
1

Exact Geodesics and Shortest Paths on Polyhedral
Surfaces

Mukund Balasubramanian, Member, IEEE, Jonathan R. Polimeni, Member, IEEE, and Eric L. Schwartz

Abstract—We present two algorithms for computing distances
along convex and non-convex polyhedral surfaces. The first
algorithm computes exact minimal-geodesic distances and the
second algorithm combines these distances to compute exact
shortest-path distances along the surface. Both algorithms have
been extended to compute the exact minimal-geodesic paths and
shortest paths. These algorithms have been implemented and
validated on surfaces for which the correct solutions are known,
in order to verify the accuracy and to measure the run-time
performance, which is cubic or less for each algorithm. The
exact-distance computations carried out by these algorithms are
feasible for large-scale surfaces containing tens of thousands of
vertices, and are a necessary component of near-isometric surface
flattening methods that accurately transform curved manifolds
into flat representations.

Index Terms—Differential geometry, flat maps, triangular
meshes, surface-based analysis, computational geometry.

I. INTRODUCTION

COMPUTING geodesics and shortest paths on surfaces is
a challenging problem in computational and differential

geometry, with several important areas of application such as
computerized brain flattening [1], [2], texture mapping [3],
surface partitioning [4], [5], terrain navigation [6], and path
planning [7].

Most methods proposed for computing exact shortest
paths on non-parametrized surfaces represented by polyhedral
meshes are either prohibitively difficult to implement [8], [9],
[10], [11], [12] or have impractical run times for meshes
with many vertices [13]. As a result, several algorithms for
computing approximate shortest paths have been proposed
[6], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24]. These methods are appropriate for applications such as
interactive visualization and texture mapping, where extremely
rapid solutions are desired and some loss of accuracy can be
tolerated.

However, there is a need for exact solutions that can be
computed in a reasonable amount of time, particularly in
the context of quantitative surface-based analyses of brain

M. Balasubramanian is with the Department of Cognitive and Neu-
ral Systems, Boston University, Boston, MA 02215, USA. E-mail:
mukundb@cns.bu.edu.

J. R. Polimeni was with the Department of Electrical and Computer
Engineering, Boston University, Boston, MA 02215, USA. He is now with
the Department of Radiology, MGH, Athinoula A. Martinos Center for
Biomedical Imaging, Harvard Medical School, Charlestown, MA 02129, USA.
E-mail: jonp@nmr.mgh.harvard.edu.

E. L. Schwartz is with the Departments of Cognitive and Neural Systems,
Electrical and Computer Engineering, and Anatomy and Neurobiology, Boston
University, Boston, MA 02215, USA. E-mail: eric@bu.edu.

Manuscript received November 30, 2007. This work was supported in part
by the National Institute for Biomedical Imaging and Bioengineering under
grant R01 EB001550.

structure and function [25], [26], where accuracy is at a pre-
mium. Furthermore, exact solutions can be used to provide an
off-line characterization of the quality of faster, approximate
techniques (e.g., Dijkstra’s algorithm) on arbitrary surfaces.

Here we present two algorithms with cubic run-time perfor-
mance for computing distances on (convex and non-convex)
polyhedral surfaces: the first algorithm computes the exact
minimal-geodesic distance between every pair of vertices and
the second algorithm builds on the first to compute exact
shortest-path distances (the difference between these two types
of distance is described in the following sections). We also
present two linear-time algorithms for constructing the paths
corresponding to these distances. The first algorithm computes
the exact minimal-geodesic path connecting any two vertices
on the surface, given the output of the minimal-geodesic dis-
tance algorithm and, similarly, the second algorithm computes
the exact shortest-path curve between any pair of vertices.
These algorithms are simple to implement and are practical
for meshes with tens of thousands of vertices.

The remainder of this paper is organized as follows: Sec-
tion II provides the differential geometry background pertain-
ing to geodesics on differentiable surfaces and Section III
extends these concepts to geodesics on polyhedral surfaces.
The LOS algorithm for computing minimal-geodesic distances
is described in Section IV, the LOS-Floyd algorithm for com-
puting shortest-path distances is described in Section V, and
the LOS-Path and LOS-Floyd-Path algorithms for computing
the corresponding paths are described in Section VI. Experi-
mental results and validation tests are presented in Section VII.
Section VIII discusses related work and applications, and
Section IX provides a closing summary.

II. GEODESICS ON DIFFERENTIABLE SURFACES

A geodesic on a differentiable surface (2-manifold) is a
differentiable curve that has zero geodesic curvature at each
point on the curve [27]. The geodesic curvature at a point is
given by κg = κ sin θ, where κ is the curvature of the curve
at that point, and θ is the angle between the normal to the
surface �N and the normal to the curve �n. For a surface and
curve embedded in 3-dimensional Euclidean space R

3, this is
equivalent to defining the geodesic curvature as the covariant
derivative of the unit tangent vector to the curve [28].

The intuition behind this definition of geodesic curvature is
as follows: consider a particle that travels at constant speed
along a curve on a surface. The acceleration of this particle can
be decomposed into one component normal to the surface—the
normal curvature—and another component tangential to the
surface—the geodesic curvature. In other words, the normal

Digital Object Indentifier 10.1109/TPAMI.2008.213 0162-8828/$25.00 Â© 2008 IEEE

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 27, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

2

curvature is due to the bending of the surface, whereas the
geodesic curvature is due to the bending of the curve within the
surface [29]. Geodesic curvature and geodesics are therefore
aspects of the intrinsic geometry of the surface—they are
independent of the embedding of the surface in R

3.
Geodesics are frequently identified with shortest paths on

curved manifolds. Although this is often true, geodesics need
not be shortest paths and shortest paths need not be geodesics,
as demonstrated in Figure 1.

(a) (b)

Fig. 1. (a) A geodesic that is not a shortest path is shown as a dashed curve
on the cylinder. The shortest path is shown as a solid curve. (b) A shortest
path that is not a geodesic. This path is on a closed subset of R

2, which is
an example of a manifold with boundary.

The distinction between geodesics and shortest paths fol-
lows from an application of the calculus of variations [30] to
the arclength functional L, which maps a curve (on a surface)
to a real number corresponding to the arclength of the curve.
The variational derivative δL of the functional L is analogous
to the differential of a function of one variable: the critical
points of L comprise the set of curves for which δL vanishes
[31]. It can be proven that the curves on a surface that satisfy
δL = 0 are precisely the geodesics of that surface [28].

However, there can be critical points where L does not
take on its minimum value (as in Figure 1(a)), and the global
minimum need not occur at a critical point, in which case it
will lie on the boundary of the domain (as in Figure 1(b)).

