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Figure 1: Geodesics on a surface and multiple locally shortest connections. Straightest geodesics are unique solutions to the initial value
problem for geodesics on polyhedral surface.

Abstract

Geodesic curves are the fundamental concept in geometry to gener-
alize the idea of straight lines to curved surfaces and arbitrary man-
ifolds. On polyhedral surfaces we introduce the notion of discrete
geodesic curvature of curves and define straightest geodesics. This
allows a unique solution of the initial value problem for geodesics,
and therefore a unique movement in a given tangential direction, a
property not available in the well-known concept of locally shortest
geodesics.

An immediate application is the definition of parallel translation
of vectors and a discrete Runge-Kutta method for the integration
of vector fields on polyhedral surfaces. Our definitions only use
intrinsic geometric properties of the polyhedral surface without ref-
erence to the underlying discrete triangulation of the surface or to
an ambient space.

Keywords: discrete geodesics, straightest geodesics, shortest
geodesics, polyhedral surfaces, intrinsic curves, parallel translation,
curvature.

1 Introduction

Geodesics on smooth surfaces are the straightest and locally short-
est curves. They generalize the concept of Euclidean straight lines
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and play a fundamental role in the study of smoothly curved man-
ifolds. Two basic properties are responsible for their importance:
first, geodesics solve the initial value problem which states, that
from any point of a manifold there starts a unique geodesic in any
direction. Second, the length minimization property provides a
solution of the boundary value problem of connecting two given
points on a manifold with a locally shortest curve. On smooth sur-
faces geodesics possess both properties, in contrast to the situation
on polyhedral surfaces.

The aim of this paper is to define straightest curves on two-
dimensional polyhedral surfaces, as opposed to the concepts of lo-
cally shortest and quasi-geodesics. Such straightest geodesics will
uniquely solve the initial value problem on polyhedral surfaces, and
therefore allow to move uniquely on a polyhedral surface in a given
direction along a straightest geodesic until the boundary is reached,
a property not available for locally shortest geodesics. An appli-
cation of straightest geodesics is the definition of parallel transla-
tion of vectors and higher order numerical integration methods for
tangential vector fields. This allows the extension of Runge Kutta
methods to polyhedral surfaces.

We consider polyhedral surfaces as two-dimensional simplicial
complexes consisting of triangles. Each triangle has a flat metric
and the common edge of two neighbouring triangles has the same
length in both triangles. The definition of a metric on the polyhedral
surface only requires the specification of edge lengths and does not
refer to an immersion of the surface in an ambient space. This in-
trinsic approach allows the definition of straightest geodesics, dis-
crete geodesic curvature, vector fields, and parallel translation of
vectors in terms of the geometric data of the surface, such as edge
lengths, triangle angles, and discrete curvature properties.

Geodesics on polyhedral surfaces were intensively studied using
different definitions. The Russian school of A.D. Alexandrov
[Aleksandrov and Zalgaller 1967] defines geodesics on polyhedral
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surfaces as locally shortest curves which leads to important impli-
cations in the study of non-regular and regular differential geom-
etry. But shortest geodesics cannot be extended as shortest curves
across a spherical vertex with positive Gauß curvature as, for exam-
ple, the vertex of a cube. Beyond a hyperbolic vertex with negative
Gauß curvature there even exists a continuum of extensions. There-
fore, shortest geodesics fail to solve the initial value problem for
geodesics at vertices of a polyhedral surface.

A.D. Alexandrov also introduced the concept of quasi-geodesics
which are limit curves of geodesics on a family of converging
smooth surfaces. They form a wider class than shortest geodesics
and were amongst others studied by Pogorelov [Pogorelov 1952]
on convex polyhedral surfaces. A quasi-geodesic through a spheri-
cal vertex is a curve with right and left angles both less than π , and
therefore an inbound direction has multiple extensions.

Shortest geodesics appear in many practical applications. For ex-
ample, the optimal movement of a robot should have minimal
length in its parameter space. Such discrete minimization prob-
lems are studied in computational geometry, see for example Di-
jkstra [Dijkstra 1959], Sharir and Schorr [Sharir and Schorr 1986],
and Mitchell et.al. [Mitchell et al. 1987] for efficient algorithms
on the computation of the shortest path in graphs and in polyhedral
spaces.

