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Preface

Many problems arising in engineering, and notably in computer science
and mechanical engineering, require geometric tools and concepts. This is
especially true of problems arising in computer graphics, geometric mod-
eling, computer vision, and motion planning, just to mention some key
areas. This book is an introduction to fundamental geometric concepts and
tools needed for solving problems of a geometric nature with a computer.
In a previous text, Gallier [70], we focused mostly on affine geometry and
on its applications to the design and representation of polynomial curves
and surfaces (and B-splines). The main goal of this book is to provide an
introduction to more sophisticated geometric concepts needed in tackling
engineering problems of a geometric nature. Many problems in the above
areas require some nontrivial geometric knowledge, but in our opinion,
books dealing with the relevant geometric material are either too theoreti-
cal, or else rather specialized. For example, there are beautiful texts entirely
devoted to projective geometry, Euclidean geometry, and differential geom-
etry, but reading each one represents a considerable effort (certainly from
a nonmathematician!). Furthermore, these topics are usually treated for
their own sake (and glory), with little attention paid to applications.

This book is an attempt to fill this gap. We present a coherent view of geo-
metric methods applicable to many engineering problems at a level that can
be understood by a senior undergraduate with a good math background.
Thus, this book should be of interest to a wide audience including computer
scientists (both students and professionals), mathematicians, and engineers
interested in geometric methods (for example, mechanical engineers). In
particular, we provide an introduction to affine geometry, projective geom-
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etry, Euclidean geometry, basics of differential geometry and Lie groups,
and a glimpse of computational geometry (convex sets, Voronoi diagrams,
and Delaunay triangulations). This material provides the foundations for
the algorithmic treatment of curves and surfaces, some basic tools of ge-
ometric modeling. The right dose of projective geometry also leads to a
rigorous and yet smooth presentation of rational curves and surfaces. How-
ever, to keep the size of this book reasonable, a number of topics could
not be included. Nevertheless, they can be found in the additional material
on the web site: see http://www.cis.upenn.edu/̃ jean/gbooks/geom2.html,
abbreviated as web page. This is the case of the material on rational curves
and surfaces.

This book consists of sixteen chapters and an appendix. The additional
material on the web site consists of eight chapters and an appendix: see
web page.

• The book starts with a brief introduction (Chapter 1).

• Chapter 2 provides an introduction to affine geometry. This ensures
that readers are on firm ground to proceed with the rest of the book,
in particular, projective geometry. This is also useful to establish
the notation and terminology. Readers proficient in geometry may
omit this section, or use it as needed . On the other hand, readers
totally unfamiliar with this material will probably have a hard time
with the rest of the book. These readers are advised do some extra
reading in order to assimilate some basic knowledge of geometry. For
example, we highly recommend Pedoe [136], Coxeter [35], Snapper
and Troyer [160], Berger [12, 13], Fresnel [66], Samuel [146], Hilbert
and Cohn–Vossen [84], Boehm and Prautzsch [17], and Tisseron [169].

• Basic properties of convex sets and convex hulls are discussed in
Chapter 3. Three major theorems are proved: Carthéodory’s theorem,
Radon’s theorem, and Helly’s theorem.

• Chapter 4 presents a construction (the “hat construction”) for embed-
ding an affine space into a vector space. An important application of
this construction is the projective completion of an affine space, pre-
sented in the next chapter. Other applications are treated in Chapter
20, which is on the web site, see web page.

• Chapter 5 provides an introduction to projective geometry. Since
we are not writing a treatise on projective geometry, we cover only
the most fundamental concepts, including projective spaces and sub-
spaces, frames, projective maps, multiprojectve maps, the projective
completion of an affine space, cross-ratios, duality, and the complex-
ification of a real projective space. This material also provides the
foundations for our algorithmic treatment of rational curves and sur-
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faces, to be found on the web site (Chapters 18, 19,21, 22, 23, 24);
see web page.

• Chapters 6, 7, and 8, provide an introduction to Euclidean geometry,
to the groups of isometries O(n) and SO(n), the groups of affine rigid
motions Is(n) and SE(n), and to the quaternions. Several versions of
the Cartan–Dieudonné theorem are proved in Chapter 7. The QR-
decomposition of matrices is explained geometrically, both in terms
of the Gram–Schmidt procedure and in terms of Householder trans-
formations. These chapters are crucial to a firm understanding of
the differential geometry of curves and surfaces, and computational
geometry.

• Chapter 9 gives a short introduction to some fundamental top-
ics in computational geometry: Voronoi diagrams and Delaunay
triangulations.