III. GEODESICS ON TRIANGULAR MESHES

A polyhedral surface is a set of polygons that constitutes
a piecewise-flat representation of a 2-dimensional surface
embedded in R

3. As it is straightforward to decompose
simple polygons into triangles [32], [33], it shall henceforth
be assumed that any polyhedral surface of interest has been
converted into a triangular mesh, without loss of generality.
For the triangular mesh to be a manifold (possibly with
boundary), it must satisfy the following conditions [34], [35]:

• two triangles cannot intersect, except at a vertex or an
edge shared by the two triangles;

• a triangle cannot share an edge with more than one other
triangle;

• the mi triangles sharing vertex i can be ordered into a
sequence T1,T2,. . . ,Tmi

such that adjacent triangles in this
sequence share an edge; and

• a vertex on the boundary must be connected (via an edge)
to exactly two other boundary vertices.

A surface given by a triangular mesh is not, in general,
differentiable at triangle vertices or at points on the triangle
edges. At these points, a curve on the surface is not differen-
tiable, and therefore its curvature is undefined. Consequently,

it might seem that the geodesic curvature (see Section II) must
also be undefined on vertices and edges. However, this is not
the case: triangle chains on meshes enable the definition of
geodesic curvature on the edges of a triangular mesh.

A triangle chain is a sequence of triangles such that adjacent
triangles in the sequence share an edge. Although it may not be
possible to isometrically map (or “flatten”) an entire triangle
mesh into the plane, it is possible to isometrically flatten any
triangle chain of a triangular mesh; that is, the triangle chain
can be laid out in the plane without changing the lengths (and
therefore the angles and area) of any of the triangles in the
chain (see Figure 2). This can be seen by imagining each
shared edge in the chain as a hinge; starting with the second
triangle, each triangle can be rotated in turn until it is in the
same plane as the previous triangle in the chain [36].

Consider a curve that is contained within a triangle chain, as
shown in Figure 2(a). By isometrically flattening the triangle
chain, we also map the curve to the plane isometrically
(Figure 2(b)). Under such a mapping, the intrinsic geometry of
the surface is preserved. Therefore, the problem of computing
the geodesic curvature of a curve on a mesh can be reduced
to the much simpler problem of computing the (geodesic)
curvature of a planar curve.

In order to compute an unambiguous value for the geodesic
curvature at all points of a curve, the curve must not pass
through a triangle vertex, except at its endpoints. If a curve
does pass through an intermediate vertex, it can be contained
within more than one triangle chain, and can therefore have
more than one flattened representation. There is no guarantee
that these different planar curves will have the same curvature
at the intermediate vertex, resulting in an ambiguous value for
the geodesic curvature at that vertex.

One possible solution to this problem is to define an in-
trinsically discrete measure of geodesic curvature that one can
directly apply to the original curve [37], rather than invoking
isometric flattening of triangle chains. Here we instead take the
simpler approach of defining a geodesic on a triangular mesh
as any path connecting two vertices that has the following
properties: (i) the path is completely contained within some
triangle chain and does not pass through any other vertices,
and (ii) when this triangle chain and the path are laid out
in the plane, the path is a straight line—a geodesic of the
Euclidean plane. An important consequence of this definition
is that some vertex pairs on a surface may have no geodesic
connecting them.

IV. COMPUTING MINIMAL-GEODESIC DISTANCES

In this section, we present a simple, novel algorithm, the
LOS algorithm, for computing the minimal (i.e., shortest)
geodesic distance between every pair of vertices on a tri-
angular mesh. If the mesh is the boundary of a convex
region in Euclidean R

3, then an important result is that the
minimal geodesic between two vertices is guaranteed to be
the shortest path between these points [36]. For a non-convex
mesh, however, further computation is required to calculate
shortest-path distances; in Section V, we show how graph-
theoretic algorithms can be used to perform this computation.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 27, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

3

A. Iterative growth of triangle chains

The LOS algorithm is based on the iterative growth of
triangle chains on a triangular mesh and, simultaneously,
on the plane. We begin by describing one iteration of this
algorithm: consider a triangle chain that has already been
flattened, for which the last triangle is �ABC and A is the
last vertex (i.e., the vertex that is in the last triangle of the
chain, but not in the next-to-last triangle). This triangle chain
can be extended over the edge AB or over the edge AC, as
shown in Figure 2.

S

A
B

C

D

(a)

S

A
B

C

D

(b)

Fig. 2. (a) A triangle chain of a triangular-mesh approximation of the unit
sphere, along with a curve contained within this triangle chain. The first vertex
of the chain is S, the last triangle is �ABC and the last vertex is A. The
triangle chain can be isometrically flattened: this is shown in (b) along with
the flattening of the curve under this isometry. In this case, the flattened curve
is a straight line, indicating that the curve shown in (a) is indeed a geodesic
of the triangular mesh.

If we choose to grow the triangle chain over edge AB, then
extending the flattened triangle chain requires the calculation
of the coordinates of vertex D in the plane. This calculation
is equivalent to finding the intersection of two circles given
their centers and radii; the centers are the planar coordinates
of vertices A and B, and the radii are the distances dAD

and dBD , where dAD is the 3-dimensional Euclidean distance
between vertex A and vertex D, and dBD is the 3-dimensional
Euclidean distance between vertex B and vertex D. This is a
straightforward problem that can be solved using the law of
cosines.

Let us assume that a segment of the edge AB is “visible”
from the first vertex S (i.e., the vertex that is in the first triangle
of the chain, but not in the second triangle). By this we mean
that a straight line can be drawn on the flattened triangle chain
from S to any point on the segment, such that the straight line
is completely contained within the triangle chain. The angle
that any such line makes with the horizontal axis can be easily
computed: let θmin be the smallest such angle and let θmax be
the largest angle (see Figure 3). Let θ be the angle that the
straight line from S to D on the flattened triangle chain makes
with the horizontal axis. If θ ∈ [θmin, θmax], then a geodesic
connecting S to D exists on this triangle chain; the length of
the geodesic is simply the Euclidean distance between S and
D in the plane.

If we continue to grow this triangle chain, we must again
choose one of two edges over which to extend the triangle
chain. If, every time we are confronted with such a choice, we
first extend the chain over one edge and then return later to

S

A

B D

θmin θmax

Fig. 3. If θ ∈ [θmin, θmax], where θ is the angle vertex D makes with
the horizontal axis, then the straight line connecting vertex S to D will be
contained within the flattened triangle chain. Therefore, a geodesic connecting
S to D exists on this triangle chain. The angles θmin and θmax thus define
a visibility sector—vertex D must lie within this sector to be “visible” from
S.

extend the chain over the other edge, we will have constructed
every possible triangle chain of the triangular mesh, in a depth-
first manner. For any such triangle chain, we can compute the
length of the geodesic between the first vertex and the last
vertex on the flattened chain (if a geodesic exists), storing
this path if it is shorter than the geodesics on other triangle
chains between these two vertices. This strategy of exhaustive
search is feasible for meshes with a small number of vertices
(≈ 1000) [13].

