This is page 62 Printer: Opaque this

3 Properties of Convex Sets: A Glimpse

3.1 Convex Sets

Convex sets play a very important role in geometry. In this section we state and prove some of the "classics" of convex affine geometry: Carathéodory's theorem, Radon's theorem, and Helly's theorem. These theorems share the property that they are easy to state, but they are deep, and their proof, although rather short, requires a lot of creativity. We will return to convex sets when we study Euclidean geometry.

Given an affine space E, recall that a subset V of E is *convex* if for any two points $a, b \in V$, we have $c \in V$ for every point $c = (1 - \lambda)a + \lambda b$, with $0 \le \lambda \le 1$ ($\lambda \in \mathbb{R}$). Given any two points a, b, the notation [a, b] is often used to denote the line segment between a and b, that is,

$$[a,b] = \{c \in E \mid c = (1-\lambda)a + \lambda b, 0 \le \lambda \le 1\},\$$

and thus a set V is convex if $[a, b] \subseteq V$ for any two points $a, b \in V$ (a = b is allowed). The empty set is trivially convex, every one-point set $\{a\}$ is convex, and the entire affine space E is of course convex.

It is obvious that the intersection of any family (finite or infinite) of convex sets is convex. Then, given any (nonempty) subset S of E, there is a smallest convex set containing S denoted by C(S) and called the *convex* hull of S (namely, the intersection of all convex sets containing S).

A good understanding of what $\mathcal{C}(S)$ is, and good methods for computing it, are essential. First, we have the following simple but crucial lemma analogous to Lemma 2.5.3.

Lemma 3.1.1 Given an affine space $\langle E, \vec{E}, + \rangle$, for any family $(a_i)_{i \in I}$ of points in E, the set V of convex combinations $\sum_{i \in I} \lambda_i a_i$ (where $\sum_{i \in I} \lambda_i = 1$ and $\lambda_i \geq 0$) is the convex hull of $(a_i)_{i \in I}$.

Proof. If $(a_i)_{i \in I}$ is empty, then $V = \emptyset$, because of the condition $\sum_{i \in I} \lambda_i = 1$. As in the case of affine combinations, it is easily shown by induction that any convex combination can be obtained by computing convex combinations of two points at a time. As a consequence, if $(a_i)_{i \in I}$ is nonempty, then the smallest convex subspace containing $(a_i)_{i \in I}$ must contain the set V of all convex combinations $\sum_{i \in I} \lambda_i a_i$. Thus, it is enough to show that V is closed under convex combinations, which is immediately verified. \Box

In view of Lemma 3.1.1, it is obvious that any affine subspace of E is convex. Convex sets also arise in terms of hyperplanes. Given a hyperplane H, if $f: E \to \mathbb{R}$ is any nonconstant affine form defining H (i.e., H = Ker f), we can define the two subsets

$$H_+(f) = \{a \in E \mid f(a) \ge 0\}$$
 and $H_-(f) = \{a \in E \mid f(a) \le 0\},\$

called (closed) half-spaces associated with f.

Observe that if $\lambda > 0$, then $H_+(\lambda f) = H_+(f)$, but if $\lambda < 0$, then $H_+(\lambda f) = H_-(f)$, and similarly for $H_-(\lambda f)$. However, the set

$$\{H_+(f), H_-(f)\}$$

depends only on the hyperplane H, and the choice of a specific f defining H amounts to the choice of one of the two half-spaces. For this reason, we will also say that $H_+(f)$ and $H_-(f)$ are the closed half-spaces associated with H. Clearly, $H_+(f) \cup H_-(f) = E$ and $H_+(f) \cap H_-(f) = H$. It is immediately verified that $H_+(f)$ and $H_-(f)$ are convex. Bounded convex sets arising as the intersection of a finite family of half-spaces associated with hyperplanes play a major role in convex geometry and topology (they are called *convex polytopes*).

It is natural to wonder whether Lemma 3.1.1 can be sharpened in two directions: (1) Is it possible have a fixed bound on the number of points involved in the convex combinations? (2) Is it necessary to consider convex combinations of all points, or is it possible to consider only a subset with special properties?