• Chapter 10 provides an introduction to Hermitian geometry, to the
groups of isometries U(n) and SU(n), and the groups of affine rigid
motions Is(n, C) and SE(n, C). The generalization of the Cartan–
Dieudonné theorem to Hermitian spaces can be found on the web
site: see web page (Chapter 25). An introduction to Hilbert spaces, in-
cluding the projection theorem, and the isomorphism of every Hilbert
space with some space l2(K), can also be found on the web site: see
web page.

• Chapter 11 provides a presentation of the spectral theorems in Eu-
clidean and Hermitian spaces, including normal, self-adjoint, skew
self-adjoint, and orthogonal linear maps. Normal form (in terms
of block diagonal matrices) for various types of linear maps are
presented.

• The singular value decomposition (SVD) and the polar form of
linear maps are discussed quite extensively in Chapter 12. The
pseudo-inverse of a matrix and its characterization using the Penrose
properties are presented.

• Chapter 13 presents some applications of Euclidean geometry to vari-
ous optimization problems. The method of least squares is presented,
as well as the applications of the SVD and QR-decomposition to solve
least squares problems. We also describe a method for minimizing
positive definite quadratic forms, using Lagrange multipliers.

• Chapter 14 provides an introduction to the linear Lie groups, via a
presentation of some of the classical groups and their Lie algebras,
using the exponential map. The surjectivity of the exponential map
is proved for SO(n) and SE(n).
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• An introduction to the local differential geometry of curves is given
in Chapter 15 (curvature, torsion, the Frenet frame, etc).

• An introduction to the local differential geometry of surfaces based
on some lectures by Eugenio Calabi is given in Chapter 16. This
chapter is rather unique, as it reflects decades of experience from a
very distinguished geometer.

• Chapter 17 is an appendix consisting of short sections consisting of
basics of linear algebra and analysis. This chapter has been included
to make the material self-contained. Our advice is to use it as needed !

A very elegant presentation of rational curves and surfaces can be given
using some notions of affine and projective geometry. We push this approach
quite far in the material on the web site: see web page. However, we provide
only a cursory coverage of CAGD methods. Luckily, there are excellent
texts on CAGD, including Bartels, Beatty, and Barsky [10], Farin [58, 57],
Fiorot and Jeannin [60, 61], Riesler [142], Hoschek and Lasser [90], and
Piegl and Tiller [139]. Although we cover affine, projective, and Euclidean
geometry in some detail, we are far from giving a comprehensive treatment
of these topics. For such a treatment, we highly recommend Berger [12, 13],
Samuel [146], Pedoe [136], Coxeter [37, 36, 34, 35], Snapper and Troyer
[160], Fresnel [66], Tisseron [169], Sidler [159], Dieudonné [46], and Veblen
and Young [172, 173], a great classic.

Similarly, although we present some basics of differential geometry and
Lie groups, we only scratch the surface. For instance, we refrain from dis-
cussing manifolds in full generality. We hope that our presentation is a
good preparation for more advanced texts, such as Gray [78], do Carmo
[51], Berger and Gostiaux [14], and Lafontaine [106]. The above are still
fairly elementary. More advanced texts on differential geometry include
do Carmo [52, 53], Guillemin and Pollack [80], Warner [176], Lang [108],
Boothby [19], Lehmann and Sacré [113], Stoker [163], Gallot, Hulin, and
Lafontaine [71], Milnor [127], Sharpe [156], Malliavin [117], and Godbillon
[74].

It is often possible to reduce interpolation problems involving polynomial
curves or surfaces to solving systems of linear equations. Thus, it is very
helpful to be aware of efficient methods for numerical matrix analysis. For
instance, we present the QR-decomposition of matrices, both in terms of
the (modified) Gram–Schmidt method and in terms of Householder trans-
formations, in a novel geometric fashion. For further information on these
topics, readers are referred to the excellent texts by Strang [166], Golub
and Van Loan [75], Trefethen and Bau [170], Ciarlet [33], and Kincaid
and Cheney [100]. Strang’s beautiful book on applied mathematics is also
highly recommended as a general reference [165]. There are other interest-
ing applications of geometry to computer vision, computer graphics, and
solid modeling. Some good references are Trucco and Verri [171], Koen-
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derink [103], and Faugeras [59] for computer vision; Hoffman [87] for solid
modeling; and Metaxas [125] for physics-based deformable models.

