they are not collinear. Let H be the plane of the equation

αx + βy + γz + δ = 0.

(i) What is the intersection of the plane H and of the solid triangle
determined by a, b, c (the convex hull of a, b, c)?

(ii) Give an algorithm to find the intersection of the plane H and the
triangle determined by a, b, c.

(iii) (extra credit) Implement the above algorithm so that the intersec-
tion can be visualized (you may use Maple, Mathematica, Matlab,
etc.).

Problem 3.2 Given any two affine spaces E and F , for any affine map
f :E → F , any convex set U in E, and any convex set V in F , prove that
f(U) is convex and that f−1(V ) is convex. Recall that

f(U) = {b ∈ F | ∃a ∈ U, b = f(a)}

is the direct image of U under f , and that

f−1(V ) = {a ∈ E | ∃b ∈ V, b = f(a)}

is the inverse image of V under f .

Problem 3.3 Consider the subset S of A
2 consisting the points belonging

to the right branch of the hyperbola of the equation x2 − y2 = 1, i.e.,

S = {(x, y) ∈ R
2 | x2 − y2 ≥ 1, x ≥ 0}.

Prove that S is convex. What is the convex hull of S ∪ {(0, 0)}? Is the
convex hull of a closed subset of A

m necessarily a closed set?

Problem 3.4 Use the theorem of Carathéodory to prove that if S is a
compact subset of A

m, then its convex hull C(S) is also compact.

Problem 3.5 Let S be any nonempty subset of an affine space E. Given
some point a ∈ S, we say that S is star-shaped with respect to a iff the line
segment [a, x] is contained in S for every x ∈ S, i.e., (1− λ)a + λx ∈ S for
all λ such that 0 ≤ λ ≤ 1. We say that S is star-shaped iff it is star-shaped
w.r.t. to some point a ∈ S.
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(1) Prove that every nonempty convex set is star-shaped.

(2) Show that there are star-shaped subsets that are not convex. Show
that there are nonempty subsets that are not star-shaped (give an
example in A

n, n = 1, 2, 3).

(3) Given a star-shaped subset S of E, let N(S) be the set of all points
a ∈ S such that S is star-shaped with respect to a. Prove that N(S)
is convex.

Problem 3.6 Consider n ≥ 4 parallel line segments in the affine plane
A

2. If every three of these line segments meet a line, then all of these line
segments meet a common line.
Hint . Choose a coordinate system such that the y axis is parallel to the
common direction of the line segments. For any line segment S, let

CS = {(α, β) ∈ R
2, the line y = αx + β meets S}.

Show that CS is convex and apply Helly’s theorem.

Problem 3.7 Given any two convex sets S and T in the affine space A
m,

and given λ, µ ∈ R such that λ + µ = 1, the Minkowski sum λS + µT is
the set

λS + µT = {λp + µq | p ∈ S, q ∈ T}.

(i) Prove that λS + µT is convex. Draw some Minkowski sums, in
particular when S and T are tetrahedra (with T upside down).

(ii) Show that the Minkowski sum does not preserve the center of gravity.