The answer is yes in both cases. In case 1, assuming that the affine space E has dimension m, Carathéodory's theorem asserts that it is enough to consider convex combinations of m + 1 points. For example, in the plane \mathbb{A}^2 , the convex hull of a set S of points is the union of all triangles (interior points included) with vertices in S. In case 2, the theorem of Krein and Milman asserts that a convex set that is also compact is the convex hull of its extremal points (given a convex set S, a point $a \in S$ is extremal if $S - \{a\}$ is also convex, see Berger [13] or Lang [109]). Next, we prove Carathéodory's theorem.

64 3. Properties of Convex Sets: A Glimpse

3.2 Carathéodory's Theorem

The proof of Carathéodory's theorem is really beautiful. It proceeds by contradiction and uses a minimality argument.

Theorem 3.2.1 Given any affine space E of dimension m, for any (nonvoid) family $S = (a_i)_{i \in L}$ in E, the convex hull C(S) of S is equal to the set of convex combinations of families of m + 1 points of S.

Proof. By Lemma 3.1.1,

$$\mathcal{C}(S) = \bigg\{ \sum_{i \in I} \lambda_i a_i \mid a_i \in S, \sum_{i \in I} \lambda_i = 1, \, \lambda_i \ge 0, \, I \subseteq L, \, I \text{ finite} \bigg\}.$$

We would like to prove that

$$\mathcal{C}(S) = \bigg\{ \sum_{i \in I} \lambda_i a_i \mid a_i \in S, \sum_{i \in I} \lambda_i = 1, \, \lambda_i \ge 0, \, I \subseteq L, \, |I| = m+1 \bigg\}.$$

We proceed by contradiction. If the theorem is false, there is some point $b \in C(S)$ such that b can be expressed as a convex combination $b = \sum_{i \in I} \lambda_i a_i$, where $I \subseteq L$ is a finite set of cardinality |I| = q with $q \ge m + 2$, and b cannot be expressed as any convex combination $b = \sum_{j \in J} \mu_j a_j$ of strictly fewer than q points in S, that is, where |J| < q. Such a point $b \in C(S)$ is a convex combination

$$b = \lambda_1 a_1 + \dots + \lambda_q a_q,$$

where $\lambda_1 + \cdots + \lambda_q = 1$ and $\lambda_i > 0$ $(1 \le i \le q)$. We shall prove that *b* can be written as a convex combination of q - 1 of the a_i . Pick any origin *O* in *E*. Since there are q > m + 1 points a_1, \ldots, a_q , these points are affinely dependent, and by Lemma 2.6.5, there is a family (μ_1, \ldots, μ_q) all scalars not all null, such that $\mu_1 + \cdots + \mu_q = 0$ and

$$\sum_{i=1}^{q} \mu_i \mathbf{Oa_i} = 0$$

Consider the set $T \subseteq \mathbb{R}$ defined by

$$T = \{ t \in \mathbb{R} \mid \lambda_i + t\mu_i \ge 0, \ \mu_i \neq 0, \ 1 \le i \le q \}.$$

The set T is nonempty, since it contains 0. Since $\sum_{i=1}^{q} \mu_i = 0$ and the μ_i are not all null, there are some μ_h, μ_k such that $\mu_h < 0$ and $\mu_k > 0$, which implies that $T = [\alpha, \beta]$, where

$$\alpha = \max_{1 \le i \le q} \{-\lambda_i/\mu_i \mid \mu_i > 0\} \quad \text{and} \quad \beta = \min_{1 \le i \le q} \{-\lambda_i/\mu_i \mid \mu_i < 0\}$$

(*T* is the intersection of the closed half-spaces $\{t \in \mathbb{R} \mid \lambda_i + t\mu_i \ge 0, \mu_i \neq 0\}$). Observe that $\alpha < 0 < \beta$, since $\lambda_i > 0$ for all $i = 1, \ldots, q$.