Novelties

As far as we know, there is no fully developed modern exposition integrat-
ing the basic concepts of affine geometry, projective geometry, Euclidean
geometry, Hermitian geometry, basics of Hilbert spaces with a touch of
Fourier series, basics of Lie groups and Lie algebras, as well as a presen-
tation of curves and surfaces both from the standard differential point of
view and from the algorithmic point of view in terms of control points (in
the polynomial and rational case).

New Treatment, New Results

This books provides an introduction to affine geometry, projective geome-
try, Euclidean geometry, Hermitian geometry, Hilbert spaces, a glimpse at
Lie groups and Lie algebras, and the basics of local differential geometry
of curves and surfaces. We also cover some classics of convex geometry,
such as Carathéodory’s theorem, Radon’s theorem, and Helly’s theorem.
However, in order to help the reader assimilate all these concepts with the
least amount of pain, we begin with some basic notions of affine geome-
try in Chapter 2. Basic notions of Euclidean geometry come later only in
Chapters 6, 7, 8. Generally, noncore material is relegated to appendices or
to the web site: see web page.

We cover the standard local differential properties of curves and surfaces
at an elementary level, but also provide an in-depth presentation of poly-
nomial and rational curves and surfaces from an algorithmic point of view.
The approach (sometimes called blossoming) consists in multilinearizing
everything in sight (getting polar forms), which leads very naturally to a
presentation of polynomial and rational curves and surfaces in terms of
control points (Bézier curves and surfaces). We present many algorithms
for subdividing and drawing curves and surfaces, all implemented in Math-

ematica. A clean and elegant presentation of control points with weights
(and control vectors) is obtained by using a construction for embedding an
affine space into a vector space (the so-called “hat construction,” originat-
ing in Berger [12]). We also give several new methods for drawing efficiently
closed rational curves and surfaces, and a method for resolving base points
of triangular rational surfaces. We give a quick introduction to the concepts
of Voronoi diagrams and Delaunay triangulations, two of the most funda-
mental concepts in computational geometry. As a general rule, we try to be
rigorous, but we always keep the algorithmic nature of the mathematical
objects under consideration in the forefront.

Many problems and programming projects are proposed (over 230). Some
are routine, some are (very) difficult.
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Applications

Although it is core mathematics, geometry has many practical applica-
tions. Whenever possible, we point out some of these applications, For
example, we mention some (perhaps unexpected) applications of projective
geometry to computer vision (camera calibration), efficient communication,
error correcting codes, and cryptography (see Section 5.13). As applica-
tions of Euclidean geometry, we mention motion interpolation, various
normal forms of matrices including QR-decomposition in terms of House-
holder transformations and SVD , least squares problems (see Section 13.1),
and the minimization of quadratic functions using Lagrange multipliers
(see Section 13.2). Lie groups and Lie algebras have applications in robot
kinematics, motion interpolation, and optimal control. They also have ap-
plications in physics. As applications of the differential geometry of curves
and surfaces, we mention geometric continuity for splines, and variational
curve and surface design (see Section 15.11 and Section 16.12). Finally, as
applications of Voronoi diagrams and Delaunay triangulations, we mention
the nearest neighbors problem, the largest empty circle problem, the min-
imum spanning tree problem, and motion planning (see Section 9.5). Of
course, rational curves and surfaces have many applications to computer-
aided geometric design (CAGD), manufacturing, computer graphics, and
robotics.

Many Algorithms and Their Implementation

Although one of our main concerns is to be mathematically rigorous, which
implies that we give precise definitions and prove almost all of the results in
this book, we are primarily interested in the representation and the imple-
mentation of concepts and tools used to solve geometric problems. Thus,
we devote a great deal of efforts to the development and implemention of
algorithms to manipulate curves, surfaces, triangulations, etc. As a matter
of fact, we provide Mathematica code for most of the geometric algorithms
presented in this book. We also urge the reader to write his own algorithms,
and we propose many challenging programming projects.

Open Problems

Not only do we present standard material (although sometimes from a fresh
point of view), but whenever possible, we state some open problems, thus
taking the reader to the cutting edge of the field. For example, we describe
very clearly the problem of resolving base points of rectangular rational
surfaces (this material is on the web site, see web page).

