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10
Basics of Hermitian Geometry

10.1 Sesquilinear and Hermitian Forms,
Pre-Hilbert Spaces and Hermitian Spaces

In this chapter we generalize the basic results of Euclidean geometry pre-
sented in Chapter 6 to vector spaces over the complex numbers. Such a
generalization is inevitable, and not simply a luxury. For example, linear
maps may not have real eigenvalues, but they always have complex eigen-
values. Furthermore, some very important classes of linear maps can be
diagonalized if they are extended to the complexification of a real vector
space. This is the case for orthogonal matrices, and, more generally, nor-
mal matrices. Also, complex vector spaces are often the natural framework
in physics or engineering, and they are more convenient for dealing with
Fourier series. However, some complications arise due to complex conjuga-
tion. Recall that for any complex number z ∈ C, if z = x+iy where x, y ∈ R,
we let �z = x, the real part of z, and �z = y, the imaginary part of z. We
also denote the conjugate of z = x+iy by z = x−iy, and the absolute value
(or length, or modulus) of z by |z|. Recall that |z|2 = zz = x2 + y2. There
are many natural situations where a map ϕ:E×E → C is linear in its first
argument and only semilinear in its second argument, which means that
ϕ(u, µv) = µϕ(u, v), as opposed to ϕ(u, µv) = µϕ(u, v). For example, the
natural inner product to deal with functions f : R → C, especially Fourier
series, is

〈f, g〉 =
∫ π

−π

f(x)g(x)dx,
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which is semilinear (but not linear) in g. Thus, when generalizing a result
from the real case of a Euclidean space to the complex case, we always
have to check very carefully that our proofs do not rely on linearity in the
second argument. Otherwise, we need to revise our proofs, and sometimes
the result is simply wrong!

Before defining the natural generalization of an inner product, it is
convenient to define semilinear maps.

Definition 10.1.1 Given two vector spaces E and F over the complex
field C, a function f :E → F is semilinear if

f(u+ v) = f(u) + f(v),
f(λu) = λf(u),

for all u, v ∈ E and all λ ∈ C. The set of all semilinear maps f :E → C is
denoted by E

∗
.

It is trivially verified that E
∗

is a vector space over C. It is not quite the
dual space E∗ of E.

Remark: Instead of defining semilinear maps, we could have defined the
vector space E as the vector space with the same carrier set E whose
addition is the same as that of E, but whose multiplication by a complex
number is given by

(λ, u) �→ λu.

Then it is easy to check that a function f :E → C is semilinear iff f :E → C

is linear. If E has finite dimension n, it is easy to see that E
∗

has the same
dimension n (if (e1, . . . , en) is a basis for E, check that the semilinear maps
(e1, . . . , en) defined such that

ei

( n∑
j=1

λjej

)
= λi,

form a basis of E
∗
.)

We can now define sesquilinear forms and Hermitian forms.

Definition 10.1.2 Given a complex vector space E, a function ϕ:E×E →
C is a sesquilinear form if it is linear in its first argument and semilinear
in its second argument, which means that

ϕ(u1 + u2, v) = ϕ(u1, v) + ϕ(u2, v),
ϕ(u, v1 + v2) = ϕ(u, v1) + ϕ(u, v2),

ϕ(λu, v) = λϕ(u, v),
ϕ(u, µv) = µϕ(u, v),
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for all u, v, u1, u2, v1, v2 ∈ E, and all λ, µ ∈ C. A function ϕ:E × E → C

is a Hermitian form if it is sesquilinear and if

ϕ(v, u) = ϕ(u, v)

for all all u, v ∈ E.

Obviously, ϕ(0, v) = ϕ(u, 0) = 0. Also note that if ϕ:E × E → C is
sesquilinear, we have

ϕ(λu+ µv, λu+ µv) = |λ|2ϕ(u, u) + λµϕ(u, v) + λµϕ(v, u) + |µ|2ϕ(v, v),

and if ϕ:E × E → C is Hermitian, we have

ϕ(λu+ µv, λu+ µv) = |λ|2ϕ(u, u) + 2�(λµϕ(u, v)) + |µ|2ϕ(v, v).

Note that restricted to real coefficients, a sesquilinear form is bilinear
(we sometimes say R-bilinear). The function Φ:E → C defined such that
Φ(u) = ϕ(u, u) for all u ∈ E is called the quadratic form associated with
ϕ.

The standard example of a Hermitian form on Cn is the map ϕ defined
such that

ϕ((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + x2y2 + · · · + xnyn.

This map is also positive definite, but before dealing with these issues, we
show the following useful lemma.

Lemma 10.1.3 Given a complex vector space E, the following properties
hold:

(1) A sesquilinear form ϕ:E×E → C is a Hermitian form iff ϕ(u, u) ∈ R

for all u ∈ E.

(2) If ϕ:E × E → C is a sesquilinear form, then

4ϕ(u, v) = ϕ(u+ v, u+ v) − ϕ(u− v, u− v)
+ iϕ(u+ iv, u+ iv) − iϕ(u− iv, u− iv),

and

2ϕ(u, v) = (1+i)(ϕ(u, u)+ϕ(v, v))−ϕ(u−v, u−v)−iϕ(u−iv, u−iv).
These are called polarization identities.

Proof . (1) If ϕ is a Hermitian form, then

ϕ(v, u) = ϕ(u, v)

implies that

ϕ(u, u) = ϕ(u, u),

and thus ϕ(u, u) ∈ R. If ϕ is sesquilinear and ϕ(u, u) ∈ R for all u ∈ E,
then

ϕ(u+ v, u+ v) = ϕ(u, u) + ϕ(u, v) + ϕ(v, u) + ϕ(v, v),
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which proves that

ϕ(u, v) + ϕ(v, u) = α,

where α is real, and changing u to iu, we have

i(ϕ(u, v) − ϕ(v, u)) = β,

where β is real, and thus

ϕ(u, v) =
α− iβ

2
and ϕ(v, u) =

α+ iβ

2
,

proving that ϕ is Hermitian.
(2) These identities are verified by expanding the right-hand side, and

we leave them as an exercise.