Our paper starts in section 2 with a review of geodesics on smooth
surfaces, especially since some of their properties differ from those
of geodesics on polyhedral surfaces. In section 3 we will intro-
duce polyhedral surfaces as metric spaces and recall basic facts.
Straightest geodesics are defined in section 4 and discussed as solu-
tions of the initial value problem. In section 5 we imbed the notion
of straightest lines into the concept of discrete geodesic curvature
of arbitrary curves on polyhedral surfaces. This general setting is
more appropriate for our later discussions, and straightest geodesics
turn out to be those class of curves with vanishing discrete geodesic
curvature. As a validation of the definition we prove the Gauß-
Bonnet theorem using our notion of discrete geodesic curvature. In
section 6 we apply the concept to the definition of parallel transla-
tion of tangential vector fields and in section 7 we generalize Runge
Kutta methods to the numerical integration of ordinary differential
equations on polyhedral surfaces.

Applications of this paper are given in the video Geodesics and
Waves [Polthier et al. 1997]. The numerics were developed within
the visualization environment OORANGE [Gunn et al. 1997].

2 Review of Geodesics on Smooth Surfaces

Geodesics on smooth surfaces can be characterized by different
equivalent properties. The generalized properties on polyhedral
surfaces will no longer be equivalent and lead to different classes
of discrete geodesics. The following material can be found in any
introductory text book on differential geometry, see for example
[Carmo 1976].

Let M be a smooth surface and γ : I = [a,b] → M a curve
parametrized over an interval I. To avoid accelerations tangen-
tial to the curve we assume arc length parametrization, i.e. the
tangent vector has constant length |γ′| = 1. A curve γ is called
locally shortest if it is a critical point of the length functional
L(γ|[a,b]) := length(γ|[a,b]) with respect to variations tangential to
M which leave the endpoints fixed. Formally, if φ : I → Tγ M is a
tangential vector field along γ with φ(a) = 0 and φ(b) = 0, then we
have ∂

∂ ε L(γ + εφ)|ε=0 = 0. A critical point of the length functional

is usually not a global minimizer compared to curves with the same
endpoints.

On smooth manifolds the length minimizing property of geodesics
can be reformulated as an ordinary differential equation for γ ,
namely γ ′′(s)tan M = 0, the Euler-Lagrange equations of the vari-
ational problem.

The curvature κ(s) = |γ ′′(s)| of a curve measures the infinitesimal
turning of the tangent vector at every point γ(s). For curves γ on
surfaces M ⊂ R

3, the curvature can be decomposed into the curve’s
bending in the normal direction n of the surface and its bending in
the tangent space in direction of the binormal b. This decompo-
sition leads to the definition of the geodesic curvature κg and the
normal curvature κn of a curve:

κ2(s) =
∣∣γ ′′(s)∣∣2 (1)

=
∣∣∣γ ′′(s)tan M

∣∣∣2
+

∣∣∣γ ′′(s)nor M
∣∣∣2

= κ2
g (s)+κ2

n (s).

The geodesic curvature κg of a curve γ measures the tangential ac-
celeration. If κg = 0 then the curve varies up to second order only
in direction of the surface normal, therefore it is a straightest curve
on the surface. The normal curvature κn is related with the bending
of the surface itself and can be neglected from an intrinsic point of
view.
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Figure 2: Geodesic and normal curvature of a curve on a smooth
surface.

Summarizing, one characterizes smooth geodesics as follows:

Definition 1 Let M be a smooth two-dimensional surface. A
smooth curve γ : I → M with |γ ′| = 1 is a geodesic if one of the
equivalent properties holds:

1. γ is a locally shortest curve.

2. γ ′′ is parallel to the surface normal, i.e.

γ ′′(s)tan M = 0. (2)

3. γ has vanishing geodesic curvature κg = 0.

In section 4 we will consider geodesics on polyhedral surfaces and
notice that the polygonal equivalents of the above properties lead to
different notions of discrete geodesics.

The boundary value problem for geodesics has a solution in every
homotopy class and is usually not unique. On the other hand, we
have a unique solution for the initial value problem derived from
equation (2):
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Lemma 1 Let M be a smooth manifold. Then for any point p ∈ ◦
M

in the interior of M and any tangent direction v ∈ TpM the initial
value problem

γ ′′(s)tan M = 0 (3)

γ(0) = p

γ ′(0) = v

has a unique solution γ : [0, �) → M, where � is the length of the
maximal interval of existence.