What’s Not Covered in This Book

Since this book is already quite long, we have omitted solid modeling
techniques, methods for rendering implicit curves and surfaces, the finite
elements method, and wavelets. The first two topics are nicely covered in
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Hoffman [87], and the finite element method is the subject of so many books
that we will not attempt to mention any references besides Strang and Fix
[167]. As to wavelets, we highly recommend the classics by Daubechies
[44], and Strang and Truong [168], among the many texts on this subject.
It would also have been nice to include chapters on the algebraic geometry
of curves and surfaces. However, this is a very difficult subject that requires
a lot of algebraic machinery. Interested readers may consult Fulton [67] or
Harris [83].

How to Use This Book for a Course

This books covers three complementary but fairly disjoint topics:

(1) Projective geometry and its applications to rational curves and
surfaces (Chapters 5, 18, 19, 21, 22, 23, 24);

(2) Euclidean geometry, Voronoi diagrams, and Delaunay triangulations,
Hermitian geometry, basics of Hilbert spaces, spectral theorems for
special kinds of linear maps, SVD, polar form, and basics of Lie groups
and Lie algebras (Chapters 6, 7, 8, 9, 10, 11, 12, 13, 14);

(3) Basics of the differential geometry of curves and surfaces (Chapters
15 and 16).

Chapter 17 is an appendix consisting of background material and should
be used only as needed .

Our experience is that there is too much material to cover in a one–
semester course. The ideal situation is to teach the material in the
entire book in two semesters. Otherwise, a more algebraically inclined
teacher should teach the first or second topic, whereas a more differential-
geometrically inclined teacher should teach the third topic. In either case,
Chapter 2 on affine geometry should be covered. Chapter 4 is required for
the first topic, but not for the second. A graph showing the dependencies
of chapters is shown in Figure 1.

Problems are found at the end of each chapter. They range from routine
to very difficult. Some programming assignments have been included. They
are often quite open-ended, and may require a considerable amount of work.
The end of a proof is indicated by a square box ( ). The word iff is an
abbreviation for if and only if .

References to the web page:
http://www.cis.upenn.edu/̃ jean/gbooks/geom2.html will be abbreviated
as web page.

Hermann Weyl made the following comment in the preface (1938) of his
beautiful book [180]:

The gods have imposed upon my writing the yoke of a for-
eign tongue that was not sung at my cradle . . . . Nobody is
more aware than myself of the attendant loss in vigor, ease and
lucidity of expression.
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Figure 1. Dependency of chapters

Being in a similar position, I hope that I was at least successful in con-
veying my enthusiasm and passion for geometry, and that I have inspired
my readers to study some of the books that I respect and admire.
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1
Introduction

Je ne crois donc pas avoir fait une œuvre inutile en écrivant le présent

Mémoire; je regrette seulement qu’il soit trop long; mais quand j’ai

voulu me restreindre, je suis tombé dans l’obscurité; j’ai préféré

passer pour un peu bavard.

—Henri Poincaré, Analysis Situ, 1895

1.1 Geometries: Their Origin, Their Uses

What is geometry? According to Veblen and Young [172], geometry deals
with the properties of figures in space. Etymologically, geometry means the
practical science of measurement. No wonder geometry plays a fundamen-
tal role in mathematics, physics, astronomy, and engineering. Historically,
as explained in more detail by Coxeter [34], geometry was studied in Egypt
about 2000 B.C. Then, it was brought to Greece by Thales (640–456 B.C.).
Thales also began the process of abstracting positions and straight edges
as points and lines, and studying incidence properties. This line of work
was greatly developed by Pythagoras and his disciples, among which we
should distinguish Hippocrates. Indeed, Hippocrates attempted a presen-
tation of geometry in terms of logical deductions from a few definitions and
assumptions. But it was Euclid (about 300 B.C.) who made fundamental
contributions to geometry, recorded in his immortal Elements, one of the
most widely read books in the world.
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Euclid’s basic assumptions consist of basic notions concerning magni-
tudes, and five postulates. Euclid’s fifth postulate, sometimes called the
“parallel postulate,” is historically very significant. It prompted mathe-
maticians to question the traditional foundations of geometry, and led them
to realize that there are different kinds of geometries. The fifth postulate
can be stated in the following way:

V. If a straight line meets two other straight lines, so as to make the two

interior angles on one side of it together less than two right angles,

the other straight lines will meet if produced on that side on which the

angles are less than two right angles.

Euclid’s fifth postulate is definitely not self-evident. It is also not sim-
ple or natural, and after Euclid, many people tried to deduce it from the
other postulates. However, they succeeded only in replacing it by various
equivalent assumptions, of which we only mention two:

V′. Two parallel lines are equidistant . (Posidonius, first century B.C.).

