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17
Appendix

17.1 Hyperplanes and Linear Forms

Given a vector space E over a field K, a linear map f :E → K is called a
linear form. The set of all linear forms f :E → K is a vector space called
the dual space of E and denoted by E∗. We now prove that hyperplanes
are precisely the Kernels of nonnull linear forms.

Lemma 17.1.1 Let E be a vector space. The following properties hold:

(a) Given any nonnull linear form f ∈ E∗, its kernel H = Ker f is a
hyperplane.

(b) For any hyperplane H in E, there is a (nonnull) linear form f ∈ E∗

such that H = Ker f .

(c) Given any hyperplane H in E and any (nonnull) linear form f ∈ E∗

such that H = Ker f , for every linear form g ∈ E∗, H = Ker g iff
g = λf for some λ �= 0 in K.

Proof . (a) If f ∈ E∗ is nonnull, there is some vector v0 ∈ E such that
f(v0) �= 0. Let H = Ker f . For every v ∈ E, we have

f(v − f(v)
f(v0)

v0) = f(v) − f(v)
f(v0)

f(v0) = f(v) − f(v) = 0.

Thus,

v − f(v)
f(v0)

v0 = h ∈ H
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and

v = h +
f(v)
f(v0)

v0,

that is, E = H + Kv0. Also, since f(v0) �= 0, we have v0 /∈ H, that is,
H ∩ Kv0 = 0. Thus, E = H ⊕ Kv0, and H is a hyperplane.

(b) If H is a hyperplane, E = H ⊕ Kv0 for some v0 /∈ H. Then every
v ∈ E can be written in a unique way as v = h + λv0. Thus there is a
well–defined function f :E → K such that f(v) = λ for every v = h + λv0.
We leave as a simple exercise the verification that f is a linear form. Since
f(v0) = 1, the linear form f is nonnull. Also, by definition it is clear that
λ = 0 iff v ∈ H, that is, Ker f = H.

(c) Let H be a hyperplane in E, and let f ∈ E∗ be any (nonnull) linear
form such that H = Ker f . Clearly, if g = λf for some λ �= 0, then H =
Ker g. Conversely, assume that H = Ker g for some nonnull linear form g.
From (a) we have E = H ⊕ Kv0, for some v0 such that f(v0) �= 0 and
g(v0) �= 0. Then observe that

g − g(v0)
f(v0)

f

is a linear form that vanishes on H, since both f and g vanish on H, but
also vanishes on Kv0. Thus, g = λf , with

λ =
g(v0)
f(v0)

.

If E is a vector space of finite dimension n and (u1, . . . , un) is a basis of
E, for any linear form f ∈ E∗ and every x = x1u1 + · · · + xnun ∈ E, we
have

f(x) = λ1x1 + · · · + λnxn,

where λi = f(ui) ∈ K, for every i, 1 ≤ i ≤ n. Thus, with respect to the
basis (u1, . . . , un), f(x) is a linear combination of the coordinates of x, as
expected.

17.2 Metric Spaces and Normed Vector Spaces

Thorough expositions of the material of this section can be found in Lang
[109, 110] and Dixmier [50]. We begin with metric spaces. Recall that R+ =
{x ∈ R | x ≥ 0}.
Definition 17.2.1 A metric space is a set E together with a function
d:E × E → R+, called a metric, or distance, assigning a nonnegative real
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number d(x, y) to any two points x, y ∈ E and satisfying the following
conditions for all x, y, z ∈ E:

(D1) d(x, y) = d(y, x). (symmetry)

(D2) d(x, y) ≥ 0, and d(x, y) = 0 iff x = y. (positivity)

(D3) d(x, z) ≤ d(x, y) + d(y, z). (triangle inequality)

Geometrically, condition (D3) expresses the fact that in a triangle with
vertices x, y, z, the length of any side is bounded by the sum of the lengths
of the other two sides. From (D3), we immediately get

|d(x, y) − d(y, z)| ≤ d(x, z).

