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Singular Value Decomposition (SVD)
and Polar Form

12.1 Polar Form

In this section we assume that we are dealing with a real Euclidean space
E. Let f :E → E be any linear map. In general, it may not be possible to
diagonalize a linear map f . However, note that f∗ ◦ f is self-adjoint, since

〈(f∗ ◦ f)(u), v〉 = 〈f(u), f(v)〉 = 〈u, (f∗ ◦ f)(v)〉.
Similarly, f ◦ f∗ is self-adjoint.

The fact that f∗ ◦f and f ◦f∗ are self-adjoint is very important, because
it implies that f∗ ◦ f and f ◦ f∗ can be diagonalized and that they have
real eigenvalues. In fact, these eigenvalues are all nonnegative. Indeed, if u
is an eigenvector of f∗ ◦ f for the eigenvalue λ, then

〈(f∗ ◦ f)(u), u〉 = 〈f(u), f(u)〉
and

〈(f∗ ◦ f)(u), u〉 = λ〈u, u〉,
and thus

λ〈u, u〉 = 〈f(u), f(u)〉,
which implies that λ ≥ 0, since 〈−,−〉 is positive definite. A similar proof
applies to f ◦ f∗. Thus, the eigenvalues of f∗ ◦ f are of the form µ2

1, . . . , µ
2
r

or 0, where µi > 0, and similarly for f ◦ f∗. The situation is even better,
since we will show shortly that f∗ ◦f and f ◦f∗ have the same eigenvalues.
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Remark: Given any two linear maps f :E → F and g:F → E, where
dim(E) = n and dim(F ) = m, it can be shown that

(−λ)m det(g ◦ f − λ In) = (−λ)n det(f ◦ g − λ Im),

and thus g ◦ f and f ◦ g always have the same nonnull eigenvalues!

The square roots µi > 0 of the positive eigenvalues of f∗ ◦ f (and f ◦
f∗) are called the singular values of f . A self-adjoint linear map f :E →
E whose eigenvalues are nonnegative is called positive, and if f is also
invertible, positive definite. In the latter case, every eigenvalue is strictly
positive. We just showed that f∗ ◦ f and f ◦ f∗ are positive self-adjoint
linear maps.

The wonderful thing about the singular value decomposition is that there
exist two orthonormal bases (u1, . . . , un) and (v1, . . . , vn) such that with
respect to these bases, f is a diagonal matrix consisting of the singular
values of f , or 0. First, we show some useful relationships between the
kernels and the images of f , f∗, f∗ ◦ f , and f ◦ f∗. Recall that if f :E → F
is a linear map, the image Im f of f is the subspace f(E) of F , and the
rank of f is the dimension dim(Im f) of its image. Also recall that

dim (Ker f) + dim (Im f) = dim (E),

and that for every subspace W of E

dim (W ) + dim (W⊥) = dim (E).

Lemma 12.1.1 Given any two Euclidean spaces E and F , where E has
dimension n and F has dimension m, for any linear map f :E → F , we
have

Ker f = Ker (f∗ ◦ f),
Ker f∗ = Ker (f ◦ f∗),
Ker f = (Im f∗)⊥,

Ker f∗ = (Im f)⊥,

dim(Im f) = dim(Im f∗),
dim(Ker f) = dim(Ker f∗),

and f , f∗, f∗ ◦ f , and f ◦ f∗ have the same rank.

Proof . To simplify the notation, we will denote the inner products on E
and F by the same symbol 〈−,−〉 (to avoid subscripts). If f(u) = 0, then
(f∗ ◦ f)(u) = f∗(f(u)) = f∗(0) = 0, and so Ker f ⊆ Ker (f∗ ◦ f). By
definition of f∗, we have

〈f(u), f(u)〉 = 〈(f∗ ◦ f)(u), u〉
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for all u ∈ E. If (f∗ ◦ f)(u) = 0, since 〈−,−〉 is positive definite, we must
have f(u) = 0, and so Ker (f∗ ◦ f) ⊆ Ker f . Therefore,

Ker f = Ker (f∗ ◦ f).

The proof that Ker f∗ = Ker (f ◦ f∗) is similar.
By definition of f∗, we have

〈f(u), v〉 = 〈u, f∗(v)〉
for all u ∈ E and all v ∈ F . This immediately implies that

Ker f = (Im f∗)⊥ and Ker f∗ = (Im f)⊥.

Since

dim(Im f) = n − dim(Ker f)

and

dim((Im f∗)⊥) = n − dim(Im f∗),

from

Ker f = (Im f∗)⊥

we also have

dim(Ker f) = dim((Im f∗)⊥),

from which we obtain

dim(Im f) = dim(Im f∗).

The above immediately implies that dim(Ker f) = dim(Ker f∗). From all
this we easily deduce that

dim(Im f) = dim(Im (f∗ ◦ f)) = dim(Im (f ◦ f∗)),

i.e., f , f∗, f∗ ◦ f , and f ◦ f∗ have the same rank.

The next lemma shows a very useful property of positive self-adjoint
linear maps.

Lemma 12.1.2 Given a Euclidean space E of dimension n, for any posi-
tive self-adjoint linear map f :E → E there is a unique positive self-adjoint
linear map h:E → E such that f = h2 = h◦h. Furthermore, Ker f = Ker h,
and if µ1, . . . , µp are the distinct eigenvalues of h and Ei is the eigenspace
associated with µi, then µ2

1, . . . , µ
2
p are the distinct eigenvalues of f , and Ei

is the eigenspace associated with µ2
i .