Lemma 10.1.3 shows that a sesquilinear form is completely determined
by the quadratic form Φ(u) = ϕ(u, u), even if ϕ is not Hermitian. This
is false for a real bilinear form, unless it is symmetric. For example, the
bilinear form ϕ: R × R → R defined such that

ϕ((x1, y1), (x2, y2)) = x1y2 − x2y1

is not identically zero, and yet it is null on the diagonal. However, a real
symmetric bilinear form is indeed determined by its values on the diagonal,
as we saw in Chapter 10.

As in the Euclidean case, Hermitian forms for which ϕ(u, u) ≥ 0 play an
important role.

Definition 10.1.4 Given a complex vector space E, a Hermitian form
ϕ:E × E → C is positive if ϕ(u, u) ≥ 0 for all u ∈ E, and positive definite
if ϕ(u, u) > 0 for all u 	= 0. A pair 〈E,ϕ〉 where E is a complex vector
space and ϕ is a Hermitian form on E is called a pre-Hilbert space if ϕ is
positive, and a Hermitian (or unitary) space if ϕ is positive definite.

We warn our readers that some authors, such as Lang [109], define a
pre-Hilbert space as what we define as a Hermitian space. We prefer fol-
lowing the terminology used in Schwartz [149] and Bourbaki [21]. The
quantity ϕ(u, v) is usually called the Hermitian product of u and v. We
will occasionally call it the inner product of u and v.

Given a pre-Hilbert space 〈E,ϕ〉, as in the case of a Euclidean space, we
also denote ϕ(u, v) by

u · v or 〈u, v〉 or (u|v),
and

√
Φ(u) by ‖u‖.

Example 10.1 The complex vector space Cn under the Hermitian form

ϕ((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + x2y2 + · · · + xnyn

is a Hermitian space.
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Example 10.2 Let l2 denote the set of all countably infinite sequences
x = (xi)i∈N of complex numbers such that

∑∞
i=0 |xi|2 is defined (i.e., the

sequence
∑n

i=0 |xi|2 converges as n → ∞). It can be shown that the map
ϕ: l2 × l2 → C defined such that

ϕ ((xi)i∈N, (yi)i∈N) =
∞∑

i=0

xiyi

is well defined, and l2 is a Hermitian space under ϕ. Actually, l2 is even a
Hilbert space (see Chapter 26).

Example 10.3 Let Cpiece[a, b] be the set of piecewise bounded continuous
functions f : [a, b] → C under the Hermitian form

〈f, g〉 =
∫ b

a

f(x)g(x)dx.

It is easy to check that this Hermitian form is positive, but it is not definite.
Thus, under this Hermitian form, Cpiece[a, b] is only a pre-Hilbert space.

Example 10.4 Let C[−π, π] be the set of complex-valued continuous
functions f : [−π, π] → C under the Hermitian form

〈f, g〉 =
∫ b

a

f(x)g(x)dx.

It is easy to check that this Hermitian form is positive definite. Thus,
C[−π, π] is a Hermitian space.

The Cauchy–Schwarz inequality and the Minkowski inequalities extend
to pre-Hilbert spaces and to Hermitian spaces.

Lemma 10.1.5 Let 〈E,ϕ〉 be a pre-Hilbert space with associated quadratic
form Φ. For all u, v ∈ E, we have the Cauchy–Schwarz inequality

|ϕ(u, v)| ≤
√

Φ(u)
√

Φ(v).

Furthermore, if 〈E,ϕ〉 is a Hermitian space, the equality holds iff u and v
are linearly dependent.

We also have the Minkowski inequality√
Φ(u+ v) ≤

√
Φ(u) +

√
Φ(v).

Furthermore, if 〈E,ϕ〉 is a Hermitian space, the equality holds iff u and v
are linearly dependent, where in addition, if u 	= 0 and v 	= 0, then u = λv
for some real λ such that λ > 0.

Proof . For all u, v ∈ E and all µ ∈ C, we have observed that

ϕ(u+ µv, u+ µv) = ϕ(u, u) + 2�(µϕ(u, v)) + |µ|2ϕ(v, v).
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Let ϕ(u, v) = ρeiθ, where |ϕ(u, v)| = ρ (ρ ≥ 0). Let F : R → R be the
function defined such that

F (t) = Φ(u+ teiθv),

for all t ∈ R. The above shows that

F (t) = ϕ(u, u) + 2t|ϕ(u, v)| + t2ϕ(v, v) = Φ(u) + 2t|ϕ(u, v)| + t2Φ(v).

Since ϕ is assumed to be positive, we have F (t) ≥ 0 for all t ∈ R. If
Φ(v) = 0, we must have ϕ(u, v) = 0, since otherwise, F (t) could be made
negative by choosing t negative and small enough. If Φ(v) > 0, in order for
F (t) to be nonnegative, the equation

Φ(u) + 2t|ϕ(u, v)| + t2Φ(v) = 0

must not have distinct real roots, which is equivalent to

|ϕ(u, v)|2 ≤ Φ(u)Φ(v).

Taking the square root on both sides yields the Cauchy–Schwarz inequality.
For the second part of the claim, if ϕ is positive definite, we argue as

follows. If u and v are linearly dependent, it is immediately verified that
we get an equality. Conversely, if

|ϕ(u, v)|2 = Φ(u)Φ(v),

then the equation

Φ(u) + 2t|ϕ(u, v)| + t2Φ(v) = 0

has a double root t0, and thus

Φ(u+ t0e
iθv) = 0.