S

A

B

D

θmin θmax

(a)

S

A

B

D

θmin θmax

(b)

Fig. 4. (a) If θ > θmax, where θ is the angle vertex D makes with the
horizontal axis, then there will not be a straight line connecting S to any point
on the edge BD, such that the straight line is contained within the flattened
triangle chain. Therefore, no geodesics will be found by extending the triangle
chain over the edge BD. (b) Similarly, if θ < θmin, no geodesics will be
found by extending the triangle chain over edge AD.

Instead of performing an exhaustive search, we can greatly
reduce the number of triangle chains we need to construct
by extending triangle chains only over edges that have a
visible segment. To see this, consider the situation illustrated
in Figure 4(a), where θ > θmax. No segment of edge BD can
be connected to S with a straight line that is contained within
the triangle chain; therefore, there is no point in extending
the triangle chain over this edge—no geodesics will be found
by growing the triangle chain in this direction. Similarly, if
θ < θmin, then there is no point in extending the triangle
chain over edge AD (see Figure 4(b)). It is only when
θ ∈ [θmin, θmax] that the triangle chain must be extended
over both edges, AD and BD, in turn. This realization
can greatly reduce the number of triangle chains we need to
construct in our search for geodesic paths, and is implemented
in the LOS (for “line-of-sight”) algorithm, which we present
next.

B. The LOS algorithm: pseudocode

1) Choose a first vertex S.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 27, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

4

2) Choose a triangle T that has S as a vertex, and let AT

and BT be the other two vertices of T . Compute the
Euclidean distance between S and AT and store this
distance in the matrix δ as the entry δSAT

. Similarly,
compute and store the value for δSBT

. Map T to the
plane, with S at the origin, AT on the positive x-axis,
and BT in the upper half-plane y > 0. Let θmin = 0 (i.e.,
the angle SAT makes with the x-axis) and let θmax be
the angle SBT makes with the x-axis. At this point, we
have a triangle chain that consists solely of the triangle
T .

3) Let A = AT , B = BT , and initialize the triangle-chain
stack to be empty. We shall use this stack to implement
the branching of the triangle chain, when we extend the
triangle chain over one edge and later return to extend
the chain over the other edge.

4) Find the triangle U that lies on the other side of AB. If
no such triangle exists, or if (θmax − θmin) falls below
machine precision, then there are two options:

a) If the triangle-chain stack is not empty, pop the
stack to retrieve new values for A, B, and their
planar coordinates, along with the new values for
θmin and θmax.

b) If the stack is empty, return to step 2, choosing
a new triangle T that has S as a vertex. If every
triangle that has S as a vertex has already been
selected, return to step 1 and choose a new first
vertex S. Once every vertex has been selected to
be a first vertex in step 1, the algorithm terminates.

5) Add U to the flattened triangle chain. That is, calculate
the planar coordinates of vertex D, which is the third
vertex of triangle U (the other two vertices are A and
B). Also, compute the angle θ that SD makes with the
x-axis.

6) If θ < θmin, set A = D and return to step 4.
7) If θ > θmax, set B = D and return to step 4.
8) If θ ∈ [θmin, θmax], then perform the following steps:

a) Compute the Euclidean distance between the pla-
nar representations of S and D. If this is the short-
est distance from S to D that has been encountered
thus far, then store this distance in the matrix δ as
the entry δSD. Also update the matrices T and
θ such that TSD = T , the first triangle on this
triangle chain, and θSD = θ, which is equivalent to
the angle (on the triangular mesh) that this geodesic
from S to D makes with the straight edge from
S to AT . (Note that the matrices T and θ are
only required for the path construction algorithms
that will be presented in Section VI—if it is just
distances that are required and not paths, then these
quantities need not be stored.)

b) Push the information needed to extend the triangle
chain over the edge AD onto the stack. That is,
create a stack item: a data structure that has fields
for A, B, and their planar coordinates, as well
fields for θmin and θmax. In the field for A, store
the index of vertex A (with respect to the triangular

mesh) along with its planar coordinates. In the field
for B, store the index of vertex D and its planar
coordinates. In the field for θmin, store the current
value of θmin, and in the field for θmax, store the
current value of θ.

c) Extend the triangle chain over the edge BD. That
is, set A = D and set θmin = θ.

d) Return to step 4.

C. Termination of the LOS algorithm

Termination of the LOS algorithm follows from two con-
ditions: (i) the length of any triangle chain constructed by
the algorithm is finite and (ii) the number of triangle chains
constructed is finite. The first condition follows directly from
the LOS construction, which is characterized by the visi-
bility sector shown in Figure 3. The angular extent of the
visibility sector (θmax − θmin) must decrease as the triangle
chain grows, resulting in termination via Step 4 of the LOS
pseudocode—a non-decreasing angular extent would require
unbounded triangle edge lengths, due to the expansion of the
visibility sector “wavefront” with increasing triangle chain
length. A more detailed description is provided in the sup-
plementary materials.

The second condition follows from the first: let CS,T be the
longest triangle chain with first vertex S and initial triangle T .
Then every other triangle chain originating from S and T can
be generated by branching off some triangle contained within
CS,T . Since the number of triangles in CS,T is finite (from
the first condition), the number of triangle chains that can be
constructed by branching off CS,T is finite. Therefore, the total
number of triangle chains constructed by the LOS algorithm
is finite, as there are only a finite number of choices for S and
T .

V. COMPUTING SHORTEST-PATH DISTANCES

The minimal geodesic between two points on a surface is
not necessarily the shortest path between these two points.
Here we show how the shortest-path distance between every
pair of vertices on a triangular mesh can be computed given
the minimal-geodesic distance between every pair of vertices.

If the shortest path between two vertices does not pass
through any intermediate vertices, then this path will be
contained within some unique triangle chain. In this case, the
shortest path is a minimal geodesic, and no further compu-
tation is required. However, in general, the shortest path β

between two vertices, S and D, will pass through n inter-
mediate vertices (in order): I1, I2, . . . , In. The path between
two consecutive vertices in this sequence, Ij and Ij+1, will
lie within some triangle chain and must be the shortest path
(and minimal geodesic) between these two vertices; otherwise,
the minimal geodesic between Ij and Ij+1 could be used to
create a shorter path than β (from S to D).

Thus the shortest path between two vertices of a triangular
mesh must be a union of minimal geodesics. To find this
shortest union, we first construct the minimal-geodesic dis-
tance graph: the nodes of this graph are the vertices of the
mesh, two nodes will be connected by an arc (i.e., graph

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 27, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

5

edge) if a minimal geodesic exists between them, and the
weight of an arc is the minimal-geodesic distance between
the corresponding vertices.