Proof . Since f is self-adjoint, by Theorem 11.3.1 there is an orthonormal
basis (u1, . . ., un) consisting of eigenvectors of f , and if λ1, . . . , λn are the
eigenvalues of f , we know that λi ∈ R. Since f is assumed to be positive,
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we have λi ≥ 0, and we can write λi = µ2
i , where µi ≥ 0. If we define

h:E → E by its action on the basis (u1, . . . , un), so that

h(ui) = µiui,

it is obvious that f = h2 and that h is positive self-adjoint (since its matrix
over the orthonormal basis (u1, . . . , un) is diagonal, thus symmetric). It
remains to prove that h is uniquely determined by f . Let g:E → E be
any positive self-adjoint linear map such that f = g2. Then there is an
orthonormal basis (v1, . . . , vn) of eigenvectors of g, and let µ1, . . . , µn be
the eigenvalues of g, where µi ≥ 0. Note that

f(vi) = g2(vi) = g(g(vi)) = µ2
i vi,

so that vi is an eigenvector of f for the eigenvalue µ2
i . If µ1, . . . , µp are the

distinct eigenvalues of g and E1, . . . , Ep are the corresponding eigenspaces,
the above argument shows that each Ei is a subspace of the eigenspace Ui

of f associated with µ2
i . However, we observed (just after Theorem 11.3.1)

that

E = E1 ⊕ · · · ⊕ Ep,

where Ei and Ej are orthogonal if i 	= j, and thus we must have Ei = Ui.
Since µi, µj ≥ 0 and µi 	= µj implies that µ2

i 	= µ2
j , the values µ2

1, . . . , µ
2
p

are the distinct eigenvalues of f , and the corresponding eigenspaces are
also E1, . . . , Ep. This shows that g = h, and h is unique. Also, as a con-
sequence, Ker f = Ker h, and if µ1, . . . , µp are the distinct eigenvalues of
h, then µ2

1, . . . , µ
2
p are the distinct eigenvalues of f , and the corresponding

eigenspaces are identical.

There are now two ways to proceed. We can prove directly the singular
value decomposition, as Strang does [166, 165], or prove the so-called polar
decomposition theorem. The proofs are of roughly the same difficulty. We
have chosen the second approach, since it is less common in textbook pre-
sentations, and since it also yields a little more, namely uniqueness when f
is invertible. It is somewhat disconcerting that the next two theorems are
given only as an exercise in Bourbaki [20] (Algèbre, Chapter 9, Problem
14, page 127). Yet, the SVD decomposition is of great practical impor-
tance. This is probably typical of the attitude of “pure mathematicians.”
However, the proof hinted at in Bourbaki is quite elegant.

The early history of the singular value decomposition is described in
a fascinating paper by Stewart [162]. The SVD is due to Beltrami and
Camille Jordan independently (1873, 1874). Gauss is the grandfather of all
this, for his work on least squares (1809, 1823) (but Legendre also published
a paper on least squares!). Then come Sylvester, Schmidt, and Hermann
Weyl. Sylvester’s work was apparently “opaque.” He gave a computational
method to find an SVD. Schimdt’s work really has to do with integral equa-
tions and symmetric and asymmetric kernels (1907). Weyl’s work has to
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do with perturbation theory (1912). Autonne came up with the polar de-
composition (1902, 1915). Eckart and Young extended SVD to rectangular
matrices (1936, 1939).

The next three theorems deal with a linear map f :E → E over a Eu-
clidean space E. We will show later on how to generalize these results to
linear maps f :E → F between two Euclidean spaces E and F .

Theorem 12.1.3 Given a Euclidean space E of dimension n, for any lin-
ear map f :E → E there are two positive self-adjoint linear maps h1:E → E
and h2:E → E and an orthogonal linear map g:E → E such that

f = g ◦ h1 = h2 ◦ g.

Furthermore, if f has rank r, the maps h1 and h2 have the same positive
eigenvalues µ1, . . . , µr, which are the singular values of f , i.e., the positive
square roots of the nonnull eigenvalues of both f∗ ◦ f and f ◦ f∗. Finally,
h1, h2 are unique, g is unique if f is invertible, and h1 = h2 if f is normal.

Proof . By Lemma 12.1.2 there are two (unique) positive self-adjoint linear
maps h1:E → E and h2:E → E such that f∗ ◦ f = h2

1 and f ◦ f∗ = h2
2.

Note that

〈f(u), f(v)〉 = 〈h1(u), h1(v)〉
for all u, v ∈ E, since

〈f(u), f(v)〉 = 〈u, (f∗ ◦ f)(v)〉 = 〈u, (h1 ◦ h1)(v)〉 = 〈h1(u), h1(v)〉,
because f∗ ◦ f = h2

1 and h1 = h∗
1 (h1 is self-adjoint). From Lemma 12.1.1,

Ker f = Ker (f∗ ◦ f), and from Lemma 12.1.2, Ker (f∗ ◦ f) = Ker h1. Thus,

Ker f = Ker h1.

