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13
Applications of Euclidean Geometry to
Various Optimization Problems

De tous les principes qu’on peut proposer pour cet objet, je pense
qu’il n’en est pas de plus général, de plus exact, ni d’une application
plus facile, que celui dont nous avons fait usage dans les recherches
pécédentes, et qui consiste à rendre minimum la somme des carrés
des erreurs. Par ce moyen il s’établit entre les erreurs une sorte
d’équilibre qui, empêchant les extrêmes de prévaloir, est très pro-
pre à faire connaitre l’état du système le plus proche de la vérité.

—Legendre, 1805, Nouvelles Méthodes pour la détermination des
Orbites des Comètes

13.1 Applications of the SVD and
QR-Decomposition to Least Squares
Problems

The method of least squares is a way of “solving” an overdetermined system
of linear equations

Ax = b,

i.e., a system in which A is a rectangular m×n matrix with more equations
than unknowns (when m > n). Historically, the method of least squares was
used by Gauss and Legendre to solve problems in astronomy and geodesy.
The method was first published by Legendre in 1805 in a paper on methods
for determining the orbits of comets. However, Gauss had already used
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the method of least squares as early as 1801 to determine the orbit of the
asteroid Ceres, and he published a paper about it in 1810 after the discovery
of the asteroid Pallas. Incidentally, it is in that same paper that Gaussian
elimination using pivots is introduced.

The reason why more equations than unknowns arise in such problems
is that repeated measurements are taken to minimize errors. This produces
an overdetermined and often inconsistent system of linear equations. For
example, Gauss solved a system of eleven equations in six unknowns to de-
termine the orbit of the asteroid Pallas. As a concrete illustration, suppose
that we observe the motion of a small object, assimilated to a point, in
the plane. From our observations, we suspect that this point moves along a
straight line, say of equation y = dx+c. Suppose that we observed the mov-
ing point at three different locations (x1, y1), (x2, y2), and (x3, y3). Then
we should have

c + dx1 = y1,

c + dx2 = y2,

c + dx3 = y3.

If there were no errors in our measurements, these equations would be
compatible, and c and d would be determined by only two of the equations.
However, in the presence of errors, the system may be inconsistent. Yet,
we would like to find c and d!

The idea of the method of least squares is to determine (c, d) such that
it minimizes the sum of the squares of the errors, namely,

(c + dx1 − y1)2 + (c + dx2 − y2)2 + (c + dx3 − y3)2.

In general, for an overdetermined m × n system Ax = b, what Gauss and
Legendre discovered is that there are solutions x minimizing

‖Ax − b‖2

(where ‖u‖2 = u2
1 + · · ·+u2

n, the square of the Euclidean norm of the vector
u = (u1, . . . , un)), and that these solutions are given by the square n × n
system

A�Ax = A�b,

called the normal equations. Furthermore, when the columns of A are lin-
early independent, it turns out that A�A is invertible, and so x is unique
and given by

x = (A�A)−1A�b.

Note that A�A is a symmetric matrix, one of the nice features of the normal
equations of a least squares problem. For instance, the normal equations
for the above problem are



354 13. Applications of Euclidean Geometry

(
3 x1 + x2 + x3

x1 + x2 + x3 x2
1 + x2

2 + x2
3

)(
c
d

)
=

(
y1 + y2 + y3

x1y1 + x2y2 + x3y3

)
.

In fact, given any real m × n matrix A, there is always a unique x+ of
minimum norm that minimizes ‖Ax− b‖2, even when the columns of A are
linearly dependent. How do we prove this, and how do we find x+?

Theorem 13.1.1 Every linear system Ax = b, where A is an m×n matrix,
has a unique least squares solution x+ of smallest norm.

Proof . Geometry offers a nice proof of the existence and uniqueness of
x+. Indeed, we can interpret b as a point in the Euclidean (affine) space
R

m, and the image subspace of A (also called the column space of A) as
a subspace U of R

m (passing through the origin). Then, we claim that x
minimizes ‖Ax − b‖2 iff Ax is the orthogonal projection p of b onto the
subspace U , which is equivalent to pb = b − Ax being orthogonal to U .