Let us give some examples of metric spaces. Recall that the absolute
value |x| of a real number x ∈ R is defined such that |x| = x if x ≥ 0,
|x| = −x if x < 0, and for a complex number x = a+ ib, as |x| =

√
a2 + b2.

Example 17.1 Let E = R and d(x, y) = |x − y|, the absolute value of
x − y. This is the so-called natural metric on R.

Example 17.2 Let E = R
n (or E = C

n). We have the Euclidean metric

d2(x, y) =
(|x1 − y1|2 + · · · + |xn − yn|2

) 1
2 ,

the distance between the points (x1, . . . , xn) and (y1, . . . , yn).

Example 17.3 For every set E we can define the discrete metric, defined
such that d(x, y) = 1 iff x �= y, and d(x, x) = 0.

Example 17.4 For any a, b ∈ R such that a < b, we define the following
sets:

1. [a, b] = {x ∈ R | a ≤ x ≤ b}, (closed interval)

2. [a, b[ = {x ∈ R | a ≤ x < b}, (interval closed on the left, open on
the right)

3. ]a, b] = {x ∈ R | a < x ≤ b}, (interval open on the left, closed on
the right)

4. ]a, b[ = {x ∈ R | a < x < b}, (open interval)

Let E = [a, b], and d(x, y) = |x − y|. Then ([a, b], d) is a metric space.

We now consider a very important special case of metric spaces: Normed
vector spaces.

Definition 17.2.2 Let E be a vector space over a field K, where K is
either the field R of reals or the field C of complex numbers. A norm on E
is a function ‖ ‖:E → R+ assigning a nonnegative real number ‖u‖ to any
vector u ∈ E and satisfying the following conditions for all x, y, z ∈ E:
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x y

x + y
Figure 17.1. The triangle inequality

(N1) ‖x‖ ≥ 0, and ‖x‖ = 0 iff x = 0. (positivity)

(N2) ‖λx‖ = |λ| ‖x‖. (scaling)

(N3) ‖x + y‖ ≤ ‖x‖ + ‖y‖. (convexity inequality)

A vector space E together with a norm ‖ ‖ is called a normed vector
space.

Condition (N3) is also called the triangle inequality , and it is illustrated
in Figure 17.1.

From (N3), we easily get

|‖x‖ − ‖y‖| ≤ ‖x − y‖.
Given a normed vector space E, if we define d such that

d(x, y) = ‖x − y‖,
it is easily seen that d is a metric. Thus, every normed vector space is
immediately a metric space. Note that the metric associated with a norm
is invariant under translation, that is,

d(x + u, y + u) = d(x, y).

Let us give some examples of normed vector spaces.

Example 17.5 Let E = R and ‖x‖ = |x|, the absolute value of x. The
associated metric is |x − y|, as in Example 17.1.

Example 17.6 Let E = R
n (or E = C

n). There are three standard norms.
For every (x1, . . . , xn) ∈ E, we have the norm ‖x‖1, defined such that

‖x‖1 = |x1| + · · · + |xn|,
we have the Euclidean norm ‖x‖2, defined such that

‖x‖2 =
(|x1|2 + · · · + |xn|2

) 1
2 ,

and the sup-norm ‖x‖∞, defined such that

‖x‖∞ = max{|xi| | 1 ≤ i ≤ n}.
For geometric applications, we will need to consider affine spaces

(
E,

−→
E

)

where the associated space of translations
−→
E is a vector space equipped

with a norm.
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Definition 17.2.3 Given an affine space
(
E,

−→
E

)
, where the space of trans-

lations
−→
E is a vector space over R or C, we say that

(
E,

−→
E

)
is a normed

affine space if
−→
E is a normed vector space with norm ‖ ‖.

Given a normed affine space, there is a natural metric on E itself, defined
such that

d(a, b) = ‖ab‖.
Observe that this metric is invariant under translation, that is,

d(a + u, b + u) = d(a, b).