Standard graph-theoretic algorithms for computing shortest-
path distances on weighted graphs can then be used to con-
struct the union of minimal geodesics that yields the shortest
distance between pairs of vertices on a triangular mesh. Two
canonical algorithms are Dijkstra’s algorithm for finding the
shortest distance from one node (the “source”) to all of the
other nodes on a graph [38] and Floyd’s algorithm for finding
the shortest distance between all pairs of nodes in a graph
[39].

As we are interested in the shortest-path distance between
every pair of vertices, Floyd’s algorithm is the natural choice to
apply to the minimal-geodesic distance graph that is computed
by the LOS algorithm, resulting in the LOS-Floyd algorithm:
for every pair of vertices S and D, each vertex in turn is
considered as an intermediate vertex, and if the distance be-
tween S and D is reduced by passing through an intermediate
vertex I , the updated distance δSD = δSI + δID is stored in
the matrix δ.

As with the LOS algorithm (Section IV), some additional
book-keeping is required in order to use the path construction
algorithms that will be presented in Section VI; for Floyd’s
algorithm, this takes the form of a successor matrix R that is
initialized such that RSD = D for each vertex pair (S, D) for
which a minimal geodesic exists. When the distance between
S and D is lowered by going through an intermediate vertex
I , R is updated by setting RSD = RSI .

Unlike the LOS algorithm, the LOS-Floyd algorithm will
always return a finite value for the distance between each
vertex pair, under the conditions that the vertex coordinates
are themselves finite and that the triangular mesh constitutes a
single connected component—although there may not always
be a geodesic between two vertices, there will always be a
shortest path between them if the two conditions above are
met. Unlike geodesics, shortest paths also have the property
that they cannot pass through a triangle more than once.
Therefore, when computing shortest paths, we can use a
modified version of the LOS algorithm that does not allow
a triangle to appear more than once in a triangle chain. This
results in an improvement in the efficiency of the computation,
as shown in the supplemental material.

VI. CONSTRUCTING PATHS

Although the distances computed by the LOS and LOS-
Floyd algorithms provide the lengths of minimal geodesics and
shortest paths, respectively, these algorithms do not explicitly
construct the paths themselves—in the LOS algorithm, the
minimal-geodesic distance between a pair of vertices results
from computing a single Euclidean distance in the plane
(via isometric flattening of the triangle chain containing this
geodesic), as opposed to the more costly strategy of first
constructing this piecewise-linear path explicitly, and then
computing its length by summing up the lengths of its con-
stituent straight-line segments.

In this section, we present the LOS-Path algorithm, which
rapidly constructs the minimal-geodesic path in R

3 connecting

any two given vertices, given the output of the LOS algorithm,
and show that a slight modification of this algorithm can be
used to construct non-minimal geodesics. We also present the
LOS-Floyd-Path algorithm, which rapidly constructs shortest
paths on triangular meshes.

The output of these algorithms is a list of 3-dimensional
coordinates { �Xk}, where k = 1, . . . , K such that �X1 contains
the coordinates of the first point on the path, �XK contains
the coordinates of the last point, and �Xk and �Xk+1 are the
endpoints of the k-th straight-line segment.

A. The LOS-Path algorithm: pseudocode

1) Given a source vertex S and a target vertex P , use
the matrices T and θ returned by the LOS algorithm
(see step 8a of Section IV-B) to set triangle T = TSP

and angle θ0 = θSP . Also, set �X1 to the 3-dimensional
coordinates of vertex S and let k = 1.

2) Let A and B be the other two vertices of T . Place S

at the origin, A on the (horizontal) x-axis, and B in the
upper half-plane.

3) Find the intersection of the planar representation of
AB and the ray from the origin that makes an angle
θ0 with the x-axis. Find the corresponding point on
the 3-dimensional line segment AB of the triangular
mesh. Increment k by 1 and store the 3-dimensional
coordinates of this point as �Xk.

4) Find the triangle U that lies on the other side of AB.
5) Let D be the third vertex of triangle U (other than A or

B). Calculate the planar coordinates of D and the angle
θ that SD makes with the x-axis.

6) If θ < θ0, extend the triangle chain over the edge BD.
That is, set A = D and return to step 3.

7) If θ > θ0, extend the triangle chain over the edge AD.
That is, set B = D and return to step 3.

8) If θ = θ0 (which occurs when D = P), let K = k + 1,
store the 3-dimensional coordinates of D as �XK and let
the algorithm terminate.

B. Constructing non-minimal geodesics

The LOS-Path algorithm can be easily modified to construct
non-minimal geodesics, such as the solenoidal winding on the
cylinder shown in Figure 1(a): in step 1, instead of choosing T
and θ0 based on the output of the LOS algorithm, T is now
chosen to be any triangle that has the source S as a vertex
and θ0 is chosen to be any angle less than or equal to the
angle between the two edges of T that meet at S. Together,
T and θ0 specify the initial direction of heading of a geodesic
originating from vertex S. (Note that the target vertex P is
now left unspecified.)

This modification of the LOS-Path algorithm solves an
initial value problem, whereas the LOS-Path algorithm (which
uses the output of the LOS algorithm) solves a boundary value
problem for constructing geodesics on triangular meshes.

The termination criteria for the initial value problem must
also be considered—step 4 can be modified to result in
algorithm termination if no triangle U lies on the other side of
AB, i.e., if the geodesic intersects a boundary of the surface.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 27, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

6

The algorithm should also terminate when the pathlength
(or the number of line segments in the path) exceeds some
predetermined cutoff.

C. The LOS-Floyd-Path algorithm

The successor matrix R returned by the LOS-Floyd algo-
rithm can be used to rapidly identify the intermediate vertices
along the shortest path between a source vertex S and a target
vertex P : the first intermediate vertex is given by I1 = RSP ,
the second intermediate vertex is given by I2 = RI1P , and so
on.

As the shortest path between any two consecutive interme-
diate vertices Ij and Ij+1 must be a minimal geodesic (see
Section V), we can construct the shortest path from S to P

by concatenating the minimal geodesics (as constructed by
the LOS-Path algorithm) from S to I1, I1 to I2, . . . , and In

to P—this procedure shall henceforth be referred to as the
LOS-Floyd-Path algorithm for constructing shortest paths on
triangular meshes.

VII. RESULTS

A. Minimal geodesics versus shortest paths

The difference between minimal geodesics and shortest
paths on triangular meshes is illustrated in Figure 5, which
shows the output of the LOS-Path and LOS-Floyd-Path algo-
rithms.

Fig. 5. The minimal geodesic between two vertices, as given by the LOS-
Path algorithm, is shown in solid white. The shortest path, as given by the
LOS-Floyd-Path algorithm, is shown in dashed white. Note that the shortest
path passes through two intermediate vertices, and is composed of the union
of three minimal geodesics.

