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3.2 Separation Theorems

It seems intuitively rather obvious that if A and B are
two nonempty disjoint convex sets in A

2, then there is
a line, H , separating them, in the sense that A and B
belong to the two (disjoint) open half–planes determined
by H .

However, this is not always true! For example, this fails
if both A and B are closed and unbounded (find an ex-
ample).

Nevertheless, the result is true if both A and B are open,
or if the notion of separation is weakened a little bit.
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The key result, from which most separation results follow,
is a geometric version of the Hahn-Banach theorem .

In the sequel, we restrict our attention to real affine spaces
of finite dimension. Then, if X is an affine space of di-
mension d, there is an affine bijection f between X and
A

d.

Now, A
d is a topological space, under the usual topology

on R
d (in fact, A

d is a metric space).

Recall that if a = (a1, . . . , ad) and b = (b1, . . . , bd)
are any two points in A

d, their Euclidean distance,
d(a, b), is given by

d(a, b) =
√

(b1 − a1)2 + · · · + (bd − ad)2,

which is also the norm , ‖ab‖, of the vector ab and that
for any ε > 0, the open ball of center a and radius ε,
B(a, ε), is given by

B(a, ε) = {b ∈ A
d | d(a, b) < ε}.
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A subset U ⊆ A
d is open (in the norm topology) if

either U is empty or for every point, a ∈ U , there is
some (small) open ball, B(a, ε), contained in U .

A subset C ⊆ A
d is closed iff A

d − C is open. For
example, the closed balls , B(a, ε), where

B(a, ε) = {b ∈ A
d | d(a, b) ≤ ε},

are closed.

A subset W ⊆ A
d is bounded iff there is some ball (open

or closed), B, so that W ⊆ B.

A subset W ⊆ A
d is compact iff every family, {Ui}i∈I ,

that is an open cover of W (which means that
W =

⋃

i∈I(W∩Ui), with each Ui an open set) possesses a
finite subcover (which means that there is a finite subset,
F ⊆ I , so that W =

⋃

i∈F (W ∩ Ui)).

In A
d, it can be shown that a subset W is compact iff W

is closed and bounded.
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Given a function, f : Am → A
n, we say that f is con-

tinuous if f−1(V ) is open in A
m whenever V is open in

A
n.

If f : Am → A
n is a continuous function, although it is

generally false that f (U) is open if U ⊆ A
m is open,

it is easily checked that f (K) is compact if K ⊆ A
m is

compact.

An affine space X of dimension d becomes a topological
space if we give it the topology for which the open subsets
are of the form f−1(U), where U is any open subset of
A

d and f : X → A
d is an affine bijection.

Given any subset, A, of a topological space X , the small-
est closed set containing A is denoted by A, and is called
the closure or adherence of A.

A subset, A, of X , is dense in X if A = X .
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The largest open set contained in A is denoted by
◦
A, and

is called the interior of A.

The set Fr A = A ∩ X − A, is called the boundary (or
frontier ) of A. We also denote the boundary of A by
∂A.

In order to prove the Hahn-Banach theorem, we will need
two lemmas.

Given any two distinct points x, y ∈ X , we let

]x, y[ = {(1 − λ)x + λy ∈ X | 0 < λ < 1}.

Lemma 3.2.1 Let S be a nonempty convex set, and

let x ∈
◦
S and y ∈ S. Then, we have ]x, y[ ⊆

◦
S.

Corollary 3.2.2 If S is convex, then
◦
S is also convex

and we have
◦
S =

◦

S. Further, if
◦
S 6= ∅, then S =

◦
S.
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There is a simple criterion to test whether a convex set
has an empty interior, based on the notion of dimension
of a convex set.

Definition 3.2.3 The dimension of a nonempty con-
vex subset, S, of X , denoted by dim S, is the dimension
of the smallest affine subset 〈S〉 containing S.

Proposition 3.2.4 A nonempty convex set S has a
nonempty interior iff dim S = dim X.

Ä Proposition 3.2.4 is false in infinite dimension.

Proposition 3.2.5 If S is convex, then S is also con-
vex.

One can also easily prove that convexity is preserved un-
der direct image and inverse image by an affine map.
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The next lemma, which seems intuitively obvious, is the
core of the proof of the Hahn-Banach theorem. This is
the case where the affine space has dimension two.

First, we need to define what is a convex cone.

Definition 3.2.6 A convex set, C, is a convex cone
with vertex x if C is invariant under all central magnifi-
cations Hx,λ of center x and ratio λ, with λ > 0
(i.e., Hx,λ(C) = C).

Given a convex set, S, and a point x /∈ S, we can define

conex(S) =
⋃

λ>0

Hx,λ(S).

It is easy to check that this is a convex cone.