If r is the rank of f , then since h1 is self-adjoint, by Theorem 11.3.1 there is
an orthonormal basis (u1, . . . , un) of eigenvectors of h1, and by reordering
these vectors if necessary, we can assume that (u1, . . . , ur) are associated
with the strictly positive eigenvalues µ1, . . . , µr of h1 (the singular values
of f), and that µr+1 = · · · = µn = 0. Observe that (ur+1, . . . , un) is an or-
thonormal basis of Ker f = Ker h1, and that (u1, . . . , ur) is an orthonormal
basis of (Ker f)⊥ = Im f∗. Note that

〈f(ui), f(uj)〉 = 〈h1(ui), h1(uj)〉 = µiµj〈ui, uj〉 = µ2
i δi j

when 1 ≤ i, j ≤ n (recall that δi j = 1 if i = j, and δi j = 0 if i 	= j). Letting

vi =
f(ui)

µi

when 1 ≤ i ≤ r, observe that

〈vi, vj〉 = δi j
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when 1 ≤ i, j ≤ r. Using the Gram–Schmidt orthonormalization procedure,
we can extend (v1, . . . , vr) to an orthonormal basis (v1, . . . , vn) of E (even
when r = 0). Also note that (v1, . . . , vr) is an orthonormal basis of Im f ,
and (vr+1, . . . , vn) is an orthonormal basis of Im f⊥ = Ker f∗.

We define the linear map g:E → E by its action on the basis (u1, . . . , un)
as follows:

g(ui) = vi

for all i, 1 ≤ i ≤ n. We have

(g ◦ h1)(ui) = g(h1(ui)) = g(µiui) = µig(ui) = µivi = µi
f(ui)

µi
= f(ui)

when 1 ≤ i ≤ r, and

(g ◦ h1)(ui) = g(h1(ui)) = g(0) = 0

when r + 1 ≤ i ≤ n (since (ur+1, . . . , un) is a basis for Ker f = Ker h1),
which shows that f = g◦h1. The fact that g is orthogonal follows easily from
the fact that it maps the orthonormal basis (u1, . . . , un) to the orthonormal
basis (v1, . . . , vn).

We can show that f = h2 ◦ g as follows. Notice that

h2
2(vi) = (f ◦ f∗)

(
f(ui)

µi

)
,

= (f ◦ (f∗ ◦ f))
(

ui

µi

)
,

=
1
µi

(f ◦ h2
1)(ui),

=
1
µi

f(h2
1(ui)),

=
1
µi

f(µ2
i ui),

= µif(ui),
= µ2

i vi

when 1 ≤ i ≤ r, and

h2
2(vi) = (f ◦ f∗)(vi) = f(f∗(vi)) = 0

when r + 1 ≤ i ≤ n, since (vr+1, . . . , vn) is a basis for Ker f∗ = (Im f)⊥.
Since h2 is positive self-adjoint, so is h2

2, and by Lemma 12.1.2, we must
have

h2(vi) = µivi

when 1 ≤ i ≤ r, and

h2(vi) = 0
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when r + 1 ≤ i ≤ n. This shows that (v1, . . . , vn) are eigenvectors of h2 for
µ1, . . . , µn (since µr+1 = · · · = µn = 0), and thus h1 and h2 have the same
eigenvalues µ1, . . . , µn.

As a consequence,

(h2 ◦ g)(ui) = h2(g(ui)) = h2(vi) = µivi = f(ui)

when 1 ≤ i ≤ n. Since h1, h2, f∗ ◦ f , and f ◦ f∗ are positive self-adjoint,
f∗ ◦ f = h2

1, f ◦ f∗ = h2
2, and µ1, . . . , µr are the eigenvalues of both h1 and

h2, it follows that µ1, . . . , µr are the singular values of f , i.e., the positive
square roots of the nonnull eigenvalues of both f∗ ◦ f and f ◦ f∗.

Finally, since

f∗ ◦ f = h2
1 and f ◦ f∗ = h2

2,

by Lemma 12.1.2, h1 and h2 are unique and if f is invertible, then h1 and
h2 are invertible and thus g is also unique, since g = f ◦h−1

1 . If h is normal,
then f∗ ◦ f = f ◦ f∗ and h1 = h2.

In matrix form, Theorem 12.1.3 can be stated as follows. For every real
n × n matrix A, there is some orthogonal matrix R and some positive
symmetric matrix S such that

A = RS.

Furthermore, R,S are unique if A is invertible. A pair (R,S) such that
A = RS is called a polar decomposition of A. For example, the matrix

A =
1
2




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




is both orthogonal and symmetric, and A = RS with R = A and S = I,
which implies that some of the eigenvalues of A are negative.

Remark: If E is a Hermitian space, Theorem 12.1.3 also holds, but the
orthogonal linear map g becomes a unitary map. In terms of matrices, the
polar decomposition states that for every complex n×n matrix A, there is
some unitary matrix U and some positive Hermitian matrix H such that

A = UH.

12.2 Singular Value Decomposition (SVD)

The proof of Theorem 12.1.3 shows that there are two orthonormal bases
(u1, . . . , un) and (v1, . . . , vn), where (u1, . . . , un) are eigenvectors of h1

and (v1, . . . , vn) are eigenvectors of h2. Furthermore, (u1, . . . , ur) is an or-
thonormal basis of Im f∗, (ur+1, . . . , un) is an orthonormal basis of Ker f ,
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(v1, . . . , vr) is an orthonormal basis of Im f , and (vr+1, . . . , vn) is an or-
thonormal basis of Ker f∗. Using this, we immediately obtain the singular
value decomposition theorem. Note that the singular value decomposition
for linear maps of determinant +1 is called the Cartan decomposition (after
Elie Cartan)!