First of all, if U⊥ is the vector space orthogonal to U , the affine space
b + U⊥ intersects U in a unique point p (this follows from Lemma 2.11.2
(2)). Next, for any point y ∈ U , the vectors py and bp are orthogonal,
which implies that

‖by‖2 = ‖bp‖2 + ‖py‖2.

Thus, p is indeed the unique point in U that minimizes the distance from
b to any point in U .

To show that there is a unique x+ of minimum norm minimizing the
(square) error ‖Ax − b‖2, we use the fact that

R
n = Ker A ⊕ (Ker A)⊥.

Indeed, every x ∈ R
n can be written uniquely as x = u+v, where u ∈ Ker A

and v ∈ (Ker A)⊥, and since u and v are orthogonal,

‖x‖2 = ‖u‖2 + ‖v‖2.

Furthermore, since u ∈ Ker A, we have Au = 0, and thus Ax = p iff Av = p,
which shows that the solutions of Ax = p for which x has minimum norm
must belong to (KerA)⊥. However, the restriction of A to (Ker A)⊥ is
injective. This is because if Av1 = Av2 where v1, v2 ∈ (Ker A)⊥, then
A(v2 −v2) = 0, which implies v2 −v1 ∈ Ker A, and since v1, v2 ∈ (Ker A)⊥,
we also have v2−v1 ∈ (Ker A)⊥, and consequently, v2−v1 = 0. This shows
that there is a unique x of minimum norm minimizing ‖Ax− b‖2, and that
it must belong to (KerA)⊥.

The proof also shows that x minimizes ‖Ax − b‖2 iff pb = b − Ax is
orthogonal to U , which can be expressed by saying that b−Ax is orthogonal
to every column of A. However, this is equivalent to

A�(b − Ax) = 0, i.e., A�Ax = A�b.
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Finally, it turns out that the minimum norm least squares solution x+ can
be found in terms of the pseudo-inverse A+ of A, which is itself obtained
from the SVD of A.

If A = V DU�, with

D = diag(λ1, . . . , λr, 0, . . . , 0),

where D is an m × n matrix and λi > 0, letting

D+ = diag(1/λ1, . . . , 1/λr, 0, . . . , 0),

an n × m matrix, the pseudo-inverse of A is defined as

A+ = UD+V �.

Theorem 13.1.2 The least squares solution of smallest norm of the linear
system Ax = b, where A is an m × n matrix, is given by

x+ = A+b = UD+V �b.

Proof . First, assume that A is a (rectangular) diagonal matrix D, as above.
Then, since x minimizes ‖Dx − b‖2 iff Dx is the projection of b onto the
image subspace F of D, it is fairly obvious that x+ = D+b. Otherwise, we
can write

A = V DU�,

where U and V are orthogonal. However, since V is an isometry,

‖Ax − b‖ = ‖V DU�x − b‖ = ‖DU�x − V �b‖.
Letting y = U�x, we have ‖x‖ = ‖y‖, since U is an isometry, and since U
is surjective, ‖Ax − b‖ is minimized iff ‖Dy − V �b‖ is minimized, and we
showed that the least solution is

y+ = D+V �b.

Since y = U�x, with ‖x‖ = ‖y‖, we get

x+ = UD+V �b = A+b.

Thus, the pseudo-inverse provides the optimal solution to the least squares
problem.

The following properties due to Penrose characterize the pseudo-inverse
of a matrix. For a proof, see Kincaid and Cheney [100].

Lemma 13.1.3 Given any m×n matrix A (real or complex), the pseudo-
inverse A+ of A is the unique n × m matrix satisfying the following
properties:

AA+A = A,
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A+AA+ = A+,

(AA+)� = AA+,

(A+A)� = A+A.

If A is an m × n matrix of rank n (and so m ≥ n), it is immediately
shown that the QR-decomposition in terms of Householder transformations
applies as follows:

There are n m × m matrices H1, . . . , Hn, Householder matrices or the
identity, and an upper triangular m × n matrix R of rank n, such that

A = H1 · · ·HnR.

Then, because each Hi is an isometry,

‖Ax − b‖ = ‖Rx − Hn · · ·H1b‖,
and the least squares problem Ax = b is equivalent to the system

Rx = Hn · · ·H1b.