Lemma 3.2.7 Let B be a nonempty open and convex
subset of A

2, and let O be a point of A
2 so that

O /∈ B. Then, there is some line, L, through O, so
that L ∩ B = ∅.
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Finally, we come to the Hahn-Banach theorem.

Theorem 3.2.8 (Hahn-Banach theorem, geometric
form) Let X be a (finite-dimensional) affine space, A
be a nonempty open and convex subset of X and L be
an affine subspace of X so that A∩L = ∅. Then, there
is some hyperplane, H, containing L, that is disjoint
from A.

Proof . The case where dim X = 1 is trivial. Thus, we
may assume that dimX ≥ 2. We reduce the proof to the
case where dim X = 2.

Remark: The geometric form of the Hahn-Banach the-
orem also holds when the dimension of X is infinite,
but a more sophisticated proof is required (it uses Zorn’s
lemma).
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Ä Theorem 3.2.8 is false if we omit the assumption that
A is open. For a counter-example, let A ⊆ A

2 be the
union of the half space y < 0 with the close segment
[0, 1] on the x-axis and let L be the point (2, 0) on the
boundary of A. It is also false if A is closed! (Find a
counter-example).

Theorem 3.2.8 has many important corollaries. First, we
define the notion of separation. For this, recall the defi-
nition of the closed (or open) half–spaces determined by
a hyperplane.

Given a hyperplane H , if f : E → R is any nonconstant
affine form defining H (i.e., H = Ker f ), we define the
closed half-spaces associated with f by

H+(f ) = {a ∈ E | f (a) ≥ 0},

H−(f ) = {a ∈ E | f (a) ≤ 0}.

Observe that if λ > 0, then H+(λf ) = H+(f ), but if
λ < 0, then H+(λf ) = H−(f ), and similarly for H−(λf ).
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Thus, the set {H+(f ), H−(f )} only depends on the hy-
perplane H , and the choice of a specific f defining H
amounts to the choice of one of the two half-spaces.

We also define the open half–spaces associated with f
as the two sets

◦
H+ (f ) = {a ∈ E | f (a) > 0},
◦
H− (f ) = {a ∈ E | f (a) < 0}.

The set {
◦
H+ (f ),

◦
H− (f )} only depends on the hyper-

plane H .

Clearly,
◦
H+ (f ) = H+(f )−H and

◦
H− (f ) = H−(f )−H .
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Definition 3.2.9 Given an affine space, X , and two
nonempty subsets, A and B, of X , we say that a hyper-
plane H separates (resp. strictly separates) A and B
if A is in one and B is in the other of the two half–spaces
(resp. open half–spaces) determined by H .

We will eventually prove that for any two nonempty dis-
joint convex sets A and B there is a hyperplane separating
A and B, but this will take some work.

We begin with the following version of the Hahn-Banach
theorem:

Theorem 3.2.10 (Hahn-Banach, second version)
Let X be a (finite-dimensional) affine space, A be a
nonempty convex subset of X with nonempty interior
and L be an affine subspace of X so that A ∩ L = ∅.
Then, there is some hyperplane, H, containing L and
separating L and A.
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Corollary 3.2.11 Given an affine space, X, let A
and B be two nonempty disjoint convex subsets and

assume that A has nonempty interior (
◦
A 6= ∅). Then,

there is a hyperplane separating A and B.

Remark: Theorem 3.2.10 and Corollary 3.2.11 also hold

in the infinite case.

Corollary 3.2.12 Given an affine space, X, let A
and B be two nonempty disjoint open and convex sub-
sets. Then, there is a hyperplane strictly separating
A and B.

Ä Beware that Corollary 3.2.12 fails for closed convex
sets. However, Corollary 3.2.12 holds if we also assume

that A (or B) is compact.
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We need to review the notion of distance from a point to
a subset.

Let X be a metric space with distance function d. Given
any point a ∈ X and any nonempty subset B of X , we
let

d(a, B) = inf
b∈B

d(a, b)

(where inf is the notation for least upper bound).

Now, if X is an affine space of dimension d, it can be
given a metric structure by giving the corresponding vec-
tor space a metric structure, for instance, the metric in-
duced by a Euclidean structure.

We have the following important property: For any
nonempty closed subset, S ⊆ X (not necessarily con-
vex), and any point, a ∈ X , there is some point s ∈ S
“achieving the distance from a to S,” i.e., so that

d(a, S) = d(a, s).
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Corollary 3.2.13 Given an affine space, X, let A
and B be two nonempty disjoint closed and convex
subsets, with A compact. Then, there is a hyperplane
strictly separating A and B.

Finally, we have the separation theorem announced ear-
lier for arbitrary nonempty convex subsets. (For a differ-
ent proof, see Berger [?], Corollary 11.4.7.)