Since ϕ is positive definite, we must have

u+ t0e
iθv = 0,

which shows that u and v are linearly dependent.
If we square the Minkowski inequality, we get

Φ(u+ v) ≤ Φ(u) + Φ(v) + 2
√

Φ(u)
√

Φ(v).

However, we observed earlier that

Φ(u+ v) = Φ(u) + Φ(v) + 2�(ϕ(u, v)).

Thus, it is enough to prove that

�(ϕ(u, v)) ≤
√

Φ(u)
√

Φ(v),

but this follows from the Cauchy–Schwarz inequality

|ϕ(u, v)| ≤
√

Φ(u)
√

Φ(v)

and the fact that �z ≤ |z|.
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If ϕ is positive definite and u and v are linearly dependent, it is imme-
diately verified that we get an equality. Conversely, if equality holds in the
Minkowski inequality, we must have

�(ϕ(u, v)) =
√

Φ(u)
√

Φ(v),

which implies that

|ϕ(u, v)| =
√

Φ(u)
√

Φ(v),

since otherwise, by the Cauchy–Schwarz inequality, we would have

�(ϕ(u, v)) ≤ |ϕ(u, v)| <
√

Φ(u)
√

Φ(v).

Thus, equality holds in the Cauchy–Schwarz inequality, and

�(ϕ(u, v)) = |ϕ(u, v)|.
But then, we proved in the Cauchy–Schwarz case that u and v are linearly
dependent. Since we also just proved that ϕ(u, v) is real and nonnegative,
the coefficient of proportionality between u and v is indeed nonnegative.

As in the Euclidean case, if 〈E,ϕ〉 is a Hermitian space, the Minkowski
inequality √

Φ(u+ v) ≤
√

Φ(u) +
√

Φ(v)

shows that the map u �→ √
Φ(u) is a norm on E. The norm induced by ϕ

is called the Hermitian norm induced by ϕ. We usually denote
√

Φ(u) by
‖u‖, and the Cauchy–Schwarz inequality is written as

|u · v| ≤ ‖u‖‖v‖.
Since a Hermitian space is a normed vector space, it is a topological

space under the topology induced by the norm (a basis for this topology is
given by the open balls B0(u, ρ) of center u and radius ρ > 0, where

B0(u, ρ) = {v ∈ E | ‖v − u‖ < ρ}.
If E has finite dimension, every linear map is continuous; see Lang [109,
110], Dixmier [50], or Schwartz [149, 150]. The Cauchy–Schwarz inequality

|u · v| ≤ ‖u‖‖v‖
shows that ϕ:E × E → C is continuous, and thus, that ‖ ‖ is continuous.

If 〈E,ϕ〉 is only pre-Hilbertian, ‖u‖ is called a seminorm. In this case,
the condition

‖u‖ = 0 implies u = 0

is not necessarily true. However, the Cauchy–Schwarz inequality shows that
if ‖u‖ = 0, then u · v = 0 for all v ∈ E.
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We will now basically mirror the presentation of Euclidean geometry
given in Chapter 6 rather quickly, leaving out most proofs, except when
they need to be seriously amended. This will be the case for the Cartan–
Dieudonné theorem.

10.2 Orthogonality, Duality, Adjoint of a Linear
Map

In this section we assume that we are dealing with Hermitian spaces. We
denote the Hermitian inner product by u · v or 〈u, v〉. The concepts of
orthogonality, orthogonal family of vectors, orthonormal family of vectors,
and orthogonal complement of a set of vectors are unchanged from the
Euclidean case (Definition 6.2.1).

For example, the set C[−π, π] of continuous functions f : [−π, π] → C is
a Hermitian space under the product

〈f, g〉 =
∫ π

−π

f(x)g(x)dx,

and the family (eikx)k∈Z is orthogonal.
Lemma 6.2.2 and 6.2.3 hold without any changes. It is easy to show that∥∥∥∥∥

n∑
i=1

ui

∥∥∥∥∥
2

=
n∑

i=1

‖ui‖2 +
∑

1≤i<j≤n

2�(ui · uj).

Analogously to the case of Euclidean spaces of finite dimension, the Her-
mitian product induces a canonical bijection (i.e., independent of the choice
of bases) between the vector space E and the space E∗. This is one of the
places where conjugation shows up, but in this case, troubles are minor.

Given a Hermitian space E, for any vector u ∈ E, let ϕl
u:E → C be the

map defined such that

ϕl
u(v) = u · v,

for all v ∈ E. Similarly, for any vector v ∈ E, let ϕr
v:E → C be the map

defined such that

ϕr
v(u) = u · v,

for all u ∈ E.
Since the Hermitian product is linear in its first argument u, the map ϕr

v

is a linear form in E∗, and since it is semilinear in its second argument v,
the map ϕl

u is a semilinear form in E
∗
. Thus, we have two maps �l:E → E

∗

and �r:E → E∗, defined such that

�l(u) = ϕl
u, and �r(v) = ϕr

v.

Lemma 10.2.1 let E be a Hermitian space E.
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(1) The map �l:E → E
∗

defined such that

�l(u) = ϕl
u

is linear and injective.

(2) The map �r:E → E∗ defined such that

�r(v) = ϕr
v

is semilinear and injective.

When E is also of finite dimension, the maps �l:E → E
∗

and �r:E → E∗

are canonical isomorphisms.