We claim that there is some j $(1 \le j \le q)$ such that

$$\lambda_j + \alpha \mu_j = 0.$$

Indeed, since

$$\alpha = \max_{1 \le i \le q} \{-\lambda_i/\mu_i \mid \mu_i > 0\},\$$

as the set on the right hand side is finite, the maximum is achieved and there is some index j so that $\alpha = -\lambda_j/\mu_j$. If j is some index such that $\lambda_j + \alpha \mu_j = 0$, since $\sum_{i=1}^q \mu_i \mathbf{Oa_i} = 0$, we have

$$b = \sum_{i=1}^{q} \lambda_i a_i = O + \sum_{i=1}^{q} \lambda_i \mathbf{Oa_i} + 0,$$

$$= O + \sum_{i=1}^{q} \lambda_i \mathbf{Oa_i} + \alpha \left(\sum_{i=1}^{q} \mu_i \mathbf{Oa_i}\right)$$

$$= O + \sum_{i=1}^{q} (\lambda_i + \alpha \mu_i) \mathbf{Oa_i},$$

$$= \sum_{i=1}^{q} (\lambda_i + \alpha \mu_i) a_i,$$

$$= \sum_{i=1, i \neq i}^{q} (\lambda_i + \alpha \mu_i) a_i,$$

since $\lambda_j + \alpha \mu_j = 0$. Since $\sum_{i=1}^q \mu_i = 0$, $\sum_{i=1}^q \lambda_i = 1$, and $\lambda_j + \alpha \mu_j = 0$, we have

$$\sum_{i=1, i \neq j}^{q} \lambda_i + \alpha \mu_i = 1,$$

and since $\lambda_i + \alpha \mu_i \geq 0$ for $i = 1, \ldots, q$, the above shows that b can be expressed as a convex combination of q - 1 points from S. However, this contradicts the assumption that b cannot be expressed as a convex combination of strictly fewer than q points from S, and the theorem is proved.

If S is a finite (of infinite) set of points in the affine plane \mathbb{A}^2 , Theorem 3.2.1 confirms our intuition that $\mathcal{C}(S)$ is the union of triangles (including interior points) whose vertices belong to S. Similarly, the convex hull of a set S of points in \mathbb{A}^3 is the union of tetrahedra (including interior points) whose vertices belong to S. We get the feeling that triangulations play a crucial role, which is of course true!

We conclude this short chapter with two other classics of convex geometry.

3.3 Radon's and Helly's Theorems

We begin with Radon's theorem.

Theorem 3.3.1 Given any affine space E of dimension m, for every subset X of E, if X has at least m + 2 points, then there is a partition of X into two nonempty disjoint subsets X_1 and X_2 such that the convex hulls of X_1 and X_2 have a nonempty intersection.

Proof. Pick some origin O in E. Write $X = (x_i)_{i \in L}$ for some index set L (we can let L = X). Since by assumption $|X| \ge m + 2$ where $m = \dim(E)$, X is affinely dependent, and by Lemma 2.6.5, there is a family $(\mu_k)_{k \in L}$ (of finite support) of scalars, not all null, such that

$$\sum_{k \in L} \mu_k = 0 \quad \text{and} \quad \sum_{k \in L} \mu_k \mathbf{O} \mathbf{x}_{\mathbf{k}} = 0$$

Since $\sum_{k \in L} \mu_k = 0$, the μ_k are not all null, and $(\mu_k)_{k \in L}$ has finite support, the sets

$$I = \{i \in L \mid \mu_i > 0\}$$
 and $J = \{j \in L \mid \mu_j < 0\}$

are nonempty, finite, and obviously disjoint. Let

$$X_1 = \{x_i \in X \mid \mu_i > 0\}$$
 and $X_2 = \{x_i \in X \mid \mu_i \le 0\}.$