Theorem 12.2.1 Given a Euclidean space E of dimension n, for every
linear map f :E → E there are two orthonormal bases (u1, . . . , un) and
(v1, . . . , vn) such that if r is the rank of f , the matrix of f w.r.t. these two
bases is a diagonal matrix of the form




µ1 . . .
µ2 . . .

...
...

. . .
...

. . . µn


 ,

where µ1, . . . , µr are the singular values of f , i.e., the (positive) square
roots of the nonnull eigenvalues of f∗ ◦ f and f ◦ f∗, and µr+1 = · · · =
µn = 0. Furthermore, (u1, . . . , un) are eigenvectors of f∗ ◦ f , (v1, . . . , vn)
are eigenvectors of f ◦ f∗, and f(ui) = µivi when 1 ≤ i ≤ n.

Proof . Going back to the proof of Theorem 12.2.1, there are two orthonor-
mal bases (u1, . . . , un) and (v1, . . . , vn), where (u1, . . . , un) are eigenvectors
of h1, (v1, . . . , vn) are eigenvectors of h2, f(ui) = µivi when 1 ≤ i ≤ r, and
f(ui) = 0 when r + 1 ≤ i ≤ n. But now, with respect to the orthonormal
bases (u1, . . . , un) and (v1, . . . , vn), the matrix of f is indeed




µ1 . . .
µ2 . . .

...
...

. . .
...

. . . µn


 ,

where µ1, . . . , µr are the singular values of f and µr+1 = · · · = µn = 0.

Note that µi > 0 for all i (1 ≤ i ≤ n) iff f is invertible. Given an
orientation of the Euclidean space E specified by some orthonormal basis
(e1, . . . , en) taken as direct, if det(f) ≥ 0, we can always make sure that the
two orthonormal bases (u1, . . . , un) and (v1, . . . , vn) are oriented positively.
Indeed, if det(f) = 0, we just have to flip un to −un if necessary, and vn

to −vn if necessary. If det(f) > 0, since µi > 0 for all i, 1 ≤ i ≤ n, the
orthogonal matrices U and V whose columns are the ui’s and the vi’s have
determinants of the same sign. Since f(un) = µnvn and µn > 0, we just
have to flip un to −un if necessary, since vn will also be flipped. Theorem
12.2.1 can be restated in terms of (real) matrices as follows.

Theorem 12.2.2 For every real n × n matrix A there are two orthogonal
matrices U and V and a diagonal matrix D such that A = V DU�, where
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D is of the form

D =




µ1 . . .
µ2 . . .

...
...

. . .
...

. . . µn


 ,

where µ1, . . . , µr are the singular values of f , i.e., the (positive) square roots
of the nonnull eigenvalues of A�A and AA�, and µr+1 = · · · = µn = 0.
The columns of U are eigenvectors of A�A, and the columns of V are
eigenvectors of AA�. Furthermore, if det(A) ≥ 0, it is possible to choose
U and V such that det(U) = det(V ) = +1, i.e., U and V are rotation
matrices.

A triple (U,D, V ) such that A = V D U� is called a singular value
decomposition (SVD) of A.

Remarks:

(1) In Strang [166] the matrices U, V,D are denoted by U = Q2, V = Q1,
and D = Σ, and an SVD is written as A = Q1ΣQ�

2 . This has the
advantage that Q1 comes before Q2 in A = Q1ΣQ�

2 . This has the
disadvantage that A maps the columns of Q2 (eigenvectors of A�A)
to multiples of the columns of Q1 (eigenvectors of AA�).

(2) Algorithms for actually computing the SVD of a matrix are presented
in Golub and Van Loan [75] and Trefethen and Bau [170], where the
SVD and its applications are also discussed quite extensively.

(3) The SVD also applies to complex matrices. In this case, for every
complex n×n matrix A, there are two unitary matrices U and V and
a diagonal matrix D such that

A = V D U∗,

where D is a diagonal matrix consisting of real entries µ1, . . . , µn,
where µ1, . . . , µr are the singular values of f , i.e., the positive square
roots of the nonnull eigenvalues of A∗A and AA∗, and µr+1 = . . . =
µn = 0.

It is easy to go from the polar form to the SVD, and conversely. Indeed,
given a polar decomposition A = R1S, where R1 is orthogonal and S
is positive symmetric, there is an orthogonal matrix R2 and a positive
diagonal matrix D such that S = R2D R�

2 , and thus

A = R1R2D R�
2 = V D U�,

where V = R1R2 and U = R2 are orthogonal.
Going the other way, given an SVD decomposition A = V D U�, let

R = V U� and S = UD U�. It is clear that R is orthogonal and that S is
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positive symmetric, and

RS = V U�UD U� = V D U� = A.