Proof . (1) That �l:E → E
∗

is a linear map follows immediately from the
fact that the Hermitian product is linear in its first argument. If ϕl

u = ϕl
v,

then ϕl
u(w) = ϕl

v(w) for all w ∈ E, which by definition of ϕl
u means that

u · w = v · w
for all w ∈ E, which by linearity on the left is equivalent to

(v − u) · w = 0

for all w ∈ E, which implies that u = v, since the Hermitian product is
positive definite. Thus, �l:E → E

∗
is injective. Finally, when E is of finite

dimension n, E
∗

is also of dimension n, and then �l:E → E
∗

is bijective.
The proof of (2) is essentially the same as the proof of (1), except that

the Hermitian product is semilinear in its second argument.

The inverse of the isomorphism �l:E → E
∗

is denoted by �l:E
∗ → E,

and the inverse of the isomorphism �r:E → E∗ is denoted by �r:E∗ → E.
As a corollary of the isomorphism �r:E → E∗, if E is a Hermitian space

of finite dimension, then every linear form f ∈ E∗ corresponds to a unique
v ∈ E, such that

f(u) = u · v,
for every u ∈ E. In particular, if f is not the null form, the kernel of f ,
which is a hyperplane H, is precisely the set of vectors that are orthogonal
to v.

Remark: The “musical map” �r:E → E∗ is not surjective when E has
infinite dimension. This result can be salvaged by restricting our attention
to continuous linear maps, and by assuming that the vector space E is a
Hilbert space.

The existence of the isomorphism �l:E → E
∗

is crucial to the existence
of adjoint maps. Indeed, Lemma 10.2.1 allows us to define the adjoint of
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a linear map on a Hermitian space. Let E be a Hermitian space of finite
dimension n, and let f :E → E be a linear map. For every u ∈ E, the map

v �→ u · f(v)

is clearly a semilinear form in E
∗
, and by Lemma 10.2.1, there is a unique

vector in E denoted by f∗(u) such that

f∗(u) · v = u · f(v),

for every v ∈ E. The following lemma shows that the map f∗ is linear.

Lemma 10.2.2 Given a Hermitian space E of finite dimension, for every
linear map f :E → E there is a unique linear map f∗:E → E such that

f∗(u) · v = u · f(v),

for all u, v ∈ E. The map f∗ is called the adjoint of f (w.r.t. to the
Hermitian product).

Proof . Careful inspection of the proof of lemma 6.2.5 reveals that it applies
unchanged. The only potential problem is in proving that f∗(λu) = λf∗(u),
but everything takes place in the first argument of the Hermitian product,
and there, we have linearity.

The fact that

v · u = u · v
implies that the adjoint f∗ of f is also characterized by

f(u) · v = u · f∗(v),
for all u, v ∈ E. It is also obvious that f∗∗ = f .

Given two Hermitian spaces E and F , where the Hermitian product on
E is denoted by 〈−,−〉1 and the Hermitian product on F is denoted by
〈−,−〉2, given any linear map f :E → F , it is immediately verified that the
proof of Lemma 10.2.2 can be adapted to show that there is a unique linear
map f∗:F → E such that

〈f(u), v〉2 = 〈u, f∗(v)〉1
for all u ∈ E and all v ∈ F . The linear map f∗ is also called the adjoint of
f .

As in the Euclidean case, Lemma 10.2.1 can be used to show that any
Hermitian space of finite dimension has an orthonormal basis. The proof is
unchanged.

Lemma 10.2.3 Given any nontrivial Hermitian space E of finite dimen-
sion n ≥ 1, there is an orthonormal basis (u1, . . . , un) for E.

The Gram–Schmidt orthonormalization procedure also applies to Hermi-
tian spaces of finite dimension, without any changes from the Euclidean
case!
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Lemma 10.2.4 Given a nontrivial Hermitian space E of finite dimension
n ≥ 1, from any basis (e1, . . . , en) for E we can construct an orthonormal
basis (u1, . . . , un) for E with the property that for every k, 1 ≤ k ≤ n, the
families (e1, . . . , ek) and (u1, . . . , uk) generate the same subspace.

Remark: The remarks made after Lemma 6.2.7 also apply here, except
that in the QR-decomposition, Q is a unitary matrix.

As a consequence of Lemma 6.2.6 (or Lemma 10.2.4), given any Hermi-
tian space of finite dimension n, if (e1, . . . , en) is an orthonormal basis for
E, then for any two vectors u = u1e1 + · · ·+unen and v = v1e1 + · · ·+vnen,
the Hermitian product u · v is expressed as

u · v = (u1e1 + · · · + unen) · (v1e1 + · · · + vnen) =
n∑

i=1

uivi,

and the norm ‖u‖ as

‖u‖ = ‖u1e1 + · · · + unen‖ =

√√√√ n∑
i=1

|ui|2.

Lemma 6.2.8 also holds unchanged.

Lemma 10.2.5 Given any nontrivial Hermitian space E of finite dimen-
sion n ≥ 1, for any subspace F of dimension k, the orthogonal complement
F⊥ of F has dimension n − k, and E = F ⊕ F⊥. Furthermore, we have
F⊥⊥ = F .

Affine Hermitian spaces are defined just as affine Euclidean spaces, except
that we modify Definition 6.2.9 to require that the complex vector space
−→
E be a Hermitian space. We denote by Em

C
the Hermitian affine space

obtained from the affine space Am
C

by defining on the vector space Cm the
standard Hermitian product

(x1, . . . , xm) · (y1, . . . , ym) = x1y1 + · · · + xmym.

The corresponding Hermitian norm is

‖(x1, . . . , xm)‖ =
√

|x1|2 + · · · + |xm|2.
Lemma 7.2.2 also holds for Hermitian spaces, and the proof is the same.