V′′. The sum of the angles of a triangle is equal to two right angles .
(Legendre, 1752–1833).

According to Euclid, two lines are parallel if they are coplanar without
intersecting.

It is remarkable that until the eighteenth century, no serious attempts at
proving or disproving Euclid’s fifth postulate were made. Saccheri (1667–
1733) and Lambert (1728–1777) attempted to prove Euclid’s fifth postulate,
but of course, this was impossible. This was shown by Lobachevski (1793–
1856) and Bolyai (1802–1860), who proposed some models of non-Euclidean
geometries. Actually, Gauss (1777–1855) was the first to consider seriously
the possibility that a geometry denying Euclid’s fifth postulate was of some
interest. However, this was such a preposterous idea in those days that he
kept these ideas to himself until others had published them independently.

Thus, circa the 1830s, it was finally realized that there is not just one
geometry, but different kinds of geometries (spherical, hyperbolic, elliptic).
The next big step was taken by Riemann, (1826–1866) who introduced the
“infinitesimal approach” to geometry, wherein the differential of distance
is expressed as the square root of the sum of the squares of the differentials
of the coordinates. Riemann studied spherical spaces of higher dimension,
and showed that their geometry is non-Euclidean. Finally, Cayley (1821–
1895) and especially Klein (1849–1925) reached a clear understanding of
the various geometries and their relationships. Basically, all geometries can
be viewed as embedded in a universal geometry, projective geometry . Pro-
jective geometry itself is non-Euclidean, since two coplanar lines always
intersect in a single point.

Projective geometry was developed in the nineteenth century, mostly by
Monge, Poncelet, Chasles, Steiner, and Von Staudt (but anticipated by
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Kepler (1571–1630) and Desargues (1593–1662)). Klein also realized that
“a geometry” can be defined by the set of properties invariant under a
certain group of transformations. For example, projective properties are
invariant under the group of projectivities, affine properties are invariant
under the group of affine bijections, and Euclidean properties are invariant
under rigid motions. Although it is possible to define these various groups of
transformations as certain subgroups of the group of projectivities, such an
approach is quite bewildering to a novice. In order to appreciate such acro-
batics, one has to already know about projective geometry, affine geometry,
and Euclidean geometry.

Since the fifties, geometry has been built on top of linear algebra, as
opposed to axiomatically (as in Veblen and Young [172, 173] or Samuel
[146]). Even though geometry loses some of its charm presented that way,
it has the advantage of receiving a more unified and simpler treatment.

Affine geometry is basically the geometry of linear algebra. Well, not
quite, since affine maps are not linear maps. The additional ingredient is
that affine geometry is invariant under translations, which are not linear
maps! Instead of linear combinations of vectors, we need to consider affine
combinations of points, or barycenters (where the scalars add up to 1).
Affine maps preserve barycenters. In some sense, affine geometry is the
geometry of systems of particles and forces acting on them. Angles and
distances are undefined, but parallelism is well defined. The crucial notion
is the notion of ratio. Given any two points a, b and any scalar λ, the point
c = (1 − λ)a + λb is the point on the line (a, b) (assuming a 6= b) such
that ac = λab, i.e., the point c is “λ of the way between a and b.” Even
though such a geometry may seem quite restrictive, it allows the handling
of polynomial curves and surfaces.

Euclidean geometry is obtained by adding an inner product to affine
geometry. This way, angles and distances can be defined. The maps that
preserve the inner product are the rigid motions. In Euclidean geometry,
orthogonality can be defined. This is a very rich geometry. The structure of
rigid motions (rotations and rotations followed by a flip) is well understood,
and plays an important role in rigid body mechanics.

Projective geometry is, roughly speaking, linear algebra “up to a scalar.”
There is no notion of angle or distance, and projective maps are more gen-
eral than affine maps. What is remarkable is that every affine space can
be embedded into a projective space, its projective completion. In such a
projective completion, there is a special hyperplane of “points at infinity.”
Affine maps are the projectivities that preserve (globally) this hyperplane
at infinity. Thus, affine geometry can be viewed as a specialization of pro-
jective geometry. What is remarkable is that if we consider projective spaces
over the complex field, it is possible to introduce the notion of angle in a
projective manner (via the cross-ratio). This discovery, due to Poncelet,
Laguerre, and Cayley, can be exploited to show that Euclidean geometry
is a specialization of projective geometry.
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Besides projective geometry and its specializations, there are other im-
portant and beautiful facets of geometry, notably differential geometry and
algebraic geometry. Nowdays, each one is a major area of mathematics, and
it is out of the question to discuss both in any depth. We will present some
basics of the differential geometry of curves and surfaces. This topic was
studied by many, including Euler and Gauss, who made fundamental con-
tributions. However, we will limit ourselves to the study of local properties
and not even attempt to touch manifolds.