Now, the system

Rx = Hn · · ·H1b

is of the form (
R1

0m−n

)
x =

(
c
d

)
,

where R1 is an invertible n × n matrix (since A has rank n), c ∈ R
n, and

d ∈ R
m−n, and the least squares solution of smallest norm is

x+ = R−1
1 c.

Since R1 is a triangular matrix, it is very easy to invert R1.
The method of least squares is one of the most effective tools of the

mathematical sciences. There are entire books devoted to it. Readers are
advised to consult Strang [166] or Golub and Van Loan [75], where exten-
sions and applications of least squares (such as weighted least squares and
recursive least squares) are described. Golub and Van Loan also contains
a very extensive bibliography, including a list of books on least squares.

13.2 Minimization of Quadratic Functions Using
Lagrange Multipliers

Many problems in physics and engineering can be stated as the minimiza-
tion of some energy function, with or without constraints. Indeed, it is a
fundamental principle of mechanics that nature acts so as to minimize en-
ergy. Furthermore, if a physical system is in a stable state of equilibrium,
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then the energy in that state should be minimal. For example, a small ball
placed on top of a sphere is in an unstable equilibrium position. A small
motion causes the ball to roll down. On the other hand, a ball placed inside
and at the bottom of a sphere is in a stable equilibrium position, because
the potential energy is minimal.

The simplest kind of energy function is a quadratic function. Such
functions can be conveniently defined in the form

P (x) = x�Ax − x�b,

where A is a symmetric n × n matrix, and x, b, are vectors in R
n, viewed

as column vectors. Actually, for reasons that will be clear shortly, it is
preferable to put a factor 1

2 in front of the quadratic term, so that

P (x) =
1
2
x�Ax − x�b.

The question is, under which conditions (on A) does P (x) have a unique
global minimum?

It turns out that if A is symmetric positive definite, then P (x) has a
unique global minimum precisely when

Ax = b.

Recall that a symmetric positive definite matrix is a matrix whose eigen-
values are strictly positive. An equivalent criterion is given in the following
lemma.

Lemma 13.2.1 Given any Euclidean space E of dimension n, every self-
adjoint linear map f :E → E is positive definite iff

〈x, f(x)〉 > 0

for all x �= 0.

Proof . First, assume that f is positive definite. Recall that every self-
adjoint linear map has an orthonormal basis (e1, . . . , en) of eigenvectors,
and let λ1, . . . , λn be the corresponding eigenvalues. With respect to this
basis, for every x = x1e1 + · · · + xnen �= 0, we have

〈x, f(x)〉 =

〈
n∑

i=1

xiei, f

( n∑
i=1

xiei

)〉
,

=

〈
n∑

i=1

xiei,
n∑

i=1

λixiei

〉
,

=
n∑

i=1

λix
2
i ,

which is strictly positive, since λi > 0 for i = 1, . . . , n, and x2
i > 0 for some

i, since x �= 0.
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Conversely, assume that

〈x, f(x)〉 > 0

for all x �= 0. Then, for x = ei, we get

〈ei, f(ei)〉 = 〈ei, λiei〉 = λi,

and thus λi > 0 for all i = 1, . . . , n.

If A is symmetric positive definite, it is easily checked that A−1 is also
symmetric positive definite. Also, if C is a symmetric positive definite m×m
matrix and A is an m × n matrix of rank n (and so m ≥ n), then A�CA
is symmetric positive definite.

We can now prove that

P (x) =
1
2
x�Ax − x�b

has a global minimum when A is symmetric positive definite.

Lemma 13.2.2 Given a quadratic function

P (x) =
1
2
x�Ax − x�b,

if A is symmetric positive definite, then P (x) has a unique global minimum
for the solution of the linear system Ax = b. The minimum value of P (x)
is

P (A−1b) = −1
2
b�A−1b.

Proof . Since A is positive definite, it is invertible, since its eigenvalues
are all strictly positive. Let x = A−1b, and compute P (y) − P (x) for any
y ∈ R

n. Since Ax = b, we get

P (y) − P (x) =
1
2
y�Ay − y�b − 1

2
x�Ax + x�b,

=
1
2
y�Ay − y�Ax +

1
2
x�Ax,

=
1
2
(y − x)�A(y − x).

