17
Appendix

17.1 Hyperplanes and Linear Forms

Given a vector space E over a field K, a linear map $f: E \to K$ is called a linear form. The set of all linear forms $f: E \to K$ is a vector space called the dual space of E and denoted by E^*. We now prove that hyperplanes are precisely the Kernels of nonnull linear forms.

Lemma 17.1.1 Let E be a vector space. The following properties hold:

(a) Given any nonnull linear form $f \in E^*$, its kernel $H = \text{Ker } f$ is a hyperplane.

(b) For any hyperplane H in E, there is a (nonnull) linear form $f \in E^*$ such that $H = \text{Ker } f$.

(c) Given any hyperplane H in E and any (nonnull) linear form $f \in E^*$ such that $H = \text{Ker } f$, for every linear form $g \in E^*$, $H = \text{Ker } g$ iff $g = \lambda f$ for some $\lambda \neq 0$ in K.

Proof. (a) If $f \in E^*$ is nonnull, there is some vector $v_0 \in E$ such that $f(v_0) \neq 0$. Let $H = \text{Ker } f$. For every $v \in E$, we have

$$f(v - \frac{f(v)}{f(v_0)}v_0) = f(v) - \frac{f(v)}{f(v_0)}f(v_0) = f(v) - f(v) = 0.$$

Thus,

$$v - \frac{f(v)}{f(v_0)}v_0 = h \in H$$
and
\[v = h + \frac{f(v)}{f(v_0)}v_0, \]
that is, \(E = H + K v_0 \). Also, since \(f(v_0) \neq 0 \), we have \(v_0 \notin H \), that is, \(H \cap K v_0 = \emptyset \). Thus, \(E = H \oplus K v_0 \), and \(H \) is a hyperplane.

(b) If \(H \) is a hyperplane, \(E = H \oplus K v_0 \) for some \(v_0 \notin H \). Then every \(v \in E \) can be written in a unique way as \(v = h + \lambda v_0 \). Thus there is a well-defined function \(f: E \to K \) such that \(f(v) = \lambda \) for every \(v = h + \lambda v_0 \). We leave as a simple exercise the verification that \(f \) is a linear form. Since \(f(v_0) = 1 \), the linear form \(f \) is nonnull. Also, by definition it is clear that \(\lambda = 0 \) iff \(v \in H \), that is, \(\text{Ker } f = H \).

(c) Let \(H \) be a hyperplane in \(E \), and let \(f \in E^* \) be any (nonnull) linear form such that \(H = \text{Ker } f \). Clearly, if \(g = \lambda f \) for some \(\lambda \neq 0 \), then \(H = \text{Ker } g \). Conversely, assume that \(H = \text{Ker } g \) for some nonnull linear form \(g \). From (a) we have \(E = H \oplus K v_0 \), for some \(v_0 \) such that \(f(v_0) \neq 0 \) and \(g(v_0) \neq 0 \). Then observe that
\[
g - \frac{g(v_0)}{f(v_0)}f
\]
is a linear form that vanishes on \(H \), since both \(f \) and \(g \) vanish on \(H \), but also vanishes on \(K v_0 \). Thus, \(g = \lambda f \), with
\[
\lambda = \frac{g(v_0)}{f(v_0)}.
\]

If \(E \) is a vector space of finite dimension \(n \) and \((u_1, \ldots, u_n) \) is a basis of \(E \), for any linear form \(f \in E^* \) and every \(x = x_1 u_1 + \cdots + x_n u_n \in E \), we have
\[
f(x) = \lambda_1 x_1 + \cdots + \lambda_n x_n,
\]
where \(\lambda_i = f(u_i) \in K \), for every \(i, 1 \leq i \leq n \). Thus, with respect to the basis \((u_1, \ldots, u_n) \), \(f(x) \) is a linear combination of the coordinates of \(x \), as expected.

17.2 Metric Spaces and Normed Vector Spaces

Thorough expositions of the material of this section can be found in Lang [109, 110] and Dixmier [50]. We begin with metric spaces. Recall that \(\mathbb{R}_+ = \{ x \in \mathbb{R} \mid x \geq 0 \} \).

Definition 17.2.1 A metric space is a set \(E \) together with a function \(d: E \times E \to \mathbb{R}_+ \), called a metric, or distance, assigning a nonnegative real
number $d(x, y)$ to any two points $x, y \in E$ and satisfying the following conditions for all $x, y, z \in E$:

(D1) $d(x, y) = d(y, x)$. \hspace{1cm} (symmetry)

(D2) $d(x, y) \geq 0$, and $d(x, y) = 0$ iff $x = y$. \hspace{1cm} (positivity)

(D3) $d(x, z) \leq d(x, y) + d(y, z)$. \hspace{1cm} (triangle inequality)

Geometrically, condition (D3) expresses the fact that in a triangle with vertices x, y, z, the length of any side is bounded by the sum of the lengths of the other two sides. From (D3), we immediately get

$$|d(x, y) - d(y, z)| \leq d(x, z).$$

Let us give some examples of metric spaces. Recall that the absolute value $|x|$ of a real number $x \in \mathbb{R}$ is defined such that $|x| = x$ if $x \geq 0$, $|x| = -x$ if $x < 0$, and for a complex number $x = a + ib$, as $|x| = \sqrt{a^2 + b^2}$.

