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17
Appendix

17.1 Hyperplanes and Linear Forms

Given a vector space E over a field K, a linear map f: F — K is called a
linear form. The set of all linear forms f: F — K is a vector space called
the dual space of E and denoted by E*. We now prove that hyperplanes
are precisely the Kernels of nonnull linear forms.

Lemma 17.1.1 Let E be a vector space. The following properties hold:

(a) Given any nonnull linear form f € E*, its kernel H = Ker f is a
hyperplane.

(b) For any hyperplane H in E, there is a (nonnull) linear form f € E*
such that H = Ker f.

(c) Given any hyperplane H in E and any (nonnull) linear form f € E*
such that H = Ker f, for every linear form g € E*, H = Kerg iff
g=Af for some A\ #0 in K.

Proof. (a) If f € E* is nonnull, there is some vector vy € E such that
f(vg) # 0. Let H = Ker f. For every v € E, we have

F) N ) —
f(U—f(UO)Uo)—f()

Thus,




17.2. Metric Spaces and Normed Vector Spaces 531

and

f()
f(vo)

that is, E = H + Kuvg. Also, since f(vg) # 0, we have vy ¢ H, that is,
H N Kvyg=0. Thus, E = H ® Kvy, and H is a hyperplane.

(b) If H is a hyperplane, E = H @ Kuvg for some vy ¢ H. Then every
v € E can be written in a unique way as v = h 4+ Avg. Thus there is a
well-defined function f: E — K such that f(v) = A for every v = h + Avyg.
We leave as a simple exercise the verification that f is a linear form. Since
f(vo) = 1, the linear form f is nonnull. Also, by definition it is clear that
A=0iff v € H, that is, Ker f = H.

(c¢) Let H be a hyperplane in E, and let f € E* be any (nonnull) linear
form such that H = Ker f. Clearly, if g = \f for some A # 0, then H =
Ker g. Conversely, assume that H = Ker g for some nonnull linear form g.
From (a) we have E = H @ Kuyg, for some vy such that f(vg) # 0 and
g(vo) # 0. Then observe that

:h+ Vo,

g(vo)
f(vo)f

is a linear form that vanishes on H, since both f and ¢ vanish on H, but
also vanishes on Kvg. Thus, g = Af, with

_ g(vo)
f(vo)

O

If E is a vector space of finite dimension n and (uy,...,u,) is a basis of
E, for any linear form f € E* and every = z1uy + -+ + zpu, € E, we
have

f(x) =Xz 4+ + A,

where \; = f(u;) € K, for every i, 1 < i < n. Thus, with respect to the
basis (u1,...,un), f(x) is a linear combination of the coordinates of x, as
expected.

17.2  Metric Spaces and Normed Vector Spaces

Thorough expositions of the material of this section can be found in Lang
[109, 110] and Dixmier [50]. We begin with metric spaces. Recall that Ry =
{r eR | x>0}

Definition 17.2.1 A metric space is a set E together with a function
d:E x E — Ry, called a metric, or distance, assigning a nonnegative real
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number d(z, y) to any two points z,y € E and satisfying the following
conditions for all x,y,z € F:

(D1) d(z, y) = d(y, z). (symmetry)
(D2) d(z, y) >0, and d(z, y) =0 iff z = y. (positivity)
(D3) d(z, 2) < d(z, y) + d(y, 2). (triangle inequality)

Geometrically, condition (D3) expresses the fact that in a triangle with
vertices x, y, 2z, the length of any side is bounded by the sum of the lengths
of the other two sides. From (D3), we immediately get

|d($, y) - d(ya Z)‘ < d($, Z)

Let us give some examples of metric spaces. Recall that the absolute
value |z| of a real number z € R is defined such that |x| = = if z > 0,
|z| = —z if < 0, and for a complex number x = a +ib, as |z| = va? + b2.

Example 17.1 Let E = R and d(z, y) = |z — y|, the absolute value of
x — y. This is the so-called natural metric on R.

Example 17.2 Let E = R" (or E = C™). We have the Euclidean metric

1
d2(m7 y) = (‘371 - y1|2 ot |xn - yn|2)2 ;
the distance between the points (z1,...,2,) and (y1,...,Yn)-

Example 17.3 For every set E we can define the discrete metric, defined
such that d(z, y) = 1 iff x # y, and d(z, ) = 0.

Example 17.4 For any a,b € R such that a < b, we define the following
sets:

1. [a,b)) ={x € R | a<x<b}, (closed interval)

2. [a,b={zreR |a<z<b}, (interval closed on the left, open on
the right)

3. Ja,b) ={z €R|a<ax<b}, (interval open on the left, closed on
the right)

4. Ja,bj={x €R | a<x<b}, (open interval)
Let E = [a,b], and d(z, y) = |z — y|. Then ([a, b],d) is a metric space.

We now consider a very important special case of metric spaces: Normed
vector spaces.

Definition 17.2.2 Let E be a vector space over a field K, where K is
either the field R of reals or the field C of complex numbers. A norm on E
is a function || ||: E — R4 assigning a nonnegative real number ||u|| to any
vector u € E and satisfying the following conditions for all z,y, z € E:
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z+y
Figure 17.1. The triangle inequality

(N1) ||lz|]| > 0, and ||z|| =0 iff z = 0. (positivity)
(N2) [[Az]l = [A ] (scaling)
(N3) [lz+yll < [l=] + [ly]l- (convexity inequality)

A vector space E together with a norm ||| is called a normed vector
space.

Condition (N3) is also called the triangle inequality, and it is illustrated
in Figure 17.1.
From (N3), we easily get

Nzl =yl < llz =yl
Given a normed vector space F, if we define d such that
d(z, y) = [lz — yll,

it is easily seen that d is a metric. Thus, every normed vector space is
immediately a metric space. Note that the metric associated with a norm
is invariant under translation, that is,

d(z +u, y +u) =d(z, y).
Let us give some examples of normed vector spaces.

Example 17.5 Let £ = R and ||z|| = |z|, the absolute value of z. The
associated metric is |z — y/, as in Example 17.1.

Example 17.6 Let E = R" (or E = C"). There are three standard norms.
For every (x1,...,%,) € E, we have the norm ||z||;, defined such that

[zl = laa] 4 -+ [aal,
we have the Euclidean norm ||z||2, defined such that
1
lzll2 = (lea? + -+ Jzal?)?,
and the sup-norm ||z||c, defined such that

[#]loe = max{fa;| | 1 <i <n}.

.
For geometric applications, we will need to consider affine spaces (E , B )

N
where the associated space of translations E is a vector space equipped
with a norm.
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BN
Definition 17.2.3 Given an affine space (E, E ), where the space of trans-
— —
lations F is a vector space over R or C, we say that (E, E) is a normed
—
affine space if E is a normed vector space with norm || ||.

Given a normed affine space, there is a natural metric on F itself, defined
such that

d(a, b) = ||ab]|.
Observe that this metric is invariant under translation, that is,

d(a+u, b+ u) =d(a, b).