Since A is positive definite, the last expression is nonnegative, and thus

P (y) ≥ P (x)

for all y ∈ R
n, which proves that x = A−1b is a global minimum of P (x).

A simple computation yields

P (A−1b) = −1
2
b�A−1b.
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Remarks:

(1) The quadratic function P (x) is also given by

P (x) =
1
2
x�Ax − b�x,

but the definition using x�b is more convenient for the proof of
Lemma 13.2.2.

(2) If P (x) contains a constant term c ∈ R, so that

P (x) =
1
2
x�Ax − x�b + c,

the proof of Lemma 13.2.2 still shows that P (x) has a unique global
minimum for x = A−1b, but the minimal value is

P (A−1b) = −1
2
b�A−1b + c.

Thus, when the energy function P (x) of a system is given by a quadratic
function

P (x) =
1
2
x�Ax − x�b

where A is symmetric positive definite, finding the global minimum of P (x)
is equivalent to solving the linear system Ax = b. Sometimes, it is useful
to recast a linear problem Ax = b as a variational problem (finding the
minimum of some energy function). However, very often, a minimization
problem comes with extra constraints that must be satisfied for all ad-
missible solutions. For instance, we may want to minimize the quadratic
function

Q(y1, y2) =
1
2
(
y2
1 + y2

2

)
subject to the constraint

2y1 − y2 = 5.

The solution for which Q(y1, y2) is minimum is no longer (y1, y2) = (0, 0),
but instead, (y1, y2) = (2,−1), as will be shown later.

Geometrically, the graph of the function defined by z = Q(y1, y2) in R
3

is a paraboloid of revolution P with axis of revolution Oz. The constraint

2y1 − y2 = 5

corresponds to the vertical plane H parallel to the z-axis and containing
the line of equation 2y1 − y2 = 5 in the xy-plane. Thus, the constrained
minimum of Q is located on the parabola that is the intersection of the
paraboloid P with the plane H.

A nice way to solve constrained minimization problems of the above
kind is to use the method of Lagrange multipliers. But first, let us define
precisely what kind of minimization problems we intend to solve.
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Definition 13.2.3 The quadratic constrained minimization problem con-
sists in minimizing a quadratic function

Q(y) =
1
2
y�C−1y − b�y

subject to the linear constraints

A�y = f,

where C−1 is an m×m symmetric positive definite matrix, A is an m× n
matrix of rank n (so that, m ≥ n), and where b, y ∈ R

m (viewed as column
vectors), and f ∈ R

n (viewed as a column vector).

The reason for using C−1 instead of C is that the constrained minimiza-
tion problem has an interpretation as a set of equilibrium equations in
which the matrix that arises naturally is C (see Strang [165]). Since C and
C−1 are both symmetric positive definite, this doesn’t make any difference,
but it seems preferable to stick to Strang’s notation.

The method of Lagrange consists in incorporating the n constraints
A�y = f into the quadratic function Q(y), by introducing extra variables
λ = (λ1, . . . , λn) called Lagrange multipliers, one for each constraint. We
form the Lagrangian

L(y, λ) = Q(y) + λ�(A�y − f) =
1
2
y�C−1y − (b − Aλ)�y − λ�f.

We shall prove that our constrained minimization problem has a unique
solution given by the system of linear equations

C−1y + Aλ = b,

A�y = f,

which can be written in matrix form as(
C−1 A
A� 0

)(
y
λ

)
=

(
b
f

)
.

Note that the matrix of this system is symmetric. Eliminating y from the
first equation

C−1y + Aλ = b,

we get

y = C(b − Aλ),

and substituting into the second equation, we get

A�C(b − Aλ) = f,

that is,

A�CAλ = A�Cb − f.
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However, by a previous remark, since C is symmetric positive definite and
the columns of A are linearly independent, A�CA is symmetric positive def-
inite, and thus invertible. Note that this way of solving the system requires
solving for the Lagrange multipliers first.

Letting e = b − Aλ, we also note that the system(
C−1 A
A� 0

)(
y
λ

)
=

(
b
f

)
is equivalent to the system

e = b − Aλ,

y = Ce,

A�y = f.