3 Curvature of Polyhedral Surfaces

In this section we review some facts on the geometry of polyhe-
dral surfaces. Basic references are for example A.D. Alexandrov
and Zalgaller [Aleksandrov and Zalgaller 1967] and Reshetnyak
[Reshetnyak 1993]. For simplification we restrict ourselves to two-
dimensional surfaces consisting of planar triangles. A topological
triangle f in a two-dimensional manifold S is a simple domain f ⊂ S
whose boundary is split by three vertices into three edges with no
common interior points.

Definition 2 A polyhedral surface S is a two-dimensional manifold
(with boundary) consisting of a finite or denumerable set F of topo-
logical triangles and an intrinsic metric ρ(X ,Y ) such that

1. Any point p ∈ S lies in at least one triangle f ∈ F.

2. Each point p ∈ S has a neighbourhood that intersects only
finitely many triangles f ∈ F.

3. The intersection of any two non-identical triangles g, h ∈ F is
either empty, or consists of a common vertex, or of a simple
arc that is an edge of each of the two triangles.

4. The intrinsic metric ρ is flat on each triangle, i.e. each trian-
gle is isometric to a triangle in R

2.

Remark 1 Most of our considerations apply to a more general
class of length spaces. Each face may have an arbitrary metric as
long as the metrics of two adjacent faces are compatible, i.e. if the
common edge has the same length in both faces, and the triangle
inequality holds.

Let γ ⊂ S be a curve whose segments on each face are rectifiable.
Then the length of γ is well-defined and given by

Length(γ) = ∑
f∈F

Length(γ| f ). (4)

The neighbourhood of a vertex is isometric to a cone and is charac-
terized by the total vertex angle:

Definition 3 Let S be a polyhedral surface and v ∈ S a vertex. Let
F = { f1,..., fm} be the set of faces containing p as a vertex, and θi
be the interior angle of the face fi at the vertex p, compare figure
3. Then the total vertex angle θ (p) is given by

θ (p) =
m

∑
i=1

θi(p). (5)

Interior points p of a face or of an open edge have a neighbour-
hood which is isometric to a planar Euclidean domain and we de-
fine θ (p) = 2π .

All points of a polyhedral surface can be classified according to the
sign of the vertex angle excess 2π −θ (p):
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Figure 3: Classification of vertices on a polyhedral surface accord-
ing to the excess of the vertex angle, and their unfolding in a planar
domain.

Definition 4 A vertex p of a polyhedral surface S with total vertex
angle θ (p) is called Euclidean, spherical, or hyperbolic if its angle
excess 2π −θ (p) is = 0, > 0, or < 0. Respectively, interior points
of a face or of an open edge are Euclidean.

The neighbourhood of a vertex can be isometrically unfolded to
a (partial or multiple) covering of a part of the Euclidean plane.
There exist three situations as shown in figure 3 which metrically
characterize the vertex. For example, the tip of a convex cone is
a spherical vertex and a saddle point is hyperbolic. On the other
hand, a spherical vertex need not be the tip of a convex cone. The
isometric unfolding of sets of a polyhedral surface is a common
procedure to study the geometry.

The Gauß curvature of a general manifold is a central intrinsic prop-
erty of the geometry and can be computed in terms of the metric.
It influences, for example, the parallel translation of vectors along
curves. The Gauß curvature of a piecewise linear surface is concen-
trated at the isolated vertices since all other points on the surface
have a neighbourhood isometric to a planar Euclidean domain with
zero curvature. It is therefore more appropriate to work with the
concept of total Gauß curvature.

� � � � � � � � � 	
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Figure 4: The Gauß map assigns to each point p ∈ S of a surface
its normal vector n(p) ∈ S

2. At edges and vertices of a polyhedral
surface the image of the Gauß map is the spherical convex hull of
the normal vectors of adjacent faces.

Using following definition the curvature can be measured directly
in metrical terms of the surface S.

Definition 5 The (total) Gauß curvature K(p) of a vertex p on a
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polyhedral surface S is defined as the vertex angle excess

K(p) = 2π −θ (p) (6)

= 2π −
m

∑
i=1

θi(p).