B. Validating the LOS and LOS-Path algorithms

Minimal geodesics on the sphere are known to be segments
of great circles (and are also shortest paths), and closed-form
expressions for the corresponding distances are easily derived.
Therefore, a piecewise-flat approximation of the unit sphere
was used to test the accuracy of the LOS and LOS-Path
algorithms.

Figure 6(a) shows the shortest great-circle segment con-
necting a pair of vertices and the output of the LOS-Path
algorithm. Figure 6(b) shows the agreement between the great-
circle distances and the LOS output for every pair of vertices
on the mesh. Note that the minor discrepancy seen here is due
to the fact that the piecewise-flat surface does not constitute
a perfect representation of the sphere (which is curved at all
points).

(a)

0 1 2 3
0

1

2

3

Great−circle distance

LO
S

 d
is

ta
nc

e

(b)

Fig. 6. (a) The shortest great-circle segment connecting a pair of vertices is
shown in black, and the path returned by the LOS-Path algorithm is shown
in white. (b) For every pair of vertices in the mesh, the length of the shortest
great-circle segment is plotted against the distance computed by the LOS
algorithm. These points lie almost exactly on the line y = x (R2 > 0.999).

C. Validating the LOS-Floyd and LOS-Floyd-Path algorithms

On convex polyhedral surfaces, minimal geodesics (given by
the LOS-Path algorithm) and shortest paths (given by the LOS-
Floyd-Path algorithm) are identical. Therefore, a validation
of the LOS-Floyd and LOS-Floyd-Path algorithms (that does
not simply reduce to a validation of the LOS and LOS-
Path algorithms) requires knowledge of shortest paths on non-
convex surfaces.

(a)

0 4 8
0

4

8

Numerical−integration distance

LO
S

−
F

lo
yd

 d
is

ta
nc

e

(b)

Fig. 7. (a) The shortest path connecting a pair of points, as given by numerical
integration on a surface of revolution with generating curve specified by
p(u1) = 2−cos(2u1) and q(u1) = u1 (see supplemental material), is shown
in dashed black. The ode45 function in MATLAB (The MathWorks, Natick,
MA) was used for numerical integration. A triangular mesh approximating this
surface is shown in gray, and the path returned by running the LOS-Floyd-
Path algorithm on this mesh is shown in dashed white. (b) For every pair of
vertices in the mesh, the distance given by numerical integration is plotted
against the distance computed by the LOS-Floyd algorithm. These points lie
almost exactly on the line y = x (R2 > 0.999).

For the special case of differentiable surfaces of revolution,
shortest paths between pairs of points can be found via the
numerical integration of ordinary differential equations (see
supplemental material for details). We can therefore compare
these paths (and their lengths) on a non-convex, differentiable
surface of revolution with the output of the LOS-Floyd and
LOS-Floyd-Path algorithms on a piecewise-flat approximation
of this surface, as shown in Figure 7. This figure demonstrates
excellent agreement between the paths, thus validating the
LOS-Floyd and LOS-Floyd-Path algorithms. Similar agree-
ment was found for other surfaces of revolution, both convex,
such as spheroids and paraboloids, and non-convex, such as
catenoids and hyperboloids of one sheet.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 27, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

7

D. Run-time performance and complexity

To evaluate the run-time performance of the LOS-Floyd
algorithm, several subsets of a large triangular mesh (with
over 50, 000 vertices) were extracted and the time taken by the
algorithm to compute all shortest-path distances was measured
for each subset (see Figure 8). These results show that the
LOS-Floyd run time increases as a cubic function of the
number of vertices N , a reflection of the O(N3) run time
of Floyd’s algorithm and of the LOS component alone (see
supplemental material).

(a)

1 2

1

2

3

Number of Vertices

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

×10
4

×10
5

(b)

Fig. 8. (a) A triangular mesh with 52, 360 vertices, representing the right
hemisphere of human cerebral cortex. A small subset of this surface, with
670 vertices, is indicated by the middle shade of gray. A second, larger
subset, with 8441 vertices, is created by taking the union of the small subset
with the region shaded dark gray. (b) The LOS-Floyd algorithm was used to
compute the shortest-path distance between every pair of vertices on several
such subsets extracted from the full cortical surface, and the number of vertices
in each subset is plotted against the time taken for the algorithm to execute.
A third degree polynomial fits the data points extremely well (R2 > 0.999),
as shown by the black curve, indicating that the LOS-Floyd algorithm has
cubic run-time performance. All times were measured on a workstation with
a 2.4 GHz AMD Opteron processor and 16 GB of memory.

It is possible to construct a mesh for which the LOS strategy
(i.e., only extending triangle chains over edges with a visible
segment, described in Section IV-A) is no more efficient than
exhaustive search, as shown in Figure 9. For this mesh, the ver-
tices were intentionally arranged such that any triangle chain
with first vertex S must always be extended over both possible
edges during the LOS search. Therefore, meshes constructed
in this manner will exhibit a run time that is exponential with
the number of vertices [13], demonstrating that the (worst-
case) time complexity of the LOS algorithm is exponential.
However, aside from such pathological meshes deliberately
designed to defeat the LOS strategy, we have never observed
anything other than cubic run-time performance for the LOS-
Floyd algorithm on any “real-world” meshes, including a
number of different brain surface meshes.

The time taken by the LOS-Path algorithm to construct
a minimal geodesic between two vertices is proportional to
the number of triangles in the triangle chain containing the
geodesic, as no branching is involved. As the number of
triangles in a chain is O(N), the LOS-Path algorithm has
linear time complexity. The additional time taken by the LOS-
Floyd-Path algorithm is the time required to traverse the chain
of intermediate vertices from the source vertex to the target
vertex, via the successor matrix R. Again, no branching is
involved, and so the time taken is proportional to the number

of intermediate vertices, which is O(N). Therefore, the LOS-
Floyd-Path algorithm also has linear time complexity.

S

AB

D

Fig. 9. A mesh on which the LOS strategy does not result in an advantage
over exhaustive search. A triangle chain with first vertex S and last vertex
D is shown in dark gray. As D was positioned during the construction of
this planar mesh to be visible from S (i.e., the coordinates of D were chosen
such that θSD = 1

2
[θSA + θSB]), this triangle chain must be extended over

both edge AD and edge BD in the search for geodesics, as indicated by the
arrows. As this is true (by construction) for every triangle chain starting from
S, the LOS strategy reduces to exhaustive search on meshes constructed in
this manner.

VIII. DISCUSSION

A. Comparison with other exact shortest-path algorithms

Several algorithms for computing exact shortest paths and
distances on polyhedral surfaces have previously been pro-
posed [8], [9], [10], [11], [13], [36], [40]. However, it is not
clear how some of these methods could be implemented. To
the best of our knowledge, the only exact algorithms that
have actually been implemented, other than the algorithms
presented here, are the WS algorithm [13], the MMP algorithm
[36] (implemented by Surazhsky et al. [41]), and the CH
algorithm [40] (implemented by Kaneva and O’Rourke [42]
and Lanthier et al. [6]).