The latter system is called the equilibrium equations by Strang [165]. In-
deed, Strang shows that the equilibrium equations of many physical systems
can be put in the above form. This includes spring mass systems, electrical
networks, and trusses, which are structures built from elastic bars. In each
case, y, e, b, C, λ, f , and K = A�CA have a physical interpretation. The
matrix K = A�CA is usually called the stiffness matrix . Again, the reader
is referred to Strang [165].

In order to prove that our constrained minimization problem has a unique
solution, we proceed to prove that the constrained minimization of Q(y)
subject to A�y = f is equivalent to the unconstrained maximization of
another function −P (λ). We get P (λ) by minimizing the Lagrangian L(y, λ)
treated as a function of y alone. Since C−1 is symmetric positive definite
and

L(y, λ) =
1
2
y�C−1y − (b − Aλ)�y − λ�f,

by Lemma 13.2.2 the global minimum (with respect to y) of L(y, λ) is
obtained for the solution y of

C−1y = b − Aλ,

that is, when

y = C(b − Aλ),

and the minimum of L(y, λ) is

min
y

L(y, λ) = −1
2
(Aλ − b)�C(Aλ − b) − λ�f.

Letting

P (λ) =
1
2
(Aλ − b)�C(Aλ − b) + λ�f,

we claim that the solution of the constrained minimization of Q(y) subject
to A�y = f is equivalent to the unconstrained maximization of −P (λ). Of
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course, since we minimized L(y, λ) w.r.t. y, we have

L(y, λ) ≥ −P (λ)

for all y and all λ. However, when the constraint A�y = f holds, L(y, λ) =
Q(y), and thus for any admissible y, which means that A�y = f , we have

min
y

Q(y) ≥ max
λ

−P (λ).

In order to prove that the unique minimum of the constrained problem
Q(y) subject to A�y = f is the unique maximum of −P (λ), we compute
Q(y) + P (λ).

Lemma 13.2.4 The quadratic constrained minimization problem of Defi-
nition 13.2.3 has a unique solution (y, λ) given by the system(

C−1 A
A� 0

) (
y
λ

)
=

(
b
f

)
.

Furthermore, the component λ of the above solution is the unique value for
which −P (λ) is maximum.

Proof . As we suggested earlier, let us compute Q(y) + P (λ), assuming
that the constraint A�y = f holds. Eliminating f , since b�y = y�b and
λ�A�y = y�Aλ, we get

Q(y) + P (λ) =
1
2
y�C−1y − b�y +

1
2
(Aλ − b)�C(Aλ − b) + λ�f,

=
1
2
(C−1y + Aλ − b)�C(C−1y + Aλ − b).

Since C is positive definite, the last expression is nonnegative. In fact, it is
null iff

C−1y + Aλ − b = 0,

that is,

C−1y + Aλ = b.

But then the unique constrained minimum of Q(y) subject to A�y = f
is equal to the unique maximum of −P (λ) exactly when A�y = f and
C−1y + Aλ = b, which proves the lemma.

Remarks:

(1) There is a form of duality going on in this situation. The constrained
minimization of Q(y) subject to A�y = f is called the primal prob-
lem, and the unconstrained maximization of −P (λ) is called the dual
problem. Duality is the fact stated slightly loosely as

min
y

Q(y) = max
λ

−P (λ).
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Recalling that e = b − Aλ, since

P (λ) =
1
2
(Aλ − b)�C(Aλ − b) + λ�f,

we can also write

P (λ) =
1
2
e�Ce + λ�f.

This expression often represents the total potential energy of a sys-
tem. Again, the optimal solution is the one that minimizes the
potential energy (and thus maximizes −P (λ)).

(2) It is immediately verified that the equations of Lemma 13.2.4 are
equivalent to the equations stating that the partial derivatives of the
Lagrangian L(y, λ) are null:

∂L

∂yi
= 0, i = 1, . . . ,m,

∂L

∂λj
= 0, j = 1, . . . , n.

Thus, the constrained minimum of Q(y) subject to A�y = f is an
extremum of the Lagrangian L(y, λ). As we showed in Lemma 13.2.4,
this extremum corresponds to simultaneously minimizing L(y, λ) with
respect to y and maximizing L(y, λ) with respect to λ. Geometrically,
such a point is a saddle point for L(y, λ).