An immediate consequence is that Euclidean vertices have curva-
ture K = 0, spherical vertices have K > 0, and hyperbolic vertices
have K < 0. For example, the vertices of a cube each have Gauß
curvature π

2 .

For a smooth surface S embedded into R
3 the curvature measures

the infinitesimal turn of the normal vector of the surface and can be
defined via the Gauß map g : S → S

2 which assigns to each point
p on a surface S its normal vector n(p), see figure 4. The total
Gauß curvature K(Ω) of a domain Ω ⊂ S is given by the area of
its spherical image: K(Ω) = area g(Ω). It is an easy calculation to
show that this relation also holds for the Gauß curvature of a vertex
on a polyhedral surface.

4 Discrete Straightest Geodesics

Our approach to discrete geodesics on polyhedral surfaces concen-
trates on the property of a curve to be straightest rather than locally
shortest. Both properties are equivalent for geodesics on smooth
surfaces, as mentioned in section 2, but locally shortest curves on
polygonal surfaces do not allow a unique extension, for example,
beyond spherical vertices of the surface. The original motivation
for our study was to define a unique way to move straight ahead
in a given direction on a polyhedral surface. Applications are, for
example, the tracing of moving particles restricted to flow along a
polyhedral surface, the solution of initial value problems on poly-
hedral surfaces related with given tangential vector fields, and the
intrinsic generalization of numerical algorithms for ordinary differ-
ential equations to polygonal surfaces.

The concept of shortest geodesics in graphs, polyhedral manifolds,
and more general length spaces has been studied by a number of
authors in different fields, see for example [Dijkstra 1959][Mitchell
et al. 1987][Aleksandrov and Zalgaller 1967][Alexander and
Bishop 1996]. For our applications this concept has a central miss-
ing property, namely, the initial value problem for geodesics is not
uniquely solvable and in some cases has no solution: first, no short-
est geodesics can be extended through a spherical vertex since it
could be shortened by moving off the corner, and second, there
exists a family of possible extensions of a geodesic as a shortest
curve through a hyperbolic vertex: every extension with curve an-
gles θl ,θr ∈ [π,θ −π] is locally shortest where θ is the total vertex
angle. See lemma 2 and figure 5.

Quasi-geodesics are a different approach which was introduced by
A.D. Alexandrov (see the references to the original Russian lit-
erature in [Aleksandrov and Zalgaller 1967]) and investigated on
convex surfaces by Pogorelov [Pogorelov 1952] and others. They
appear as limit sets of smooth geodesics when smooth surfaces ap-
proximate, for example, a polyhedral surface. On polyhedral sur-
faces quasi-geodesics are characterized by their fulfillment of the
inequation |π −θl |+ |π −θr| − |2π −θl −θr| ≥ 0 at each point,
where θl and θr are the two angles of the curve, and θl + θr = θ
is the total vertex angle of the point. Compare figure 5 for the no-
tation. At hyperbolic vertices with θ > 2π the definition is iden-
tical to that for shortest geodesics, while at spherical vertices with
θ < 2π curves with π −θl ≥ 0 and π −θr ≥ 0 are quasi-geodesics.

In the following definition we introduce straightest geodesics which
are a new class of discrete geodesics on polyhedral surfaces. This
class has a non-empty intersection with the set of shortest geodesics
and is a subset of quasi-geodesics.

Definition 6 Let S be a polyhedral surface and γ ⊂ S a curve. Then
γ is a straightest geodesic on S if for each point p ∈ γ the left and
right curve angles θl and θr at p are equal, see figure 5.
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Figure 5: Notion of left and right curve angles θl and θr with θl +
θr = θ .

A straightest geodesic in the interior of a face is locally a straight
line, and across an edge it has equal angles on opposite sides. The
definition of straightest geodesics on faces and through edges is
identical to the concept of shortest geodesics but at vertices the con-
cepts differ. Our definition fits into the more general discussion of
discrete geodesic curvature of curves on a polyhedral surface, this
will be discussed in detail in section 5.