Example 17.1 Let $E = \mathbb{R}$ and $d(x, y) = |x - y|$, the absolute value of $x - y$. This is the so-called natural metric on \mathbb{R}.

Example 17.2 Let $E = \mathbb{R}^n$ (or $E = \mathbb{C}^n$). We have the Euclidean metric

$$d_2(x, y) = (|x_1 - y_1|^2 + \cdots + |x_n - y_n|^2)^{\frac{1}{2}},$$

the distance between the points (x_1, \ldots, x_n) and (y_1, \ldots, y_n).

Example 17.3 For every set E we can define the discrete metric, defined such that $d(x, y) = 1$ iff $x \neq y$, and $d(x, x) = 0$.

Example 17.4 For any $a, b \in \mathbb{R}$ such that $a < b$, we define the following sets:

1. $[a, b] = \{x \in \mathbb{R} \mid a \leq x \leq b\}$, \hspace{1cm} (closed interval)
2. $(a, b] = \{x \in \mathbb{R} \mid a < x \leq b\}$, \hspace{1cm} (interval closed on the left, open on the right)
3. $[a, b) = \{x \in \mathbb{R} \mid a \leq x < b\}$, \hspace{1cm} (interval open on the left, closed on the right)
4. $(a, b) = \{x \in \mathbb{R} \mid a < x < b\}$, \hspace{1cm} (open interval)

Let $E = [a, b]$, and $d(x, y) = |x - y|$. Then $([a, b], d)$ is a metric space.

We now consider a very important special case of metric spaces: Normed vector spaces.

Definition 17.2.2 Let E be a vector space over a field K, where K is either the field \mathbb{R} of reals or the field \mathbb{C} of complex numbers. A norm on E is a function $\|\| : E \to \mathbb{R}_+$ assigning a nonnegative real number $\|u\|$ to any vector $u \in E$ and satisfying the following conditions for all $x, y, z \in E$:
A vector space \(E \) together with a norm \(\| \cdot \| \) is called a \textit{normed vector space}.

Condition (N3) is also called the \textit{triangle inequality}, and it is illustrated in Figure 17.1.

From (N3), we easily get
\[
\|\|x\|-\|y\|\| \leq \|x-y\|.
\]

Given a normed vector space \(E \), if we define \(d \) such that
\[
d(x, y) = \|x-y\|,
\]
it is easily seen that \(d \) is a metric. Thus, every normed vector space is immediately a metric space. Note that the metric associated with a norm is invariant under translation, that is,
\[
d(x+u, y+u) = d(x, y).
\]

Let us give some examples of normed vector spaces.

Example 17.5 Let \(E = \mathbb{R} \) and \(\|x\| = |x| \), the absolute value of \(x \). The associated metric is \(|x-y| \), as in Example 17.1.

Example 17.6 Let \(E = \mathbb{R}^n \) (or \(E = \mathbb{C}^n \)). There are three standard norms. For every \((x_1, \ldots, x_n) \in E\), we have the norm \(\|x\|_1 \), defined such that
\[
\|x\|_1 = |x_1| + \cdots + |x_n|,
\]
we have the Euclidean norm \(\|x\|_2 \), defined such that
\[
\|x\|_2 = (|x_1|^2 + \cdots + |x_n|^2)^{\frac{1}{2}},
\]
and the \textit{sup}-norm \(\|x\|_\infty \), defined such that
\[
\|x\|_\infty = \max\{|x_i| \mid 1 \leq i \leq n\}.
\]

For geometric applications, we will need to consider affine spaces \((E, \overline{E})\) where the associated space of translations \(\overline{E} \) is a vector space equipped with a norm.
Definition 17.2.3 Given an affine space \((E, \overrightarrow{E})\), where the space of translations \(\overrightarrow{E}\) is a vector space over \(\mathbb{R}\) or \(\mathbb{C}\), we say that \((E, \overrightarrow{E})\) is a \textit{normed affine space} if \(\overrightarrow{E}\) is a normed vector space with norm \(|\cdot|\).

Given a normed affine space, there is a natural metric on \(E\) itself, defined such that

\[
d(a, b) = |ab|.
\]

Observe that this metric is invariant under translation, that is,

\[
d(a + u, b + u) = d(a, b).
\]