This is page 530 Printer: Opaque this

17 Appendix

17.1 Hyperplanes and Linear Forms

Given a vector space E over a field K, a linear map $f: E \to K$ is called a *linear form*. The set of all linear forms $f: E \to K$ is a vector space called the *dual space of* E and denoted by E^* . We now prove that hyperplanes are precisely the Kernels of nonnull linear forms.

Lemma 17.1.1 Let E be a vector space. The following properties hold:

- (a) Given any nonnull linear form $f \in E^*$, its kernel H = Ker f is a hyperplane.
- (b) For any hyperplane H in E, there is a (nonnull) linear form $f \in E^*$ such that H = Ker f.
- (c) Given any hyperplane H in E and any (nonnull) linear form $f \in E^*$ such that H = Ker f, for every linear form $g \in E^*$, H = Ker g iff $g = \lambda f$ for some $\lambda \neq 0$ in K.

Proof. (a) If $f \in E^*$ is nonnull, there is some vector $v_0 \in E$ such that $f(v_0) \neq 0$. Let H = Ker f. For every $v \in E$, we have

$$f(v - \frac{f(v)}{f(v_0)}v_0) = f(v) - \frac{f(v)}{f(v_0)}f(v_0) = f(v) - f(v) = 0.$$

Thus,

$$v - \frac{f(v)}{f(v_0)}v_0 = h \in H$$

$$v = h + \frac{f(v)}{f(v_0)}v_0$$

that is, $E = H + Kv_0$. Also, since $f(v_0) \neq 0$, we have $v_0 \notin H$, that is, $H \cap Kv_0 = 0$. Thus, $E = H \oplus Kv_0$, and H is a hyperplane.

(b) If H is a hyperplane, $E = H \oplus Kv_0$ for some $v_0 \notin H$. Then every $v \in E$ can be written in a unique way as $v = h + \lambda v_0$. Thus there is a well-defined function $f: E \to K$ such that $f(v) = \lambda$ for every $v = h + \lambda v_0$. We leave as a simple exercise the verification that f is a linear form. Since $f(v_0) = 1$, the linear form f is nonnull. Also, by definition it is clear that $\lambda = 0$ iff $v \in H$, that is, Ker f = H.

(c) Let H be a hyperplane in E, and let $f \in E^*$ be any (nonnull) linear form such that H = Ker f. Clearly, if $g = \lambda f$ for some $\lambda \neq 0$, then H =Ker g. Conversely, assume that H = Ker g for some nonnull linear form g. From (a) we have $E = H \oplus Kv_0$, for some v_0 such that $f(v_0) \neq 0$ and $g(v_0) \neq 0$. Then observe that

$$g - \frac{g(v_0)}{f(v_0)}f$$

is a linear form that vanishes on H, since both f and g vanish on H, but also vanishes on Kv_0 . Thus, $g = \lambda f$, with

$$\lambda = \frac{g(v_0)}{f(v_0)}.$$

 _	_	_

If E is a vector space of finite dimension n and (u_1, \ldots, u_n) is a basis of E, for any linear form $f \in E^*$ and every $x = x_1u_1 + \cdots + x_nu_n \in E$, we have

$$f(x) = \lambda_1 x_1 + \dots + \lambda_n x_n,$$

where $\lambda_i = f(u_i) \in K$, for every $i, 1 \leq i \leq n$. Thus, with respect to the basis (u_1, \ldots, u_n) , f(x) is a linear combination of the coordinates of x, as expected.

17.2 Metric Spaces and Normed Vector Spaces

Thorough expositions of the material of this section can be found in Lang [109, 110] and Dixmier [50]. We begin with metric spaces. Recall that $\mathbb{R}_+ = \{x \in \mathbb{R} \mid x \geq 0\}$.

Definition 17.2.1 A *metric space* is a set E together with a function $d: E \times E \to \mathbb{R}_+$, called a *metric, or distance*, assigning a nonnegative real

532 17. Appendix

number d(x, y) to any two points $x, y \in E$ and satisfying the following conditions for all $x, y, z \in E$:

(D1)
$$d(x, y) = d(y, x).$$
 (symmetry)

(D2)
$$d(x, y) \ge 0$$
, and $d(x, y) = 0$ iff $x = y$. (positivity)

(D3)
$$d(x, z) \le d(x, y) + d(y, z)$$
. (triangle inequality)

Geometrically, condition (D3) expresses the fact that in a triangle with vertices x, y, z, the length of any side is bounded by the sum of the lengths of the other two sides. From (D3), we immediately get

$$|d(x, y) - d(y, z)| \le d(x, z).$$

Let us give some examples of metric spaces. Recall that the *absolute* value |x| of a real number $x \in \mathbb{R}$ is defined such that |x| = x if $x \ge 0$, |x| = -x if x < 0, and for a complex number x = a + ib, as $|x| = \sqrt{a^2 + b^2}$.