Again, since the μ_k are not all null and $\sum_{k \in L} \mu_k = 0$, the sets X_1 and X_2 are nonempty, and obviously

$$X_1 \cap X_2 = \emptyset$$
 and $X_1 \cup X_2 = X_2$

Furthermore, the definition of I and J implies that $(x_i)_{i\in I} \subseteq X_1$ and $(x_j)_{j\in J} \subseteq X_2$. It remains to prove that $\mathcal{C}(X_1) \cap \mathcal{C}(X_2) \neq \emptyset$. The definition of I and J implies that

$$\sum_{k \in L} \mu_k \mathbf{O} \mathbf{x}_k = 0$$

can be written as

$$\sum_{i\in I} \mu_i \mathbf{Ox_i} + \sum_{j\in J} \mu_j \mathbf{Ox_j} = 0,$$

that is, as

$$\sum_{i \in I} \mu_i \mathbf{O} \mathbf{x}_i = \sum_{j \in J} -\mu_j \mathbf{O} \mathbf{x}_j,$$

where

$$\sum_{i\in I} \mu_i = \sum_{j\in J} -\mu_j = \mu,$$

with $\mu > 0$. Thus, we have

$$\sum_{i \in I} \frac{\mu_i}{\mu} \mathbf{O} \mathbf{x}_i = \sum_{j \in J} -\frac{\mu_j}{\mu} \mathbf{O} \mathbf{x}_j$$

with

$$\sum_{i \in I} \frac{\mu_i}{\mu} = \sum_{j \in J} -\frac{\mu_j}{\mu} = 1,$$

proving that $\sum_{i \in I} (\mu_i/\mu) x_i \in \mathcal{C}(X_1)$ and $\sum_{j \in J} -(\mu_j/\mu) x_j \in \mathcal{C}(X_2)$ are identical, and thus that $\mathcal{C}(X_1) \cap \mathcal{C}(X_2) \neq \emptyset$. \Box

Finally, we prove a version of *Helly's theorem*.

Theorem 3.3.2 Given any affine space E of dimension m, for every family $\{K_1, \ldots, K_n\}$ of n convex subsets of E, if $n \ge m+2$ and the intersection $\bigcap_{i \in I} K_i$ of any m + 1 of the K_i is nonempty (where $I \subseteq \{1, \ldots, n\}$, |I| = m + 1), then $\bigcap_{i=1}^n K_i$ is nonempty.

Proof. The proof is by induction on $n \ge m+1$ and uses Radon's theorem in the induction step. For n = m+1, the assumption of the theorem is that the intersection of any family of m+1 of the K_i 's is nonempty, and the theorem holds trivially. Next, let $L = \{1, 2, ..., n+1\}$, where $n+1 \ge m+2$. By the induction hypothesis, $C_i = \bigcap_{i \in (L-\{i\})} K_j$ is nonempty for every $i \in L$.

We claim that $C_i \cap C_j \neq \emptyset$ for some $i \neq j$. If so, as $C_i \cap C_j = \bigcap_{k=1}^{n+1} K_k$, we are done. So, let us assume that the C_i 's are pairwise disjoint. Then, we can pick a set $X = \{a_1, \ldots, a_{n+1}\}$ such that $a_i \in C_i$, for every $i \in L$. By Radon's Theorem, there are two nonempty disjoint sets $X_1, X_2 \subseteq X$ such that $X = X_1 \cup X_2$ and $\mathcal{C}(X_1) \cap \mathcal{C}(X_2) \neq \emptyset$. However, $X_1 \subseteq K_j$ for every jwith $a_j \notin X_1$. This is because $a_j \notin K_j$ for every j, and so, we get

$$X_1 \subseteq \bigcap_{a_j \notin X_1} K_j$$

Symetrically, we also have

$$X_2 \subseteq \bigcap_{a_j \notin X_2} K_j.$$

Since the K_j 's are convex and

$$\left(\bigcap_{a_j\notin X_1} K_j\right) \cap \left(\bigcap_{a_j\notin X_2} K_j\right) = \bigcap_{i=1}^{n+1} K_i,$$

it follows that $\mathcal{C}(X_1) \cap \mathcal{C}(X_2) \subseteq \bigcap_{i=1}^{n+1} K_i$, so that $\bigcap_{i=1}^{n+1} K_i$ is nonempty, contradicting the fact that $C_i \cap C_j = \emptyset$ for all $i \neq j$. \Box

68 3. Properties of Convex Sets: A Glimpse

A more general version of Helly's theorem is proved in Berger [13]. An amusing corollary of Helly's theorem is the following result: Consider $n \ge 4$ parallel line segments in the affine plane \mathbb{A}^2 . If every three of these line segments meet a line, then all of these line segments meet a common line.