The following theorem proves the unique solvability of the initial
value problem for straightest geodesics. To state the problem we
start with the notion of a tangent vector on a polyhedral surface:

Definition 7 Let S be a polyhedral surface and p ∈ S a point. A
polyhedral tangent vector v with base point p lies in the plane of
an adjacent face and locally points into the face. The polyhedral
tangent space TpS consists of all polyhedral tangent vectors at p.

We remark, that the polyhedral tangent bundle TS can be equipped
with the structure of a topological vector bundle by introducing nor-
malized angles as in definition 10, but do not pursue this property.
Instead, we use the fact that polyhedral tangent vectors are charac-
terized solely by intrinsic properties of the geometry rather than by
reference to an ambient space.

Theorem 1 (Discrete Initial Value Problem) Let S be a polyhe-
dral surface and p ∈ S a point with polyhedral tangent vector
v ∈ TpS. Then there exists a unique straightest geodesic γ with

γ(0) = p (7)

γ ′(0) = v,

and the geodesic extends to the boundary of S.

Proof. There exists a face f of S which contains the initial point p
and, for a small number ε > 0, the straight line γ(t) := p+ tv with
t ∈ [0,ε). γ is a straightest geodesic and a solution of equation 7.
If we extend γ beyond the small interval and γ reaches an edge or
a vertex of S for larger values of t then definition 6 of straightest
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geodesics uniquely defines how to extend γ beyond the edge or ver-
tex. That is to proceed in that direction for which the left and right
curve angles of γ at the vertex are equal.
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Figure 6: Locally shortest geodesics cannot be extended through a
spherical vertex p and there exist multiple continuations at a hyper-
bolic vertex q.

The concepts of straightest and shortest geodesics differ on poly-
hedral surfaces. For example, as shown in the following lemma,
the theorem above does not hold for locally shortest geodesics ap-
proaching a spherical or hyperbolic vertex. As long as a geodesic
γ does not meet a vertex of a polyhedral surface both concepts are
equal and γ is both, straightest and locally shortest. The following
lemma comprehends the differences:

Lemma 2 On a polyhedral surface S the concepts of straightest
and locally shortest geodesics differ in the following way (see figure
6):

1. A geodesic γ containing no surface vertex is both straightest
and locally shortest.

2. A straightest geodesic γ through a spherical vertex is not lo-
cally shortest.

3. There exists a family of shortest geodesics γθ through a hyper-
bolic vertex with the same inbound direction. Only one of the
shortest geodesics extends the inbound direction as straight-
est geodesic.

4. Straightest geodesics do not solve the boundary value prob-
lem for geodesics since there exist shadow regions in the
neighbourhood of a hyperbolic vertex where two points can-
not be joined by a straightest geodesic.

Proof. Ad 1.) We unfold the faces met by the geodesic to an isomet-
ric strip of faces in the Euclidean plane. The geodesic γ is unfolded
to a Euclidean straight line in the interior of the strip which is lo-
cally shortest and fulfills the angle condition of definition 6.

Ad 2.) Let γ be a straightest geodesic through a spherical vertex
with curvature K > 0. We unfold the adjacent faces to a planar
domain by cutting along the outbound direction of γ . The image
of γ in the plane has a corner at the vertex with curve angle θ

2 =
π − K

2 < π at both sides. Therefore, γ is not locally shortest since
it can be shortened by smoothing the corner in either direction as
shown on the left in figure 6.

Ad 3.) A hyperbolic vertex has curvature K < 0. Let γ0 be the
unique straightest geodesic though the vertex which extends the in-
bound direction. We unfold the adjacent faces to a planar domain by
cutting along the outbound direction of γ0, then γ0 has a curve angle
θ
2 = π − K

2 > π at both sides of the corner. Assume a curve with
the same inbound but a different outbound direction. Whenever
both angles between the inbound and outbound direction are bigger

than or equal to π , we cannot locally shorten the curve. Therefore
all such curves are locally shortest.

5 Discrete Geodesic Curvature

We define the notion of geodesic curvature of curves on piecewise
linear surfaces with the later aim of defining parallel translation of
vectors along arbitrary curves. Additionally, vanishing geodesic
curvature should characterize straightest geodesics. The definition
should comply with the known (total) curvature of polygons in the
Euclidean plane, and the Gauß-Bonnet equation should hold. In
the following, we assume curves to be smooth on faces and to
have well-defined polyhedral tangent directions at the edges and
vertices of the surface. Similar to the discrete Gauß curvature for
surfaces, the discrete geodesic curvature is the equivalent of the to-
tal geodesic curvature of smooth surfaces.
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Figure 7: The discrete geodesic curvature of a curve γ is the nor-
malized angle between γ and a discrete straightest geodesic δ .