Example 17.1 Let $E = \mathbb{R}$ and d(x, y) = |x - y|, the absolute value of x - y. This is the so-called natural metric on \mathbb{R} .

Example 17.2 Let $E = \mathbb{R}^n$ (or $E = \mathbb{C}^n$). We have the Euclidean metric

$$d_2(x, y) = (|x_1 - y_1|^2 + \dots + |x_n - y_n|^2)^{\frac{1}{2}},$$

the distance between the points (x_1, \ldots, x_n) and (y_1, \ldots, y_n) .

Example 17.3 For every set *E* we can define the *discrete metric*, defined such that d(x, y) = 1 iff $x \neq y$, and d(x, x) = 0.

Example 17.4 For any $a, b \in \mathbb{R}$ such that a < b, we define the following sets:

- 1. $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\},$ (closed interval)
- 2. $[a, b] = \{x \in \mathbb{R} \mid a \le x < b\},$ (interval closed on the left, open on the right)
- 3. $]a,b] = \{x \in \mathbb{R} \mid a < x \le b\},$ (interval open on the left, closed on the right)

4. $]a, b[= \{x \in \mathbb{R} \mid a < x < b\},$ (open interval)

Let
$$E = [a, b]$$
, and $d(x, y) = |x - y|$. Then $([a, b], d)$ is a metric space.

We now consider a very important special case of metric spaces: Normed vector spaces.

Definition 17.2.2 Let E be a vector space over a field K, where K is either the field \mathbb{R} of reals or the field \mathbb{C} of complex numbers. A norm on E is a function $\| \|: E \to \mathbb{R}_+$ assigning a nonnegative real number $\|u\|$ to any vector $u \in E$ and satisfying the following conditions for all $x, y, z \in E$:

(scaling)

Figure 17.1. The triangle inequality

- (N1) $||x|| \ge 0$, and ||x|| = 0 iff x = 0. (positivity)
- $(N2) \quad \|\lambda x\| = |\lambda| \, \|x\|.$
- (N3) $||x + y|| \le ||x|| + ||y||.$ (convexity inequality)

A vector space E together with a norm || || is called a *normed vector space*.

Condition (N3) is also called the *triangle inequality*, and it is illustrated in Figure 17.1.

From (N3), we easily get

$$|||x|| - ||y||| \le ||x - y||.$$

Given a normed vector space E, if we define d such that

$$d(x, y) = \|x - y\|$$

it is easily seen that d is a metric. Thus, every normed vector space is immediately a metric space. Note that the metric associated with a norm is invariant under translation, that is,

$$d(x+u, y+u) = d(x, y).$$

Let us give some examples of normed vector spaces.

Example 17.5 Let $E = \mathbb{R}$ and ||x|| = |x|, the absolute value of x. The associated metric is |x - y|, as in Example 17.1.

Example 17.6 Let $E = \mathbb{R}^n$ (or $E = \mathbb{C}^n$). There are three standard norms. For every $(x_1, \ldots, x_n) \in E$, we have the norm $||x||_1$, defined such that

$$||x||_1 = |x_1| + \dots + |x_n|$$

we have the Euclidean norm $||x||_2$, defined such that

$$||x||_2 = (|x_1|^2 + \dots + |x_n|^2)^{\frac{1}{2}}$$

and the sup-norm $||x||_{\infty}$, defined such that

$$||x||_{\infty} = \max\{|x_i| \mid 1 \le i \le n\}$$

For geometric applications, we will need to consider affine spaces (E, \vec{E}) where the associated space of translations \vec{E} is a vector space equipped with a norm.

534 17. Appendix

Definition 17.2.3 Given an affine space (E, \vec{E}) , where the space of translations \vec{E} is a vector space over \mathbb{R} or \mathbb{C} , we say that (E, \vec{E}) is a normed affine space if \vec{E} is a normed vector space with norm || ||.

Given a normed affine space, there is a natural metric on ${\cal E}$ itself, defined such that

$$d(a, b) = \|\mathbf{ab}\|.$$

Observe that this metric is invariant under translation, that is,

$$d(a+u, b+u) = d(a, b).$$