3.4 Problems

Problem 3.1 Let a, b, c, be any distinct points in \mathbb{A}^3 , and assume that they are not collinear. Let H be the plane of the equation

$$\alpha x + \beta y + \gamma z + \delta = 0.$$

- (i) What is the intersection of the plane H and of the solid triangle determined by a, b, c (the convex hull of a, b, c)?
- (ii) Give an algorithm to find the intersection of the plane H and the triangle determined by a, b, c.
- (iii) (extra credit) Implement the above algorithm so that the intersection can be visualized (you may use Maple, Mathematica, Matlab, etc.).

Problem 3.2 Given any two affine spaces E and F, for any affine map $f: E \to F$, any convex set U in E, and any convex set V in F, prove that f(U) is convex and that $f^{-1}(V)$ is convex. Recall that

$$f(U) = \{b \in F \mid \exists a \in U, b = f(a)\}$$

is the direct image of U under f, and that

$$f^{-1}(V) = \{ a \in E \mid \exists b \in V, \, b = f(a) \}$$

is the inverse image of V under f.

Problem 3.3 Consider the subset S of \mathbb{A}^2 consisting the points belonging to the right branch of the hyperbola of the equation $x^2 - y^2 = 1$, i.e.,

$$S = \{ (x, y) \in \mathbb{R}^2 \mid x^2 - y^2 \ge 1, \, x \ge 0 \}.$$

Prove that S is convex. What is the convex hull of $S \cup \{(0,0)\}$? Is the convex hull of a closed subset of \mathbb{A}^m necessarily a closed set?

Problem 3.4 Use the theorem of Carathéodory to prove that if S is a compact subset of \mathbb{A}^m , then its convex hull $\mathcal{C}(S)$ is also compact.

Problem 3.5 Let S be any nonempty subset of an affine space E. Given some point $a \in S$, we say that S is *star-shaped with respect to a* iff the line segment [a, x] is contained in S for every $x \in S$, i.e., $(1 - \lambda)a + \lambda x \in S$ for all λ such that $0 \leq \lambda \leq 1$. We say that S is *star-shaped* iff it is star-shaped w.r.t. to some point $a \in S$.

- (1) Prove that every nonempty convex set is star-shaped.
- (2) Show that there are star-shaped subsets that are not convex. Show that there are nonempty subsets that are not star-shaped (give an example in \mathbb{A}^n , n = 1, 2, 3).
- (3) Given a star-shaped subset S of E, let N(S) be the set of all points $a \in S$ such that S is star-shaped with respect to a. Prove that N(S) is convex.

Problem 3.6 Consider $n \ge 4$ parallel line segments in the affine plane \mathbb{A}^2 . If every three of these line segments meet a line, then all of these line segments meet a common line.

Hint. Choose a coordinate system such that the y axis is parallel to the common direction of the line segments. For any line segment S, let

 $CS = \{(\alpha, \beta) \in \mathbb{R}^2, \text{ the line } y = \alpha x + \beta \text{ meets } S\}.$

Show that CS is convex and apply Helly's theorem.

Problem 3.7 Given any two convex sets S and T in the affine space \mathbb{A}^m , and given $\lambda, \mu \in \mathbb{R}$ such that $\lambda + \mu = 1$, the *Minkowski sum* $\lambda S + \mu T$ is the set

$$\lambda S + \mu T = \{\lambda p + \mu q \mid p \in S, q \in T\}.$$

- (i) Prove that $\lambda S + \mu T$ is convex. Draw some Minkowski sums, in particular when S and T are tetrahedra (with T upside down).
- (ii) Show that the Minkowski sum does not preserve the center of gravity.