Definition 8 Let γ be a curve on a polyhedral surface S. Let θ be
the total vertex angle and β one of the two curve angles of γ at p.
Then the discrete geodesic curvature κg of γ at p is given by

κg =
2π
θ

(
θ
2
−β

)
. (8)

Choosing the other curve angle β′ = θ −β changes the sign of κg.

Using the notion of discrete geodesic curvature we obtain a new
characterization of straightest geodesics since they bisect the total
vertex angle θ , i.e. β = θ

2 :

Lemma 3 Let S be a polyhedral surface and γ ⊂ S a curve. Then
γ is a straightest geodesic if and only if γ has vanishing discrete
geodesic curvature.

Remark 2 1.) Let γ be a polygon in the Euclidean plane S and
p ∈ γ be a vertex with curve angle β . Then the discrete geodesic
curvature equals the total curvature of γ at p defined by the spheri-
cal image of its normal vectors.
2.) Let S be a polyhedral surface and let γ touch a vertex p ∈ S,
i.e. β = 0. Then the geodesic curvature of γ at p is κg = π , i.e. it
can be measured in the Euclidean face and without influence of the
vertex angle θ at p.
3.) Shortest geodesics through a hyperbolic vertex with ver-
tex angle θ > 2π have geodesic curvatures κg in the interval[−π(1− 2π

θ ),π(1− 2π
θ )

]
.

Straightest geodesics are natural generalizations of straight lines in
Euclidean space. For example, geodesic triangles on surfaces can
be defined as simply connected regions bounded by three straightest
segments, and geodesic polygons as piecewise straightest curves.
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The Gauß-Bonnet theorem relates the topology and geometry of
surfaces. It is a remarkable consequence of the definition of discrete
geodesic curvature that this fundamental theorem still holds. In
fact, one can even reverse the arguments and derive our formula for
geodesic curvature from the requirement that the equation of Gauß-
Bonnet should hold.

There have been different formulations of the Gauß-Bonnet theo-
rem on polyhedral surfaces, each expressing the Euler characteris-
tic χ(Ω) of a domain Ω using different curvature terms. For exam-
ple, Reshetnyak [Reshetnyak 1993] only uses the Gauß curvature
of interior vertices and defines the curvature of the boundary curve
by κ = π − β , where β is the inner curve angle of the boundary.
We refine this approach and split his definition of boundary curva-
ture in two components, a geodesic curvature of the boundary curve
and a partial Gauß curvature, where the vertices p ∈ ∂Ω contribute
to the total Gauß curvature of Ω. The following natural definition
determines the contribution of boundary vertices to the total Gauß
curvature of Ω. The contribution is proportional to the curve angle
β :

Definition 9 Let Ω ⊂ S be a domain on a polyhedral surface with
boundary Γ = ∂Ω. If θ (p) is the total vertex angle and β (p) the
inner curve angle at a vertex p ∈ Γ, then the partial Gauß curvature
K|Ω of Ω at p is proportional to β :

K|Ω(p) =
β
θ

K(p). (9)

If β = 0 then the vertex has no partial Gauß curvature, and β = θ
leads to a full contribution of the total Gauß curvature K = 2π −θ
to Ω. In the following we simplify the notation by omitting the
subindex |Ω.

Theorem 2 (Discrete Gauss-Bonnet) Let S be a polyhedral sur-
face and Ω ⊂ S a domain with boundary curve Γ and Euler char-
acteristic χ(Ω). Then the equation

∑
p∈Ω

K(p)+κg(Γ) = 2πχ(Ω) (10)

holds where the total Gauß curvature of Ω includes the partial
Gauß curvature at boundary points. If Γ is piecewise straightest
then the total geodesic curvature is the sum of the geodesic curva-
ture at the vertices of Γ.