Unlike these other methods, the work presented here makes
an important distinction between minimal geodesics and short-
est paths—although these are equivalent on convex polyhedral
surfaces, they will (in general) differ on non-convex surfaces.
While shortest paths are preferable for most applications,
minimal geodesics may be more suitable for certain operations
such as parallel transport [37], surface partitioning [4], [5],
and path planning [7], by virtue of being totally straight (i.e.,
having zero geodesic curvature at all points), unlike shortest
paths that pass through intermediate vertices.

For computing shortest paths on non-convex polyhedral
surfaces, the main novelty in the current approach lies in
the observation that following a minimal-geodesic computa-
tion (e.g., LOS/LOS-Path) with the application of a shortest-
path graph algorithm (e.g., Floyd’s or Dijkstra’s algorithm)
results in the computation of shortest paths on the polyhedral
surface. Note that whereas the extension of the shortest-
path computation from the convex to the non-convex case
involves nothing more than the application of a standard graph-
theoretic algorithm here, this extension is non-trivial for the
WS, CH, and MMP algorithms. In particular, Kaneva and
O’Rourke [42] report several problems with the CH algorithm
on non-convex surfaces, including problems with collinear and

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 27, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

8

boundary vertices. Our approach, on the other hand, does not
suffer from these issues.

The CH and MMP algorithms compute the shortest-path
distance from one vertex to all others (the single-source prob-
lem), whereas the WS and LOS-Floyd algorithms compute the
shortest-path distance between every pair of vertices (the all-
pairs problem). To facilitate comparison of the time and space
complexity of these four algorithms, we will assume that the
CH and MMP algorithms have been used to solve the all-pairs
problem by taking each vertex in turn as the source. Then, the
(worst-case) time complexity is exponential for the WS and
LOS-Floyd algorithms (as shown in [13] and in Section VII-D
above, respectively), O(N3) for the CH algorithm [40], and
O(N3 log N) for the MMP algorithm [36]. However, Surazh-
sky et al. [41] report that their implementation of the MMP
algorithm exhibits sub-cubic run-time performance on their
test surfaces, and similarly we have never observed anything
other than cubic run-time performance when executing our
implementation of the LOS-Floyd algorithm on many different
brain surface meshes. In order to directly compare the run time
of our implementation of the LOS-Floyd algorithm with that
of the Surazhsky MMP implementation, we used a spherical
surface with 2048 triangles as input, and measured the LOS-
Floyd run time to be about 30 seconds on a 2.4 GHz AMD
Opteron processor. Based on the run times reported in Figure
6 of Surazhsky et al. [41], we estimate that, given the same
spherical surface as input, it would take approximately 60
seconds (on a 2.4 GHz PC) for their MMP implementation
to compute the distance between every vertex pair.

As for space complexity, the storage of distances requires
O(N2) space for any all-pairs algorithm and, unlike the
situation for single-source algorithms, this will typically dom-
inate any additional space requirements of the algorithm.
For the LOS algorithm, these additional space requirements
are governed by the maximum triangle chain length and the
maximum stack size, each of which is O(N), and therefore
the space complexity of the LOS and LOS-Floyd algorithms
is O(N2), being dominated by the storage of the distances.

The LOS-Floyd algorithm has also been validated more
extensively than any of the existing exact algorithms. Aside
from qualitative inspection of the computed paths, quantitative
validation of the WS, CH and MMP algorithms extends no
further than comparing the algorithm output on polyhedral ap-
proximations of the sphere to the known analytic distances on
the sphere (as in Section VII-B). As shown in Section VII-C,
by numerically integrating the geodesic differential equations
for surfaces of revolution, we can quantitatively validate
shortest-path computations on a variety of non-trivial, non-
convex surfaces. Solving the geodesic differential equations for
more general differentiable manifolds will facilitate an even
greater level of quantitative validation.

B. Accuracy of distance computations

The construction of a polyhedral mesh that adequately
represents and approximates some surface of interest can
be a challenging problem in computational geometry [43],
[44], [45]. As the quality of the surface approximation varies,

depending on the problem domain and the method of mesh
construction, so will the accuracy of shortest paths computed
on the polyhedral mesh, with respect to the true shortest paths
on the surface of interest.

However, the results shown in Figure 6 and Figure 7 indicate
that the methods presented here are highly accurate even when
rather coarse meshes are used as piecewise-flat approximations
of smooth surfaces. These results also indicate that, for the
LOS and LOS-Floyd algorithms, numerical errors due to finite
machine precision are not significant.

(a) (b)

Fig. 10. One of the simplest schemes for computing approximate shortest
paths on triangular meshes involves the application of Dijkstra’s algorithm
to the graph whose nodes are the triangle vertices and whose arcs are the
triangle edges. Two such paths on a flat surface are shown in dashed white in
(a). The corresponding exact shortest paths, computed by the LOS-Floyd-Path
algorithm, are shown in (b). Note that the Dijkstra paths are constrained to lie
along triangle edges, whereas the exact shortest paths cut across triangle faces.
Therefore, the Dijkstra method always overestimates distance: the lengths of
the two paths shown here are overestimated by a factor of

√
2 for the upper

path and 3/
√

5 for the lower path.

Unlike exact algorithms, methods that compute approximate
shortest paths on polyhedral surfaces will introduce errors even
when the polyhedral mesh perfectly represents the surface of
interest and arbitrary-precision (exact) arithmetic is used. A
number of these approximate algorithms have been proposed
[6], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24];
one such scheme, involving a simple application of Dijkstra’s
algorithm, is illustrated in Figure 10. The accuracy of these
approximate algorithms is typically unknown for arbitrary
surfaces, and therefore exact algorithms such as LOS-Floyd
can be used to establish the accuracy of these approximate
techniques on piecewise-flat surfaces (e.g., see [6]), or to tune
the parameters of an approximate method in order to maximize
accuracy. (We emphasize that we use “accuracy” to mean
the agreement between values computed by an algorithm and
values known to be true, not the order of accuracy based on
a Taylor series analysis, which is often used to characterize
numerical approximation schemes [46].) As approximate algo-
rithms are usually faster than exact algorithms, they may be
the method of choice in situations where their accuracy has
been established and is known to be adequate for the problem
at hand.

C. Flattening polyhedral surfaces

An important reason for computing the full set of exact
shortest-path distances is to be able to construct and evaluate
“flat maps” of brain surfaces [1], [2], [47], [48]. These flat
maps have proven to be useful not just for visualization,
but also for mathematically modeling and characterizing the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 27, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

9

intrinsic shape and topographic structure of visual cortex, both
in humans and macaques [25], [26].