Note that it is possible to require that det(R) = +1 when det(A) ≥ 0.
Theorem 12.2.2 can be easily extended to rectangular m×n matrices (see

Strang [166] or Golub and Van Loan [75], Trefethen and Bau [170]). As a
matter of fact, both Theorem 12.1.3 and Theorem 12.2.1 can be generalized
to linear maps f :E → F between two Euclidean spaces E and F . In order
to do so, we need to define the analogue of the notion of an orthogonal
linear map for linear maps f :E → F . By definition, the adjoint f∗:F → E
of a linear map f :E → F is the unique linear map such that

〈f(u), v〉2 = 〈u, f∗(v)〉1
for all u ∈ E and all v ∈ F . Then we have

〈f(u), f(v)〉2 = 〈u, (f∗ ◦ f)(v)〉1
for all u, v ∈ E. Letting n = dim(E), m = dim(F ), and p = min(m,n), if f
has rank p and if for every p orthonormal vectors (u1, . . . , up) in (Ker f)⊥

the vectors (f(u1), . . . , f(up)) are also orthonormal in F , then

f∗ ◦ f = id

on (Ker f)⊥. The converse is immediately proved. Thus, we will say that a
linear map f :E → F is weakly orthogonal if is has rank p = min(m,n) and
if

f∗ ◦ f = id

on (Ker f)⊥. Of course, f∗ ◦ f = 0 on Ker f . In terms of matrices, we will
say that a real m×n matrix A is weakly orthogonal if its first p = min(m,n)
columns are orthonormal, the remaining ones (if any) being null columns.
This is equivalent to saying that

A�A = In

if m ≥ n, and that

A�A =
(

Im 0m,n−m

0n−m,m 0n−m,n−m

)

if n > m. In this latter case (n > m), it is immediately shown that

AA� = Im,

and A� is also weakly orthogonal. The main difference with orthogonal
matrices is that AA� is usually not a nice matrix of the above form when
m ≥ n (unless m = n). Weakly unitary linear maps are defined analogously.

Theorem 12.2.3 Given any two Euclidean spaces E and F , where E has
dimension n and F has dimension m, for every linear map f :E → F there
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are two positive self-adjoint linear maps h1:E → E and h2:F → F and a
weakly orthogonal linear map g:E → F such that

f = g ◦ h1 = h2 ◦ g.

Furthermore, if f has rank r, the maps h1 and h2 have the same positive
eigenvalues µ1, . . . , µr, which are the singular values of f , i.e., the positive
square roots of the nonnull eigenvalues of both f∗ ◦ f and f ◦ f∗. Finally,
h1, h2 are unique, g is unique if rank(f) = min(m,n) and h1 = h2 if f is
normal.

Proof . By Lemma 12.1.2 there are two (unique) positive self-adjoint linear
maps h1:E → E and h2:F → F such that f∗ ◦ f = h2

1 and f ◦ f∗ = h2
2. As

in the proof of Theorem 12.1.3,

Ker f = Ker h1,

and letting r be the rank of f , there is an orthonormal basis (u1, . . . , un)
of eigenvectors of h1 such that (u1, . . . , ur) are associated with the strictly
positive eigenvalues µ1, . . . , µr of h1 (the singular values of f). The vec-
tors (ur+1, . . . , un) form an orthonormal basis of Ker f = Ker h1, and
the vectors (u1, . . . , ur) form an orthonormal basis of (Ker f)⊥ = Im f∗.
Furthermore, letting

vi =
f(ui)

µi

when 1 ≤ i ≤ r, using the Gram–Schmidt orthonormalization procedure,
we can extend (v1, . . . , vr) to an orthonormal basis (v1, . . . , vm) of F (even
when r = 0). Also note that (v1, . . . , vr) is an orthonormal basis of Im f ,
and (vr+1, . . . , vm) is an orthonormal basis of Im f⊥ = Ker f∗.

Letting p = min(m,n), we define the linear map g:E → F by its action
on the basis (u1, . . . , un) as follows:

g(ui) = vi

for all i, 1 ≤ i ≤ p, and

g(ui) = 0

for all i, p + 1 ≤ i ≤ n. Note that r ≤ p. Just as in the proof of Theorem
12.1.3, we have

(g ◦ h1)(ui) = f(ui)

when 1 ≤ i ≤ r, and

(g ◦ h1)(ui) = g(h1(ui)) = g(0) = 0

when r + 1 ≤ i ≤ n (since (ur+1, . . . , un) is a basis for Ker f = Ker h1),
which shows that f = g ◦ h1. The fact that g is weakly orthogonal follows
easily from the fact that it maps the orthonormal vectors (u1, . . . , up) to
the orthonormal vectors (v1, . . . , vp).
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We can show that f = h2 ◦ g as follows. Just as in the proof of Theorem
12.1.3,

h2
2(vi) = µ2

i vi

when 1 ≤ i ≤ r, and

h2
2(vi) = (f ◦ f∗)(vi) = f(f∗(vi)) = 0

when r + 1 ≤ i ≤ m, since (vr+1, . . . , vm) is a basis for Ker f∗ = (Im f)⊥.
Since h2 is positive self-adjoint, so is h2

2, and by Lemma 12.1.2, we must
have

h2(vi) = µivi

when 1 ≤ i ≤ r, and

h2(vi) = 0

when r + 1 ≤ i ≤ m. This shows that (v1, . . . , vm) are eigenvectors of h2

for µ1, . . . , µm (letting µr+1 = · · · = µm = 0), and thus h1 and h2 have the
same nonnull eigenvalues µ1, . . . , µr. As a consequence,

(h2 ◦ g)(ui) = h2(g(ui)) = h2(vi) = µivi = f(ui)

when 1 ≤ i ≤ m. Since h1, h2, f∗ ◦ f , and f ◦ f∗ are positive self-adjoint,
f∗ ◦ f = h2

1, f ◦ f∗ = h2
2, and µ1, . . . , µr are the eigenvalues of both h1 and

h2, it follows that µ1, . . . , µr are the singular values of f , i.e., the positive
square roots of the nonnull eigenvalues of both f∗ ◦ f and f ◦ f∗.