Lemma 10.2.6 Let E be a Hermitian space of finite dimension n, and let
f :E → E be an isometry. For any subspace F of E, if f(F ) = F , then
f(F⊥) ⊆ F⊥ and E = F ⊕ F⊥.
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10.3 Linear Isometries (Also Called Unitary
Transformations)

In this section we consider linear maps between Hermitian spaces that pre-
serve the Hermitian norm. All definitions given for Euclidean spaces in
Section 6.3 extend to Hermitian spaces, except that orthogonal transfor-
mations are called unitary transformation, but Lemma 6.3.2 extends only
with a modified condition (2). Indeed, the old proof that (2) implies (3)
does not work, and the implication is in fact false! It can be repaired by
strengthening condition (2). For the sake of completeness, we state the
Hermitian version of Definition 6.3.1.

Definition 10.3.1 Given any two nontrivial Hermitian spaces E and
F of the same finite dimension n, a function f :E → F is a unitary
transformation, or a linear isometry , if it is linear and

‖f(u)‖ = ‖u‖,
for all u ∈ E.

Lemma 6.3.2 can be salvaged by strengthening condition (2).

Lemma 10.3.2 Given any two nontrivial Hermitian spaces E and F of
the same finite dimension n, for every function f :E → F , the following
properties are equivalent:

(1) f is a linear map and ‖f(u)‖ = ‖u‖, for all u ∈ E;

(2) ‖f(v) − f(u)‖ = ‖v − u‖ and f(iu) = if(u), for all u, v ∈ E.

(3) f(u) · f(v) = u · v, for all u, v ∈ E.

Furthermore, such a map is bijective.

Proof . The proof that (2) implies (3) given in Lemma 6.3.2 needs to be
revised as follows. We use the polarization identity

2ϕ(u, v) = (1 + i)(‖u‖2 + ‖v‖2) − ‖u− v‖2 − i‖u− iv‖2.

Since f(iv) = if(v), we get f(0) = 0 by setting v = 0, so the function f
preserves distance and norm, and we get

2ϕ(f(u), f(v))
= (1 + i)(‖f(u)‖2 + ‖f(v)‖2)−‖f(u)− f(v)‖2 − i‖f(u)− if(v)‖2

= (1 + i)(‖f(u)‖2 + ‖f(v)‖2)−‖f(u)− f(v)‖2 − i‖f(u)− f(iv)‖2

= (1 + i)(‖u‖2 + ‖v‖2) − ‖u− v‖2 − i‖u− iv‖2

= 2ϕ(u, v),

which shows that f preserves the Hermitian inner product, as desired. The
rest of the proof is unchanged.
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Remarks:

(i) In the Euclidean case, we proved that the assumption

‖f(v) − f(u)‖ = ‖v − u‖ for all u, v ∈ E and f(0) = 0 (2′)

implies (3). For this we used the polarization identity

2u · v = ‖u‖2 + ‖v‖2 − ‖u− v‖2.

In the Hermitian case the polarization identity involves the com-
plex number i. In fact, the implication (2′) implies (3) is false in
the Hermitian case! Conjugation z �→ z satisfies (2′) since

|z2 − z1| = |z2 − z1| = |z2 − z1|,
and yet, it is not linear!

(ii) If we modify (2) by changing the second condition by now requiring
that there be some τ ∈ E such that

f(τ + iu) = f(τ) + i(f(τ + u) − f(τ))

for all u ∈ E, then the function g:E → E defined such that

g(u) = f(τ + u) − f(τ)

satisfies the old conditions of (2), and the implications (2) → (3)
and (3) → (1) prove that g is linear, and thus that f is affine. In
view of the first remark, some condition involving i is needed on f ,
in addition to the fact that f is distance-preserving.

10.4 The Unitary Group, Unitary Matrices

In this section, as a mirror image of our treatment of the isometries of a Eu-
clidean space, we explore some of the fundamental properties of the unitary
group and of unitary matrices. As an immediate corollary of the Gram–
Schmidt orthonormalization procedure, we obtain the QR-decomposition
for invertible matrices. In the Hermitian framework, the matrix of the ad-
joint of a linear map is not given by the transpose of the original matrix,
but by its conjugate.

Definition 10.4.1 Given a complex m×n matrix A, the transpose A� of
A is the n×m matrix A� =

(
a�i, j

)
defined such that

a�i, j = aj, i,

and the conjugate A of A is the m× n matrix A = (bi, j) defined such that

bi, j = ai, j
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for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The adjoint A∗ of A is the matrix defined
such that

A∗ = (A�) =
(
A

)�
.

Lemma 10.4.2 Let E be any Hermitian space of finite dimension n, and
let f :E → E be any linear map. The following properties hold:

(1) The linear map f :E → E is an isometry iff

f ◦ f∗ = f∗ ◦ f = id.

(2) For every orthonormal basis (e1, . . . , en) of E, if the matrix of f is
A, then the matrix of f∗ is the adjoint A∗ of A, and f is an isometry
iff A satisfies the identities

AA∗ = A∗A = In,

where In denotes the identity matrix of order n, iff the columns
of A form an orthonormal basis of E, iff the rows of A form an
orthonormal basis of E.

Proof . (1) The proof is identical to that of Lemma 6.4.1 (1).
(2) If (e1, . . . , en) is an orthonormal basis for E, let A = (ai,j) be the

matrix of f , and let B = (bi,j) be the matrix of f∗. Since f∗ is characterized
by

f∗(u) · v = u · f(v)

for all u, v ∈ E, using the fact that if w = w1e1 + · · · + wnen, we have
wk = w · ek, for all k, 1 ≤ k ≤ n; letting u = ei and v = ej , we get

bj,i = f∗(ei) · ej = ei · f(ej) = f(ej) · ei = ai,j ,

for all i, j, 1 ≤ i, j ≤ n. Thus, B = A∗. Now, if X and Y are arbitrary
matrices over the basis (e1, . . . , en), denoting as usual the jth column of X
by Xj , and similarly for Y , a simple calculation shows that

Y ∗X = (Xj · Yi)1≤i,j≤n.