It is impossible to map a surface with non-zero Gaussian
(intrinsic) curvature into the plane without introducing some
amount of geometric distortion [27], [28], [29]. The set of
shortest-path distances between all vertex pairs of a polyhedral
surface characterizes the global metric structure of the surface
and can be used to quantify the metric distortion that results
from flattening. This distortion (i.e., “flattening error”) can be
calculated by comparing the shortest-path distance between
each pair of vertices on the polyhedral surface with the
Euclidean distance between the corresponding points in the
plane.

Exact shortest-path distances can be used not only to
measure distortions in flat maps, but also to construct flat
maps by adjusting the positions of vertices in the plane
until the measured distortion is minimized. This scheme for
flattening polyhedral surfaces was introduced by Schwartz et
al. [2], using the WS algorithm to compute exact shortest-path
distances.

As the WS algorithm was considered to be too computa-
tionally expensive for meshes with a large number of ver-
tices (� 1000), modifications of this flattening scheme were
proposed [3], [49] that incorporate approximate, rather than
exact, shortest-path distances. However, by using the LOS-
Floyd algorithm presented in this report, it is now feasible to
compute exact distances for flattening surfaces with tens of
thousands of vertices.

(a) (b)

Fig. 11. (a) A triangular mesh representation of macaque primary visual
cortex, reconstructed from serial sections. (b) The result of flattening the
surface shown in (a) with the “DMflatten” algorithm [47]. The overall (root
mean square) error for this flat map is 4.2%, calculated directly from the
shortest-path distances returned by the LOS-Floyd algorithm.

Figure 11 shows the result of flattening macaque primary
visual cortex with the “DMflatten” algorithm [47], which
incorporates the exact distances computed by the LOS-Floyd
algorithm, along with several other improvements over the
original Schwartz flattening algorithm [2]. The overall error
associated with flattening this surface is 4.2%, which is
sufficiently low to justify working with the flattened represen-
tation rather than the original, folded surface. This allows the
well-understood mathematical techniques of planar Euclidean
geometry and complex analysis to be used for the modeling
and analysis of spatial patterns of activity within brain surfaces
[50].

IX. SUMMARY

Two algorithms have been introduced for computing dis-
tances along a manifold polyhedral surface based on the notion
of geodesic curvature defined on a triangular mesh. The LOS
algorithm computes exact minimal-geodesic distances along
triangle chains, and the LOS-Floyd algorithm combines these
distances to compute exact shortest-path distances along the
surface. Each algorithm has been implemented and validated
on surfaces on which distances are known, in order to verify
the accuracy and to measure the run-time performance, which
is cubic or less for both algorithms. Also, both algorithms
have been extended to compute the exact minimal-geodesic
paths and shortest paths. While several algorithms exist for
computing approximate distances, typically their accuracy is
unknown for arbitrary surfaces, and they will therefore be
unsuitable for problems that require quantitative measures of
the approximation error. The exact-distance computations car-
ried out by the LOS or LOS-Floyd algorithms are feasible for
large-scale surfaces containing tens of thousands of vertices,
and are a necessary component of our near-isometric surface
flattening algorithm that acts to minimize the metric distortions
inherent in the transformation of curved manifolds into flat
representations.

ACKNOWLEDGMENTS

The authors would like to thank Dan Cruthirds and Oliver
P. Hinds for their helpful insights and comments on this
project, as well as Dr. Guillermo Sapiro and the anonymous
reviewers, whose feedback led to a significant improvement
of the manuscript.

REFERENCES

[1] E. Schwartz and B. Merker, “Flattening cortex: an optimal computer
algorithm and comparisons with physical flattening of the opercular
surface of striate cortex,” Society for Neuroscience Abstracts, 1985.

[2] E. L. Schwartz, A. Shaw, and E. Wolfson, “A numerical solution to
the generalized mapmaker’s problem,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 11, pp. 1005–1008, 1989.

[3] G. Zigelman, R. Kimmel, and N. Kiryati, “Texture mapping using
surface flattening via multidimensional scaling,” IEEE Transactions on
Visualization and Computer Graphics, vol. 8, no. 2, pp. 198–207, 2002.

[4] S. Katz and A. Tal, “Hierarchical mesh decomposition using fuzzy
clustering and cuts,” in SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers.
New York, NY: ACM, 2003, pp. 954–961.

[5] V. Krishnamurthy and M. Levoy, “Fitting smooth surfaces to dense
polygon meshes,” in SIGGRAPH ’96: Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques. New
York, NY: ACM, 1996, pp. 313–324.

[6] M. Lanthier, A. Maheshwari, and J. R. Sack, “Approximating shortest
paths on weighted polyhedral surfaces,” Algorithmica, vol. 30, no. 4,
pp. 527–562, 2001.

[7] F. A. Jolesz, W. E. Lorensen, H. Shinmoto, H. Atsumi, S. Nakajima,
P. Kavanaugh, P. Saiviroonporn, S. Seltzer, S. Silverman, M. Phillips,
and R. Kikinis, “Interactive virtual endoscopy,” American Journal of
Radiology, vol. 169, pp. 1229–1237, 1997.

[8] M. Sharir and A. Schorr, “On shortest paths in polyhedral surfaces,”
SIAM Journal on Computing, vol. 15, no. 1, pp. 193–215, 1986.

[9] D. M. Mount, “On finding shortest paths on convex polyhedra,” Depart-
ment of Computer Science, University of Maryland, Baltimore, MD,
Tech. Rep. 1495, 1984.

[10] J. O’Rourke, S. Suri, and H. Booth, “Shortest paths on polyhedral
surfaces,” in Lecture Notes in Computer Science. Berlin: Springer,
1985, vol. 182, pp. 243–254.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 27, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

10

[11] S. Kapoor, “Efficient computation of geodesic shortest paths,” in
Proceedings of the thirty-first annual ACM symposium on Theory of
computing. New York, NY: ACM Press, 1999, pp. 770–779.

[12] J. O’Rourke, “Computational geometry column 35,” International Jour-
nal of Computational Geometry and Applications, vol. 9, no. 4–5, pp.
513–515, 1999.

[13] E. Wolfson and E. L. Schwartz, “Computing minimal distances on
arbitrary polyhedral surfaces,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 11, pp. 1001–1005, 1989.

[14] J. Hershberger and S. Suri, “Practical methods for approximating short-
est paths on a convex polytope in R

3,” Computational Geometry, vol. 10,
no. 1, pp. 31–46, 1998.

[15] P. K. Agarwal, S. Har-Peled, M. Sharir, and K. R. Varadarajan, “Ap-
proximating shortest paths on a convex polytope in three dimensions,”
Journal of the ACM, vol. 44, no. 4, pp. 567–584, 1997.