Finally, if m ≥ n and rank(f) = n, then Kerh1 = Ker f = (0) and h1 is
invertible and if n ≥ m and rank(f) = m, then Kerh2 = Ker f∗ = (0) and
h2 is invertible. By Lemma 12.1.2 h1 and h2 are unique and since

f = g ◦ h1 and f = h2 ◦ g,

if h1 is invertible then g = f ◦ h−1
1 and if h2 is invertible then g = h−1

2 ◦ f ,
and thus g is also unique. If h is normal, then f∗ ◦ f = f ◦ f∗ and h1 = h2.

In matrix form, Theorem 12.2.3 can be stated as follows. For every real
m×n matrix A, there is some weakly orthogonal m×n matrix R and some
positive symmetric n × n matrix S such that

A = RS.

The proof also shows that if n > m, the last n − m columns of R are zero
vectors. A pair (R,S) such that A = RS is called a polar decomposition of
A.

Remark: If E is a Hermitian space, Theorem 12.2.3 also holds, but the
weakly orthogonal linear map g becomes a weakly unitary map. In terms
of matrices, the polar decomposition states that for every complex m × n
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matrix A, there is some weakly unitary m×n matrix U and some positive
Hermitian n × n matrix H such that

A = UH.

The proof of Theorem 12.2.3 shows that there are two orthonormal bases
(u1, . . . , un) and (v1, . . . , vm) for E and F , respectively, where (u1, . . . , un)
are eigenvectors of h1 and (v1, . . . , vm) are eigenvectors of h2. Further-
more, (u1, . . . , ur) is an orthonormal basis of Im f∗, (ur+1, . . . , un) is an
orthonormal basis of Ker f , (v1, . . . , vr) is an orthonormal basis of Im f ,
and (vr+1, . . . , vm) is an orthonormal basis of Ker f∗. Using this, we im-
mediately obtain the singular value decomposition theorem for linear maps
f :E → F , where E and F can have different dimensions.

Theorem 12.2.4 Given any two Euclidean spaces E and F , where E has
dimension n and F has dimension m, for every linear map f :E → F there
are two orthonormal bases (u1, . . . , un) and (v1, . . . , vm) such that if r is
the rank of f , the matrix of f w.r.t. these two bases is a m × n matrix D
of the form

D =




µ1 . . .
µ2 . . .

...
...

. . .
...

. . . µn

0
... . . . 0

...
...

. . .
...

0
... . . . 0




or D =




µ1 . . . 0 . . . 0
µ2 . . . 0 . . . 0

...
...

. . .
... 0

... 0
. . . µm 0 . . . 0


 ,

where µ1, . . . , µr are the singular values of f , i.e., the (positive) square roots
of the nonnull eigenvalues of f∗ ◦ f and f ◦ f∗, and µr+1 = · · · = µp = 0,
where p = min(m,n). Furthermore, (u1, . . . , un) are eigenvectors of f∗ ◦ f ,
(v1, . . . , vm) are eigenvectors of f ◦ f∗, and f(ui) = µivi when 1 ≤ i ≤ p =
min(m,n).

Even though the matrix D is an m × n rectangular matrix, since its
only nonzero entries are on the descending diagonal, we still say that D
is a diagonal matrix. Theorem 12.2.4 can be restated in terms of (real)
matrices as follows.

Theorem 12.2.5 For every real m×n matrix A, there are two orthogonal
matrices U (n × n) and V (m × m) and a diagonal m × n matrix D such



346 12. Singular Value Decomposition (SVD) and Polar Form

that A = V D U�, where D is of the form

D =




µ1 . . .
µ2 . . .

...
...

. . .
...

. . . µn

0
... . . . 0

...
...

. . .
...

0
... . . . 0




or D =




µ1 . . . 0 . . . 0
µ2 . . . 0 . . . 0

...
...

. . .
... 0

... 0
. . . µm 0 . . . 0


 ,

where µ1, . . . , µr are the singular values of f , i.e. the (positive) square roots
of the nonnull eigenvalues of A�A and AA�, and µr+1 = . . . = µp = 0,
where p = min(m,n). The columns of U are eigenvectors of A�A, and the
columns of V are eigenvectors of AA�.

A triple (U,D, V ) such that A = V D U� is called a singular value de-
composition (SVD) of A. The SVD of matrices can be used to define the
pseudo-inverse of a rectangular matrix; see Strang [166], Trefethen and Bau
[170], or Golub and Van Loan [75] for a thorough presentation.

Remark: The matrix form of Theorem 12.2.3 also yields a variant of the
singular value decomposition. First, assume that m ≥ n. Given an m × n
matrix A, there is a weakly orthogonal m × n matrix R1 and a positive
symmetric n × n matrix S such that

A = R1S.

Since S is positive symmetric, there is an orthogonal n× n matrix R2 and
a diagonal n × n matrix D with nonnegative entries such that

S = R2D R�
2 .

Thus, we can write

A = R1R2D R�
2 .

We claim that R1R2 is weakly orthogonal. Indeed,

(R1R2)�(R1R2) = R�
2 (R�

1 R1)R2,

and if m ≥ n, we have

R�
1 R1 = In,

so that

(R1R2)�(R1R2) = In.