(3) The Lagrange multipliers sometimes have a natural physical mean-
ing. For example, in the spring mass system they correspond to node
displacements. In some general sense, Lagrange multipliers are cor-
rection terms needed to satisfy equilibrium equations and the price
paid for the constraints. For more details, see Strang [165].

Going back to the constrained minimization of Q(y1, y2) = 1
2 (y2

1 + y2
2)

subject to

2y1 − y2 = 5,

the Lagrangian is

L(y1, y2, λ) =
1
2
(
y2
1 + y2

2

)
+ λ(2y1 − y2 − 5),

and the equations stating that the Lagrangian has a saddle point are

y1 + 2λ = 0,

y2 − λ = 0,

2y1 − y2 − 5 = 0.

We obtain the solution (y1, y2, λ) = (2,−1,−1).
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Much more should be said about the use of Lagrange multipliers in
optimization or variational problems. This is a vast topic. Least squares
methods and Lagrange multipliers are used to tackle many problems
in computer graphics and computer vision; see Trucco and Verri [171],
Metaxas [125], Jain, Katsuri, and Schunck [93], Faugeras [59], and Foley,
van Dam, Feiner, and Hughes [64]. For a lucid introduction to optimization
methods, see Ciarlet [33].

13.3 Problems

Problem 13.1 We observe m positions ((x1, y1), . . . , (xm, ym)) of a point
moving in the plane (m ≥ 2), and assume that they are roughly on a
straight line. Prove that the line y = c + dx that minimizes the error

(c + dx1 − y1)2 + · · · + (c + dxm − ym)2

is the line of equation

y = y + d(x − x),

where

x =
x1 + · · · + xm

m
,

y =
y1 + · · · + ym

m
,

d =
∑m

i=1(xi − x)yi∑m
i=1(xi − x)2

.

Problem 13.2 Find the least squares solution to the problem
 2 −1

2 2
−1 2


 (

x1

x2

)
=


 1

1
1


 .

Do the problem again with the right-hand sides
 2

−1
2


 and


 2

2
−1


 .

Problem 13.3 Given m real numbers (y1, . . . , ym), prove that the con-
stant function c that minimizes the error

e = (y1 − c)2 + · · · + (ym − c)2

is the mean y of the data,

y =
y1 + · · · + ym

m
.

Note that the corresponding error is the variance of the data.



13.3. Problems 365

Problem 13.4 Given the four points (−1, 2), (0, 0), (1,−3), (2,−5), find
(in the least squares sense)

(i) The best horizontal line y = c;

(ii) The best line y = c + dx;

(iii) The best parabola y = c + dx + ex2.

Problem 13.5 Given the four points (1, 1, 3), (0, 3, 6), (2, 1, 5), (0, 0, 0),
find the best plane (in the least squares sense)

z = c + dx + ey

that fits the four points.

Problem 13.6 If A is symmetric positive definite, prove that A−1 is also
symmetric positive definite. If C is a symmetric positive definite m × m
matrix and A is an m × n matrix of rank n (and so m ≥ n), prove that
A�CA is symmetric positive definite.

Problem 13.7 Minimize

Q =
1
2

(
y2
1 +

1
3
y2
2

)
subject to y1 + y2 = 1.

Problem 13.8 Find the nearest point to the origin on the hyperplane

y1 + · · · + ym = 1.

Problem 13.9 (i) Find the minimum of

Q =
1
2

(
y2
1 + 2y1y2

) − y2

subject to y1 + y2 = 0.
(ii) Find the minimum of

Q =
1
2

(
y2
1 + y2

2 + y2
3

)
subject to y1 − y2 = 1 and y2 − y3 = 2.

Problem 13.10 Find the rectangle with corners at points (±y1,±y2) on
the ellipse y2

1 + 4y2
2 = 1 such that the perimeter 4y1 + 4y2 is maximized.

Problem 13.11 What is the minimum length–least squares solution to
 1 0 0

1 0 0
1 1 1





 c

d
e


 =


 0

2
2


 .
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Problem 13.12 (a) Prove that if A has independent columns, then its
pseudo-inverse is (A�A)−1A�, which is also the left inverse of A.

(b) Prove that if A has independent rows, then its pseudo-inverse is
A�(AA�)−1, which is also the right inverse of A.