[16] K. R. Varadarajan and P. K. Agarwal, “Approximating shortest paths on
a nonconvex polyhedron,” SIAM Journal on Computing, vol. 30, no. 4,
pp. 1321–1340, 2000.

[17] S. Har-Peled, “Constructing approximate shortest path maps in three
dimensions,” SIAM Journal on Computing, vol. 28, no. 4, pp. 1182–
1197, 1999.

[18] T. Kanai and H. Suzuki, “Approximate shortest path on a polyhedral
surface and its applications,” Computer-Aided Design, vol. 33, no. 11,
pp. 801–811, 2001.

[19] M. Kageura and K. Shimada, “Finding the shortest path for quality
assurance of electric components,” Journal of Mechanical Design, vol.
126, pp. 1017–1026, 2004.

[20] R. Kimmel and J. A. Sethian, “Computing geodesic paths on manifolds,”
Proceedings of the National Academy of Sciences (USA), vol. 95, no. 15,
pp. 8431–8435, 1998.

[21] J. A. Sethian and A. Vladimirsky, “Fast methods for the eikonal and
related hamilton-jacobi equations on unstructured meshes,” Proceedings
of the National Academy of Science (USA), vol. 97, no. 11, pp. 5699–
5703, 2000.

[22] M. Novotni and R. Klein, “Computing geodesic paths on triangular
meshes,” in Proceedings of the 10th International Conference in Central
Europe on Computer Graphics, Visualization and Computer Vision,
2002, pp. 341–347.

[23] A. Bartesaghi and G. Sapiro, “A system for the generation of curves
on 3d brain images,” Human Brain Mapping, vol. 14, no. 1, pp. 1–15,
2001.

[24] N. Khaneja, M. Miller, and U. Grenander, “Dynamic programming
generation of curves on brain surfaces,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 20, no. 11, pp. 1260–1265, 1998.

[25] O. P. Hinds, J. R. Polimeni, M. L. Blackwell, C. J. Wiggins, G. C.
Wiggins, A. van der Kouwe, L. L. Wald, E. L. Schwartz, and B. Fischl,
“Reconstruction and analysis of human V1 by imaging the stria of
Gennari using MRI at 7T,” Society for Neuroscience Abstracts, 2005.

[26] J. R. Polimeni, O. P. Hinds, M. Balasubramanian, A. van der Kouwe,
L. L. Wald, A. M. Dale, B. Fischl, and E. L. Schwartz, “The human V1-
V2-V3 visuotopic map complex measured via fMRI at 3 and 7 Tesla,”
Society for Neuroscience Abstracts, 2005.

[27] D. J. Struik, Lectures on Classical Differential Geometry, 2nd ed.
Reading, MA: Addison-Wesley, 1961.

[28] M. P. do Carmo, Differential Geometry of Curves and Surfaces. En-
glewood Cliffs, NJ: Prentice-Hall, 1976.

[29] J. McCleary, Geometry from a Differentiable Viewpoint. Cambridge,
UK: Cambridge University Press, 1994.

[30] D. R. Smith, Variational Methods in Optimization. Englewood Cliffs,
NJ: Prentice-Hall, 1974.

[31] I. M. Gelfand and S. V. Fomin, Calculus of Variations. Englewood
Cliffs, NJ: Prentice-Hall, 1963.

[32] M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan, “Triangu-
lating a simple polygon,” Information Processing Letters, vol. 7, no. 4,
pp. 175–179, 1978.

[33] R. E. Tarjan and C. J. V. Wyk, “An O(n log log n)-time algorithm for
triangulating a simple polygon,” SIAM Journal on Computing, vol. 17,
no. 1, pp. 143–178, 1988.

[34] L. C. Kinsey, Topology of Surfaces. New York, NY: Springer-Verlag,
1993.

[35] H. Edelsbrunner, Geometry and Topology of Mesh Generation. Cam-
bridge, UK: Cambridge University Press, 2001.

[36] J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou, “The discrete
geodesic problem,” SIAM Journal on Computing, vol. 16, no. 4, pp.
647–668, 1987.

[37] K. Polthier and M. Schmies, “Straightest geodesics on polyhedral
surfaces,” in Mathematical Visualization: Algorithms, Applications, and
Numerics, H.-C. Hege and K. Polthier, Eds. New York, NY: Springer-
Verlag, 1998, pp. 135–150.

[38] E. W. Dijkstra, “A note on two problems in connection with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[39] R. W. Floyd, “Algorithm 97: Shortest path,” Communications of the
ACM, vol. 5, p. 345, 1962.

[40] J. Chen and Y. Han, “Shortest paths on a polyhedron,” International
Journal of Computational Geometry and Applications, vol. 6, pp. 127–
144, 1996.

[41] V. Surazhsky, T. Surazhsky, D. Kirsanov, S. J. Gortler, and H. Hoppe,
“Fast exact and approximate geodesics on meshes,” ACM Transactions
on Graphics, vol. 24, no. 3 (SIGGRAPH 2005), pp. 553–560, 2005.

[42] B. Kaneva and J. O’Rourke, “An implementation of Chen and Han’s
shortest paths algorithm,” in Proceedings of the 12th Canadian Confer-
ence on Computational Geometry, 2000, pp. 139–146.

[43] H. Fuchs, Z. M. Kedem, and S. P. Uselton, “Optimal surface recon-
struction from planar contours,” Communications of the ACM, vol. 20,
no. 10, pp. 693–702, 1977.

[44] O. P. Hinds, J. R. Polimeni, and E. L. Schwartz, “Brain surface
reconstruction from slice contours,” NeuroImage, vol. 31, no. 1, p. S445,
2006.

[45] B. Fischl, A. Liu, and A. M. Dale, “Automated manifold surgery:
constructing geometrically accurate and topologically correct models of
the human cerebral cortex,” IEEE Transactions on Medical Imaging,
vol. 20, no. 1, pp. 70–80, 2001.

[46] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C. New York, NY: Cambridge University Press,
1988.

[47] M. Balasubramanian, J. R. Polimeni, and E. L. Schwartz, “Quasi-
isometric flattening of large-scale cortical surfaces,” Society for Neu-
roscience Abstracts, 2005.

[48] ——, “Quantitative evaluation and comparison of cortical flattening
algorithms,” Society for Neuroscience Abstracts, 2006.

[49] B. Fischl, M. I. Sereno, and A. M. Dale, “Cortical surface-based
analysis II: Inflation, flattening and a surface-based coordinate system,”
NeuroImage, vol. 9, no. 2, pp. 195–207, 1999.

[50] E. L. Schwartz, “Computational studies of the spatial architecture of pri-
mate visual cortex: Columns, maps, and protomaps,” in Primary Visual
Cortex in Primates, ser. Cerebral Cortex, A. Peters and K. Rockland,
Eds. New York, NY: Plenum Press, 1994, vol. 10, pp. 359–411.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 27, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