Thus, R1R2 is indeed weakly orthogonal. Let us now consider the case
n > m. From the version of SVD in which

A = V D U�
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where U is n × n orthogonal, V is m × m orthogonal, and D is m × n
diagonal with nonnegative diagonal entries, letting V ′ be the m×n matrix
obtained from V by adding n−m zero columns and D′ be the n×n matrix
obtained from D by adding n−m zero rows, it is immediately verified that

V ′D′ = V D,

and thus when n > m, we also have

A = V ′D′ U�,

where U is n × n orthogonal, V ′ is m × n weakly orthogonal, and D′ is
n×n diagonal with nonnegative diagonal entries. As a consequence, in both
cases we have shown that there exists a weakly orthogonal m × n matrix
V , an orthogonal n × n matrix U , and a diagonal n × n matrix D with
nonnegative entries such that

A = V D U�.

There is yet another alternative when n > m. Given an m × n matrix
A, there is a positive symmetric m×m matrix S and a weakly orthogonal
m × n matrix R1, such that

A = SR1.

Since S is positive symmetric, there is an orthogonal m×m matrix R2 and
a diagonal m × m matrix D with nonnegative entries such that

S = R2D R�
2 .

Thus, we can write

A = R2D R�
2 R1.

We claim that R�
2 R1 is weakly orthogonal. Indeed,

(R�
2 R1)� R�

2 R1 = R�
1 (R2R

�
2 )R1 = R�

1 R1,

since R2 is orthogonal, and if n > m, we have

R�
1 R1 =

(
Im 0m,n−m

0n−m,m 0n−m,n−m

)
,

so that

(R�
2 R1)� R�

2 R1 =
(

Im 0m,n−m

0n−m,m 0n−m,n−m

)
,

and R�
2 R1 is weakly orthogonal. Since n > m, (R�

2 R1)� = R�
1 R2 is also

weakly orthogonal. As a consequence, we have shown that when m ≥ n,
there exists a weakly orthogonal m × n matrix V , an orthogonal n × n
matrix U , and a diagonal n × n matrix D with nonnegative entries such
that

A = V D U�,
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and when n > m, there exists an orthogonal m×m matrix V , a weakly or-
thogonal m×n matrix U� (with U also weakly orthogonal), and a diagonal
m × m matrix D with nonnegative entries, such that

A = V D U�.

In both cases,

V �AU = D.

One of the spectral theorems states that a symmetric matrix can be diag-
onalized by an orthogonal matrix. There are several numerical methods to
compute the eigenvalues of a symmetric matrix A. One method consists in
tridiagonalizing A, which means that there exists some orthogonal matrix
P and some symmetric tridiagonal matrix T such that A = PTP�. In fact,
this can be done using Householder transformations. It is then possible to
compute the eigenvalues of T using a bisection method based on Sturm
sequences. One can also use Jacobi’s method. For details, see Golub and
Van Loan [75], Chapter 8, Trefethen and Bau [170], Lecture 26, or Ciarlet
[33]. Computing the SVD of a matrix A is more involved. Most methods
begin by finding orthogonal matrices U and V and a bidiagonal matrix B
such that A = V BU�. This can also be done using Householder transfor-
mations. Observe that B�B is symmetric tridiagonal. Thus, in principle,
the previous method to diagonalize a symmetric tridiagonal matrix can be
applied. However, it is unwise to compute B�B explicitly, and more subtle
methods are used for this last step. Again, see Golub and Van Loan [75],
Chapter 8, and Trefethen and Bau [170], Lecture 31.

The polar form has applications in continuum mechanics. Indeed, in any
deformation it is important to separate stretching from rotation. This is
exactly what QS achieves. The orthogonal part Q corresponds to rotation
(perhaps with an additional reflection), and the symmetric matrix S to
stretching (or compression). The real eigenvalues σ1, . . . , σr of S are the
stretch factors (or compression factors) (see Marsden and Hughes [118]).
The fact that S can be diagonalized by an orthogonal matrix corresponds
to a natural choice of axes, the principal axes.

The SVD has applications to data compression, for instance in image
processing. The idea is to retain only singular values whose magnitudes are
significant enough. The SVD can also be used to determine the rank of
a matrix when other methods such as Gaussian elimination produce very
small pivots. One of the main applications of the SVD is the computation
of the pseudo-inverse. Pseudo-inverses are the key to the solution of various
optimization problems, in particular the method of least squares. This topic
is discussed in the next chapter (Chapter 13). Applications of the material
of this chapter can be found in Strang [166, 165]; Ciarlet [33]; Golub and
Van Loan [75], which contains many other references; and Trefethen and
Bau [170].
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12.3 Problems

Problem 12.1 (1) Given a matrix

A =
(

a b
c d

)

prove that there are Householder matrices G,H such that

GAH =
(

cos θ sin θ
sin θ − cos θ

) (
a b
c d

) (
cos ϕ sin ϕ
sin ϕ − cos ϕ

)
= D,

where D is a diagonal matrix, iff the following equations hold:

(b + c) cos(θ + ϕ) = (a − d) sin(θ + ϕ),
(c − b) cos(θ − ϕ) = (a + d) sin(θ − ϕ).

(2) Discuss the solvability of the system. Consider the following cases:

1. a − d = a + d = 0.

2a. a − d = b + c = 0, a + d 	= 0.

2b. a − d = 0, b + c 	= 0, a + d 	= 0.

3a. a + d = c − b = 0, a − d 	= 0.

3b. a + d = 0, c − b 	= 0, a − d 	= 0.

4. a + d 	= 0, a − d 	= 0. Show that the solution in this case is

θ =
1
2

[
arctan

(
b + c

a − d

)
+ arctan

(
c − b

a + d

)]
,

ϕ =
1
2

[
arctan

(
b + c

a − d

)
− arctan

(
c − b

a + d

)]
.