These days, projective geometry is rarely tought at any depth in mathe-
matics departments, and similarly for basic differential geometry. Typically,
projective spaces are defined at the begining of an algebraic geometry
course, but modern algebraic geometry courses deal with much more
advanced topics, such as varieties and schemes. Similarly, differential ge-
ometry courses proceed quickly to manifolds and Riemannian metrics, but
the more elementary “geometry in the small” is cursorily covered, if at all.

Paradoxically, with the advent of faster computers, it was realized by
manufacturers (for instance of cars and planes) that it was possible and
desirable to use computer-aided methods for their design. Computer vision
problems (and some computer graphics problems) can often be formulated
in the framework of projective geometry. Thus, there seems to be an in-
teresting turn of events. After being neglected for decades, stimulated by
computer science, old-fashioned geometry seems to be making a comeback
as a fundamental tool used in manufacturing, computer graphics, computer
vision, and motion planning, just to mention some key areas.

We are convinced that geometry will play an important role in computer
science and engineering in the years to come. The demand for technology
using 3D graphics, virtual reality, animation techniques, etc., is increasing
fast, and it is clear that storing and processing complex images and complex
geometric models of shapes (face, limbs, organs, etc.) will be required. This
book represents an attempt at presenting a coherent view of geometric
methods used to tackle problems of a geometric nature with a computer.
We believe that this can be a great way of learning some old-fashioned (and
some new!) geometry while having fun. Furthermore, there are plenty of
opportunities for applying these methods to real-world problems.

While we are interested in the standard (local) differential properties of
curves and surfaces (torsion, curvature), we concentrate on methods for
discretizing curves and surfaces in order to store them and display them
efficiently. However, in order to gain a deeper understanding of this theory
of curves and surfaces, we present the underlying geometric concepts in
some detail, in particular, affine, projective, and Euclidean geometry.
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1.2 Prerequisites and Notation

It is assumed that the reader is familiar with the basics of linear algebra,
at the level of Strang [166]. The reader may also consult appropriate chap-
ters on linear algebra in Lang [107]. For the material on the differential
geometry of curves and surfaces and Lie groups, familiarity with some ba-
sics of analysis are assumed. Lang’s text [110] is more than sufficient as
background. A general background in classical geometry is helpful, but not
mandatory. Two excellent sources are Coxeter [35] and Pedoe [136].

We denote the set {0, 1, 2, . . .} of natural numbers by N, the ring {. . . ,−2,
−1, 0, 1, 2, . . .} of integers by Z, the field of rationals by Q, the field of real
numbers by R, and the field of complex numbers by C. The multiplicative
group R − {0} of reals is denoted by R∗, and similarly, the multiplicative
field of complex numbers is denoted by C∗. We let R+ = {x ∈ R | x ≥ 0}
denote the set of nonnegative reals.

The n-dimensional vector space of real n-tuples is denoted by Rn, and
the complex n-dimensional vector space of complex n-tuples is denoted by
Cn.

Given a vector space E, vectors are usually denoted by lowercase letters
from the end of the alphabet, in italic or boldface; for example, u, v, w,
x,y, z.

The null vector (0, . . . , 0) is abbreviated as 0 or 0. A vector space con-
sisting only of the null vector is called a trivial vector space. A trivial vector
space {0} is sometimes denoted by 0. A vector space E 6= {0} is called a
nontrivial vector space.

When dealing with affine spaces, we will use an arrow in order to distin-
guish between spaces of points (E, U , etc.) and the corresponding spaces

of vectors (
−→
E ,

−→
U , etc.).

The dimension of the vector space E is denoted by dim(E). The direct
sum of two vector spaces U, V is denoted by U ⊕ V . The dual of a vector
space E is denoted by E∗. The kernel of a linear map f : E → F is denoted
by Kerf , and the image by Im f . The transpose of a matrix A is denoted by
A>. The identity function is denoted by id, and the n × n-identity matrix
is denoted by In, or I . The determinant of a matrix A is denoted by det(A)
or D(A).

The cardinality of a set S is denoted by |S|. Set difference is denoted by

A − B = {x | x ∈ A and x /∈ B}.

A list of symbols in their order of appearance in this book is given after
the bibliography.