Then it is immediately verified that if X = Y = A,

A∗A = AA∗ = In

iff the column vectors (A1, . . . , An) form an orthonormal basis. Thus, from
(1), we see that (2) is clear.

Lemma 6.4.1 shows that the inverse of an isometry f is its adjoint f∗.
Lemma 6.4.1 also motivates the following definition.

Definition 10.4.3 A complex n× n matrix is a unitary matrix if

AA∗ = A∗A = In.
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Remarks:

(1) The conditions AA∗ = In, A∗A = In, and A−1 = A∗ are equivalent.
Given any two orthonormal bases (u1, . . . , un) and (v1, . . . , vn), if P is
the change of basis matrix from (u1, . . . , un) to (v1, . . . , vn), it is easy
to show that the matrix P is unitary. The proof of Lemma 10.3.2 (3)
also shows that if f is an isometry, then the image of an orthonormal
basis (u1, . . . , un) is an orthonormal basis.

(2) If f is unitary and A is its matrix with respect to any orthonormal
basis, the characteristic polynomial D(A − λI) of A is a polynomial
with complex coefficients, and thus it has n (complex) roots (counting
multiplicities). If u is an eigenvector of f for λ, then from f(u) = λu
and the fact that f is an isometry we get

‖u‖ = ‖f(u)‖ = ‖λu‖ = |λ|‖u‖,
which shows that |λ| = 1. Since the determinant D(A) of f is the
product of the eigenvalues of f , we have |D(A)| = 1. It is clear that
the isometries of a Hermitian space of dimension n form a group, and
that the isometries of determinant +1 form a subgroup.

This leads to the following definition.

Definition 10.4.4 Given a Hermitian space E of dimension n, the set of
isometries f :E → E forms a subgroup of GL(E,C) denoted by U(E), or
U(n) when E = Cn, called the unitary group (of E). For every isometry
f we have |D(f)| = 1, where D(f) denotes the determinant of f . The
isometries such that D(f) = 1 are called rotations, or proper isometries,
or proper unitary transformations, and they form a subgroup of the spe-
cial linear group SL(E,C) (and of U(E)), denoted by SU(E), or SU(n)
when E = Cn, called the special unitary group (of E). The isometries
such that D(f) 	= 1 are called improper isometries, or improper unitary
transformations, or flip transformations.

A very important example of unitary matrices is provided by Fourier
matrices (up to a factor of

√
n), matrices that arise in the various versions

of the discrete Fourier transform. For more on this topic, see the problems,
and Strang [165, 168].

Now that we have the definition of a unitary matrix, we can explain how
the Gram–Schmidt orthonormalization procedure immediately yields the
QR-decomposition for matrices.

Lemma 10.4.5 Given any n×n complex matrix A, if A is invertible, then
there is a unitary matrix Q and an upper triangular matrix R with positive
diagonal entries such that A = QR.

The proof is absolutely the same as in the real case!
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Due to space limitations, we will not study the isometries of a Hermitian
space in this chapter. However, the reader will find such a study in the
supplements on the web site (see web page, Chapter 25).

10.5 Problems

Problem 10.1 Given a complex vector space E of finite dimension n,
prove that E

∗
also has dimension n.

Hint . If (e1, . . . , en) is a basis for E, check that the semilinear maps ei

defined such that

ei

( n∑
j=1

λjej

)
= λi

form a basis of E
∗
.

Problem 10.2 Prove the polarization identities in Lemma 10.1.3 (2).

Problem 10.3 Given a Hermitian space E, for any orthonormal basis
(e1, . . . , en), if X and Y are arbitrary matrices over the basis (e1, . . . , en),
denoting as usual the jth column of X by Xj , and similarly for Y , prove
that

Y ∗X = (Xj · Yi)1≤i,j≤n.

Then prove that

A∗A = AA∗ = In

iff the column vectors (A1, . . . , An) form an orthonormal basis.

Problem 10.4 Given a Hermitian space E, prove that if f is an isometry,
then f maps any orthonormal basis of E to an orthonormal basis.

Problem 10.5 Given p vectors (u1, . . . , up) in a Hermitian space E of
dimension n ≥ p, the Gram determinant (or Gramian) of the vectors
(u1, . . . , up) is the determinant

Gram(u1, . . . , up) =

∣∣∣∣∣∣∣∣∣

‖u1‖2 〈u1, u2〉 . . . 〈u1, up〉
〈u2, u1〉 ‖u2‖2

. . . 〈u2, up〉
...

...
. . .

...
〈up, u1〉 〈up, u2〉 . . . ‖up‖2

∣∣∣∣∣∣∣∣∣
.

(1) Prove that

Gram(u1, . . . , un) = λE(u1, . . . , un)2.

Hint . By Problem 10.3, if (e1, . . . , en) is an orthonormal basis of E and A
is the matrix of the vectors (u1, . . . , un) over this basis, then

det(A)2 = det(A∗A) = det(Ai ·Aj),
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where Ai denotes the ith column of the matrix A, and (Ai · Aj) denotes
the n× n matrix with entries Ai ·Aj .

Problem 10.6 Let Fn be the symmetric n × n matrix (with complex
coefficients)

Fn =
(
ei2πkl/n

)
0≤k≤n−1
0≤l≤n−1

,

assuming that we index the entries in Fn over [0, 1, . . . , n−1]×[0, 1, . . . , n−
1], the standard kth row now being indexed by k− 1 and the standard lth
column now being indexed by l − 1. The matrix Fn is called a Fourier
matrix .