If b = 0, show that the discussion is simpler: Basically, consider c = 0 or
c 	= 0.

(3) Expressing everything in terms of u = cot θ and v = cot ϕ, show that
the equations of question (1) become

(b + c)(uv − 1) = (u + v)(a − d),
(c − b)(uv + 1) = (−u + v)(a + d).

Remark: I was unable to find an elegant solution for this system.

Problem 12.2 The purpose of this problem is to prove that given any
linear map f :E → E, where E is a Euclidean space of dimension n ≥ 2 and
an orthonormal basis (e1, . . . , en), there are isometries gi, hi, hyperplane
reflections or the identity, such that the matrix of

gn ◦ · · · ◦ g1 ◦ f ◦ h1 ◦ · · · ◦ hn
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is a lower bidiagonal matrix, which means that the nonzero entries (if any)
are on the main descending diagonal and on the diagonal below it.

(1) Prove that for any isometry f :E → E we have f = f∗ = f−1 iff
f ◦ f = id.

(2) Proceed by induction, taking inspiration from the proof of the
triangular decomposition given in Chapter 6. Let U ′

k be the subspace
spanned by (e1, . . . , ek) and U ′′

k be the subspace spanned by (ek+1, . . . , en),
1 ≤ k ≤ n − 1. For the base case, proceed as follows.

Let v1 = f∗(e1) and r1, 1 = ‖v1‖. Find an isometry h1 (reflection or id)
such that

h1(f∗(e1)) = r1, 1e1.

Observe that h1(f∗(e1)) ∈ U ′
1, so that

〈h1(f∗(e1)), ej〉 = 0

for all j, 2 ≤ j ≤ n, and conclude that

〈e1, f ◦ h1(ej)〉 = 0

for all j, 2 ≤ j ≤ n.
Next, let

u1 = f ◦ h1(e1) = u′
1 + u′′

1 ,

where u′
1 ∈ U ′

1 and u′′
1 ∈ U ′′

1 , and let r2, 1 = ‖u′′
1‖. Find an isometry g1

(reflection or id) such that

g1(u′′
1) = r2, 1e2.

Show that g1(e1) = e1,

g1 ◦ f ◦ h1(e1) = u′
1 + r2, 1e2,

and that

〈e1, g1 ◦ f ◦ h1(ej)〉 = 0

for all j, 2 ≤ j ≤ n. At the end of this stage, show that g1 ◦ f ◦ h1 has
a matrix such that all entries on its first row except perhaps the first are
null, and that all entries on the first column, except perhaps the first two,
are null.

Assume by induction that some isometries g1, . . . , gk and h1, . . . , hk have
been found, either reflections or the identity, and such that

fk = gk ◦ · · · ◦ g1 ◦ f ◦ h1 ◦ · · · ◦ hk

has a matrix that is lower bidiagonal up to and including row and column
k, where 1 ≤ k ≤ n − 2.

Let

vk+1 = f∗
k (ek+1) = v′

k+1 + v′′
k+1,
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where v′
k+1 ∈ U ′

k and v′′
k+1 ∈ U ′′

k , and let rk+1, k+1 = ‖v′′
k+1‖. Find an

isometry hk+1 (reflection or id) such that

hk+1(v′′
k+1) = rk+1, k+1ek+1.

Show that if hk+1 is a reflection, then U ′
k ⊆ Hk+1, where Hk+1 is the

hyperplane defining the reflection hk+1. Deduce that hk+1(v′
k+1) = v′

k+1,
and that

hk+1(f∗
k (ek+1)) = v′

k+1 + rk+1, k+1ek+1.

Observe that hk+1(f∗
k (ek+1)) ∈ U ′

k+1, so that

〈hk+1(f∗
k (ek+1)), ej〉 = 0

for all j, k + 2 ≤ j ≤ n, and thus

〈ek+1, fk ◦ hk+1(ej)〉 = 0

for all j, k + 2 ≤ j ≤ n.
Next, let

uk+1 = fk ◦ hk+1(ek+1) = u′
k+1 + u′′

k+1,

where u′
k+1 ∈ U ′

k+1 and u′′
k+1 ∈ U ′′

k+1, and let rk+2, k+1 = ‖u′′
k+1‖. Find an

isometry gk+1 (reflection or id) such that

gk+1(u′′
k+1) = rk+2, k+1ek+2.

Show that if gk+1 is a reflection, then U ′
k+1 ⊆ Gk+1, where Gk+1 is the

hyperplane defining the reflection gk+1. Deduce that gk+1(ei) = ei for all
i, 1 ≤ i ≤ k + 1, and that

gk+1 ◦ fk ◦ hk+1(ek+1) = u′
k+1 + rk+2, k+1ek+2.

Since by induction hypothesis

〈ei, fk ◦ hk+1(ej)〉 = 0

for all i, j, 1 ≤ i ≤ k + 1, k + 2 ≤ j ≤ n, and since gk+1(ei) = ei for all i,
1 ≤ i ≤ k + 1, conclude that

〈ei, gk+1 ◦ fk ◦ hk+1(ej)〉 = 0

for all i, j, 1 ≤ i ≤ k + 1, k + 2 ≤ j ≤ n. Finish the proof.

Problem 12.3 Write a computer program implementing the method of
Problem 12.2 to convert an n × n matrix to bidiagonal form.