Proof. For the proof we use the version

∑
p∈

◦
Ω

K(p)+ ∑
p∈Γ

(π −β (p)) = 2πχ(Ω)

proved by Reshetnyak [Reshetnyak 1993] where only interior ver-
tices of Ω contribute to the total Gauß curvature. Let p ∈ Γ be a
boundary vertex, then we have the splitting

K|Ω(p)−κg(p) = π −β (p)

which proves the assumption.

6 Parallel Translation of Vectors

Numerical methods for the integration of ordinary differential equa-
tions rely on the possibility for parallel translation of vectors in the
Euclidean plane. For example, higher order Runge-Kutta methods
do several trial shots in a single integration step to compute the fi-
nal shooting direction and translate direction vectors to their current

positions. When transferring such integration methods to surfaces,
which are not described by local charts, it is necessary to compare
vectors with different base points on the curved surface.

We use the notion of polyhedral tangent vectors formulated in def-
inition 7 and define an intrinsic version of parallel translation of
vectors which uses no ambient space as reference. We start with
two definitions of angles:

Definition 10 Let S be a polyhedral surface and p ∈ S a point with
total vertex angle θ . The Euclidean angle �(v,w) between tangent
vectors v,w ∈ TpS is the angle between corresponding vectors in
the unfolded neighbourhood of p measured in R

2, i.e. �(v,w) ∈[
− θ

2 , θ
2

]
. The normalized angle α(v,w) is obtained by scaling:

α(v,w) :=
2π
θ

�(v,w). (11)

The normalized and Euclidean angles are identical at points which
are not vertices of the surface. In practical applications one mea-
sures the Euclidean angle at first, and then uses the normalized an-
gle to avoid case distinctions at vertices of the surface as seen, for
example, in the following lemma:

Lemma 4 Let Δ be a geodesic triangle on a polyhedral surface S
whose edges are straightest segments. If α1, α2, and α3 are the
normalized angles of Δ then we have

α1 +α2 +α3 −π =
∫

Δ
K. (12)

Proof. Denote the Euclidean angles of Δ with βi and the vertex an-
gles with θi . Then the geodesic curvature of the boundary of Δ at
one of its vertices is given by

κg =
2π
θ

(
θ
2
−β

)
= π −α (13)

and the assumption follows directly from the discrete Gauß-Bonnet
equation (10).
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Figure 8: Parallel translation of vectors along straightest geodesics
γ1,γ2 and an arbitrary curve δ .

On polyhedral surfaces we can use the concept of straightest
geodesics and normalized angles to define parallel translation along
geodesics and arbitrary curves similar to the smooth case:

Definition 11 Let γ : I → S be a parametrized straightest geodesic
on a polyhedral surface S. A tangential vector field v : I → TS
with v(s)∈ Tγ(s)S is a parallel vector field along γ if the normalized
angle α(v(s),γ ′(s)) is constant.

Definition 12 Let κg be the geodesic curvature of a curve γ : I → S
with γ(0) = p and let v0 ∈ TpS be a tangent vector with normalized
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angle α(0) := 2π
θ(p)�(v0,γ ′(0)). Then v0 uniquely extends to a par-

allel vector field v with v(s) ∈ Tγ(s)S along γ with v(0) = v0. v(s) is
defined by the normalized angle α(s) it encloses with γ′(s):

α(s) = α(0)+
∫ s

0
κg(t) dt. (14)

The formula is well-known for curves on smooth surfaces. In the
discrete situation we have made direct use of the definition of dis-
crete geodesic curvature and the notion of normalized angles at ver-
tices.

7 Runge Kutta on Discrete Surfaces

The tracing of particles on a surface by integrating a given vector
field with Euler or Runge Kutta methods requires an additional ef-
fort to keep the trace on the surface. For example, one may use
local coordinate charts of a surface to transform the integration to
the planar Euclidean domain. Here the metrical distortion between
surface and Euclidean domain must be respected and a preprocess-
ing step to generate the charts and transitions between neighbouring
charts is required.

If the vector field is given on a curved surface in an ambient space,
say R

3, then a usual tangent vector “points into the ambient space”,
leading the numerical particle trace off the surface without addi-
tional projection methods.