(1) Letting Fn =
(
e−i2πkl/n

)
0≤k≤n−1
0≤l≤n−1

be the conjugate of Fn, prove that

FnFn = FnFn = n In.

The above shows that Fn/
√
n is unitary.

(2) Define the discrete Fourier transform f̂ of a sequence f = (f0, . . .,
fn−1) ∈ Cn as

f̂ = Fnf.

Define the inverse discrete Fourier transform (taking c back to f) as

ĉ = Fn c,

where c = (c0, . . . , cn−1) ∈ Cn. Define the circular shift matrix Sn (of order
n) as the matrix

Sn =




0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 1 0




consisting of cyclic permutations of its first column. For any sequence f =
(f0, . . . , fn−1) ∈ Cn, we define the circulant matrix H(f) as

H(f) =
n−1∑
j=0

fjS
j
n,

where S0
n = In, as usual.

Prove that

H(f)Fn = Fnf̂ .

The above shows that the columns of the Fourier matrix Fn are the eigen-
vectors of the circulant matrix H(f), and that the eigenvalue associated



304 10. Basics of Hermitian Geometry

with the lth eigenvector is (f̂)l, the lth component of the Fourier transform
f̂ of f (counting from 0).
Hint . Prove that

SnFn = Fn diag(v1)

where diag(v1) is the diagonal matrix with the following entries on the
diagonal:

v1 =
(
1, e−i2π/n, . . . , e−ik2π/n, . . . , e−i(n−1)2π/n

)
.

(3) If the sequence f = (f0, . . . , fn−1) is even, which means that f−j = fj

for all j ∈ Z (viewed as a periodic sequence), or equivalently that fn−j = fj

for all j, 0 ≤ j ≤ n− 1, prove that the Fourier transform f̂ is expressed as

f̂(k) =
n−1∑
j=0

fj cos (2πjk/n) ,

and that the inverse Fourier transform (taking c back to f) is expressed as

ĉ(k) =
n−1∑
j=0

cj cos (2πjk/n) ,

for every k, 0 ≤ k ≤ n− 1.
(4) Define the convolution f 
 g of two sequences f = (f0, . . . , fn−1) and

g = (g0, . . . , gn−1) as

f 
 g = H(f) g,

viewing f and g as column vectors.
Prove the (circular) convolution rule

f̂ 
 g = f̂ ĝ,

where the multiplication on the right-hand side is just the inner product
of the vectors f̂ and ĝ.

Problem 10.7 Let ϕ:E × E → C be a sesquilinear form on a complex
vector space E of finite dimension n. Given any basis (e1, . . . , en) of E, let
A = (αi j) be the matrix defined such that

αi j = ϕ(ei, ej),

1 ≤ i, j ≤ n. We call A the matrix of ϕ w.r.t. the basis (e1, . . . , en).
(a) For any two vectors x and y, if X and Y denote the column vectors

of coordinates of x and y w.r.t. the basis (e1, . . . , en), prove that

ϕ(x, y) = X�AY .

(b) Recall that A is a Hermitian matrix if A = A∗ = A�. Prove that ϕ
is Hermitian iff A is a Hermitian matrix. When is it true that

ϕ(x, y) = Y ∗AX?
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(c) If (f1, . . . , fn) is another basis of E and P is the change of basis
matrix from (e1, . . . , en) to (f1, . . . , fn), prove that the matrix of ϕ w.r.t.
the basis (f1, . . . , fn) is

P�AP.

The common rank of all matrices representing ϕ is called the rank of ϕ.

Problem 10.8 Let ϕ:E × E → C be a Hermitian form on a complex
vector space E of finite dimension n. Two vectors x and y are said to be
conjugate w.r.t. ϕ if ϕ(x, y) = 0. The main purpose of this problem is to
prove that there is a basis of vectors that are pairwise conjugate w.r.t. ϕ.

(a) Prove that if ϕ(x, x) = 0 for all x ∈ E, then ϕ is identically null on
E. For this, compute ϕ(ix + y, ix + y) and iϕ(x + y, x + y), and conclude
that ϕ(x, y) = 0.

Otherwise, we can assume that there is some vector x ∈ E such that
ϕ(x, x) 	= 0. Use induction to prove that there is a basis of vectors that are
pairwise conjugate w.r.t. ϕ.

For the induction step, proceed as follows. Let (e1, e2, . . . , en) be a basis
of E, with ϕ(e1, e1) 	= 0. Prove that there are scalars λ2, . . . , λn such that
each of the vectors

vi = ei + λie1,

is conjugate to e1 w.r.t. ϕ, where 2 ≤ i ≤ n, and that (e1, v2, . . . , vn) is a
basis.

(b) Let (e1, . . . , en) be a basis of vectors that are pairwise conjugate w.r.t.
ϕ, and assume that they are ordered such that

ϕ(ei, ei) =
{
θi 	= 0 if 1 ≤ i ≤ r,
0 if r + 1 ≤ i ≤ n,

where r is the rank of ϕ. Show that the matrix of ϕ w.r.t. (e1, . . . , en) is a
diagonal matrix, and that

ϕ(x, y) =
r∑

i=1

θixiyi,

where x =
∑n

i=1 xiei and y =
∑n

i=1 yiei.
Prove that for every Hermitian matrix A there is an invertible matrix P

such that

P�AP = D,

where D is a diagonal matrix.
(c) Prove that there is an integer p, 0 ≤ p ≤ r (where r is the rank of ϕ),

such that ϕ(ui, ui) > 0 for exactly p vectors of every basis (u1, . . . , un) of
vectors that are pairwise conjugate w.r.t. ϕ (Sylvester’s inertia theorem).
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Proceed as follows. Assume that in the basis (u1, . . . , un), for any x ∈ E,
we have

ϕ(x, x) = α1|x1|2 + · · · + αp|xp|2 − αp+1|xp+1|2 − · · · − αr|xr|2,
where x =

∑n
i=1 xiui, and that in the basis (v1, . . . , vn), for any x ∈ E, we

have

ϕ(x, x) = β1|y1|2 + · · · + βq|yq|2 − βq+1|yq+1|2 − · · · − βr|yr|2,
where x =

∑n
i=1 yivi, with αi > 0, βi > 0, 1 ≤ i ≤ r.