The concepts of straightest geodesics and polyhedral tangent vec-
tors offer an intrinsic tool to solve these problems. In Euclidean
methods, the vector v|γ(s) is interpreted as tangent vector to the par-
ticle trace γ(s), and the straight line through γ(s) with direction
v|γ(s) is the first order approximation of γ . The idea on surfaces is
to use polyhedral tangent vectors defined in definition 7 and to re-
place the straight line with a straightest geodesic through γ(s) with
initial direction v|γ(s):

Definition 13 (Geodesic Euler Method) Let S be a polyhedral
surface with a polyhedral tangential vector field v on S, let y0 ∈ S be
an initial point, and let h > 0 a (possibly varying) stepsize. For each
point p ∈ S let δ (t, p,v(p)) denote the unique straightest geodesic
through p with initial direction v(p) and evaluated at the parame-
ter value t. A single iteration step of the geodesic Euler method is
given by

yi+1 := δ (h,yi,v(yi)). (15)

This produces a sequence of points {y0,y1, ...} on S which are
connected by straightest geodesic segments of length h. For each
i ∈ {0,1, ...} we define

γ(ih+ t) := δ (t,yi,v(yi)), t ∈ [0,h] (16)

and obtain a piecewise straightest, continuous curve γ : [0, �) → S
of some length � such that each segment γ|[ih, (i+1)h] is a straightest
geodesics.

The definition of the geodesic Euler method is intrinsic and no pro-
jection of the tangent vectors or tangent directions onto the surface
are required during integration. If the original vector field is not a
polyhedral tangential field then an initial generation of a polyhedral
tangential vector field is required in a preprocessing step, however,
this step is part of the formulation of the numerical problem and not
of the integration method.

Using the concept of parallel translation it is straight forward to
define higher order integration methods in a similar intrinsic way.

Figure 9: The two piecewise straightest geodesics are solutions
computed with the geodesic Euler method (outer curve, stepsize
h) and 4th order Runge Kutta method (inner curve, stepsize 4h).
Note, that the geodesic segments extend across triangle edges and
vertices. Also, a comparison with the underlying flow shows the
expected better approximation quality of the geodesic Runge-Kutta
method.

For simplicity, we restrict to a 4-th order geodesic Runge Kutta
method:

Definition 14 (Geodesic Runge-Kutta Method) Let S be a poly-
hedral surface with a polyhedral tangential vector field v on S, let
y0 ∈ S be an initial point, and let h > 0 a (possibly varying) stepsize.
For each point p ∈ S let δ (t, p,v(p)) denote the unique straightest
geodesic through p with initial direction v(p) and evaluated at the
parameter value t. A single iteration step of the geodesic Runge
Kutta method is given by

yi+1 := δ (h,yi,vi) (17)

where the direction vi is a polyhedral tangent vector at yi obtained
as follows: we denote the parallel translation of vectors along a
geodesic δ to δ (0) by π|δ and iteratively define

v1
i : = v(yi) (18)

v2
i : = π|δ1

◦v(δ1(
h
2
,yi,v

1
i ))

v3
i : = π|δ2

◦v(δ2(
h
2
,yi,v

2
i ))

v4
i : = π|δ3

◦v(δ3(h,yi,v
3
i ))

and

vi :=
1
6
(v1

i +2v2
i +2v3

i +v4
i ) (19)

where the curves δi are straightest geodesics through yi with initial
direction v j

i for j ∈ {1,2,3}.

8 Conclusion

On polyhedral surfaces we introduced the concept of straightest
geodesics and discrete geodesic curvature of curves. We applied the
concept to define the parallel translation of tangential vectors and
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generalized Runge Kutta methods to polyhedral surfaces. These
concepts allow a uniform and intrinsic description of geometric and
numerical properties on polyhedral surfaces.
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Figure 10: Point waves on surfaces evolve through distance circles.
Each particle of the front moves along a straightest geodesic.

Figure 11: The front of a point wave on a polyhedral surface may
branch and hit itself depending on the curvature and topology of the
surface.
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Figure 12: Branching of point waves at the conjugate point on a
torus.

Figure 13: Discrete geodesics on faces and at edges are natural
generalizations of straight lines.

Figure 14: Minimizing length of curves may lead to different local
minimizers.

Figure 15: Each positively curved vertex on a polyhedral surface is
a conjugate point where all point waves branch.

Figure 16: Straightest geodesics are able to pass through vertices in
contrast to locally shortest geodesics.

Figure 17: Straightest geodesics have unique extensions like light
rays.
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