Assume that p > q and derive a contradiction. First, consider x in the
subspace F spanned by

(u1, . . . , up, ur+1, . . . , un),

and observe that ϕ(x, x) ≥ 0 if x 	= 0. Next, consider x in the subspace G
spanned by

(vq+1, . . . , vr),

and observe that ϕ(x, x) < 0 if x 	= 0. Prove that F ∩G is nontrivial (i.e.,
contains some nonnull vector), and derive a contradiction. This implies that
p ≤ q. Finish the proof.

The pair (p, r − p) is called the signature of ϕ.
(d) A Hermitian form ϕ is definite if for every x ∈ E, if ϕ(x, x) = 0, then

x = 0.
Prove that a Hermitian form is definite iff its signature is either (n, 0) or

(0, n). In other words, a Hermitian definite form has rank n and is either
positive or negative.

(e) The kernel of a Hermitian form ϕ is the subspace consisting of the
vectors that are conjugate to all vectors in E. We say that a Hermitian
form ϕ is nondegenerate if its kernel is trivial (i.e., reduced to {0}).

Prove that a Hermitian form ϕ is nondegenerate iff its rank is n, the
dimension of E. Is a definite Hermitian form ϕ nondegenerate? What about
the converse?

Prove that if ϕ is nondegenerate, then there is a basis of vectors that are
pairwise conjugate w.r.t. ϕ and such that ϕ is represented by the matrix(

Ip 0
0 −Iq

)
,

where (p, q) is the signature of ϕ.
(f) Given a nondegenerate Hermitian form ϕ on E, prove that for every

linear map f :E → E, there is a unique linear map f∗:E → E such that

ϕ(f(u), v) = ϕ(u, f∗(v)),

for all u, v ∈ E. The map f∗ is called the adjoint of f (w.r.t. to ϕ). Given
any basis (u1, . . . , un), if Ω is the matrix representing ϕ and A is the matrix
representing f , prove that f∗ is represented by (Ω�)−1A∗Ω�.
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Prove that Lemma 10.2.1 also holds, i.e., the maps �l:E → E
∗

and
�r:E → E∗ are canonical isomorphisms.

A linear map f :E → E is an isometry w.r.t. ϕ if

ϕ(f(x), f(y)) = ϕ(x, y)

for all x, y ∈ E. Prove that a linear map f is an isometry w.r.t. ϕ iff

f∗ ◦ f = f ◦ f∗ = id.

Prove that the set of isometries w.r.t. ϕ is a group. This group is denoted
by U(ϕ), and its subgroup consisting of isometries having determinant +1
by SU(ϕ). Given any basis of E, if Ω is the matrix representing ϕ and A
is the matrix representing f , prove that f ∈ U(ϕ) iff

A∗Ω�A = Ω�.

Given another nondegenerate Hermitian form ψ on E, we say that ϕ and
ψ are equivalent if there is a bijective linear map h:E → E such that

ψ(x, y) = ϕ(h(x), h(y)),

for all x, y ∈ E. Prove that the groups of isometries U(ϕ) and U(ψ) are
isomomorphic (use the map f �→ h ◦ f ◦ h−1 from U(ψ) to U(ϕ)).

If ϕ is a nondegenerate Hermitian form of signature (p, q), prove that the
group U(ϕ) is isomorphic to the group of n× n matrices A such that

A�
(
Ip 0
0 −Iq

)
A =

(
Ip 0
0 −Iq

)
.

Remark: In view of question (f), the groups U(ϕ) and SU(ϕ) are also
denoted by U(p, q) and SU(p, q) when ϕ has signature (p, q). They are Lie
groups.

Problem 10.9 (a) If A is a real symmetric n × n matrix and B is a real
skew symmetric n×n matrix, then A+ iB is Hermitian. Conversely, every
Hermitian matrix can be written as A+ iB, where A is real symmetric and
B is real skew symmetric.

(b) Every complex n × n matrix can be written as A + iB, for some
Hermitian matrices A,B.

Problem 10.10 (a) Given a complex n× n matrix A, prove that
n∑

i,j=1

|ai, j |2 = tr(A∗A) = tr(AA∗).

(b) Prove that ‖A‖ =
√

tr(A∗A) defines a norm on matrices. Prove that

‖AB‖ ≤ ‖A‖‖B‖.
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(c) When A is Hermitian, prove that

‖A‖2 =
n∑

i=1

λ2
i ,

where the λi are the (real) eigenvalues of A.

Problem 10.11 Given a Hermitian matrix A, prove that In + iA and
In − iA are invertible. Prove that (In + iA)(In − iA)−1 is a unitary matrix.

Problem 10.12 Let E be a Hermitian space of dimension n. For any basis
(e1, . . . , en) of E, orthonormal or not, let G be the Gram matrix associated
with (e1, . . . , en), i.e., the matrix

G = (ei · ej).

Given any linear map f :E → E, if A is the matrix of f w.r.t. (e1, . . . , en),
prove that f is self-adjoint (f∗ = f) iff

G�A = A∗G�.