Corollary 3.2.14 Given an affine space, X, let A
and B be two nonempty disjoint convex subsets. Then,
there is a hyperplane separating A and B.
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Remarks:

(1) The reader should compare the proof from Valentine
[?], Chapter II with Berger’s proof using compactness
of the projective space P

d [?] (Corollary 11.4.7).

(2) Rather than using the Hahn-Banach theorem to de-
duce separation results, one may proceed differently
and use the following intuitively obvious lemma, as in
Valentine [?] (Theorem 2.4):

Lemma 3.2.15 If A and B are two nonempty con-
vex sets such that A∪B = X and A∩B = ∅, then
V = A ∩ B is a hyperplane.

One can then deduce Corollaries 3.2.11 and 3.2.14.
Yet another approach is followed in Barvinok [?].

(3) How can some of the above results be generalized to
infinite dimensional affine spaces, especially Theorem
3.2.8 and Corollary 3.2.11?
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One approach is to simultaneously relax the notion
of interior and tighten a little the notion of closure,
in a more “linear and less topological” fashion, as in
Valentine [?].

Given any subset A ⊆ X (where X may be infi-
nite dimensional, but is a Hausdorff topological vector
space), say that a point x ∈ X is linearly accessi-
ble from A iff there is some a ∈ A with a 6= x and
]a, x[ ⊆ A. We let lina A be the set of all points
linearly accessible from A and lin A = A ∪ lina A.

A point a ∈ A is a core point of A iff for every
y ∈ X , with y 6= a, there is some z ∈]a, y[ , such
that [a, z] ⊆ A. The set of all core points is denoted
core A.

It is not difficult to prove that lin A ⊆ A and
◦
A ⊆ core A. If A has nonempty interior, then

lin A = A and
◦
A = core A.
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Also, if A is convex, then core A and lin A are con-
vex. Then, Lemma 3.2.15 still holds (where X is not
necessarily finite dimensional) if we redefine V as
V = lin A ∩ lin B and allow the possibility that V
could be X itself.

Corollary 3.2.11 also holds in the general case if we as-
sume that core A is nonempty. For details, see Valen-
tine [?], Chapter I and II.

(4) Yet another approach is to define the notion of an
algebraically open convex set, as in Barvinok [?].

A convex set, A, is algebraically open iff the inter-
section of A with every line, L, is an open interval,
possibly empty or infinite at either end (or all of L).

An open convex set is algebraically open. Then, the
Hahn-Banach theorem holds provided that A is an
algebraically open convex set and similarly, Corollary
3.2.11 also holds provided A is algebraically open.

For details, see Barvinok [?], Chapter 2 and 3. We do
not know how the notion “algebraically open” relates
to the concept of core.
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(5) Theorems 3.2.8, 3.2.10 and Corollary 3.2.11 are proved
in Lax using the notion of gauge function in the more
general case where A has some core point (but beware
that Lax uses the terminology interior point instead
of core point!).

An important special case of separation is the case where
A is convex and B = {a} for some point a in A.
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3.3 Supporting Hyperplanes

Definition 3.3.1 Let X be an affine space and let A be
any nonempty subset of X . A supporting hyperplane of
A is any hyperplane, H , containing some point, a, of A,
and separating {a} and A. We say that H is a supporting
hyperplane of A at a.

Observe that if H is a supporting hyperplane of A at a,
then we must have a ∈ ∂A.

Also, if A is convex, then H ∩
◦
A = ∅.

One should experiment with various pictures and realize
that supporting hyperplanes at a point may not exist (for
example, if A is not convex), may not be unique, and may
have several distinct supporting points!

However, we have the following important proposition
first proved by Minkowski (1896):
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Proposition 3.3.2 (Minkowski) Let A be a nonempty
closed and convex subset. Then, for every point,
a ∈ ∂A, there is a supporting hyperplane to A through
a.

Ä Beware that Proposition 3.3.2 is false when the dimen-

sion X of A is infinite and when
◦
A = ∅.

The proposition below gives a sufficient condition for a
closed subset to be convex.

Proposition 3.3.3 Let A be a closed subset with
nonempty interior. If there is a supporting hyperplane
for every point a ∈ ∂A, then A is convex.

Ä The condition that A has nonempty interior is crucial!

The proposition below characterizes closed convex sets in
terms of (closed) half–spaces. It is another intuitive fact
whose rigorous proof is nontrivial.

Proposition 3.3.4 Let A be a nonempty closed and
convex subset. Then, A is the intersection of all the
closed half–spaces containing it.
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Next, we consider various types of boundary points of
closed convex sets.

3.4 Boundary of a Convex Set: Vertices and Extremal

Points

Definition 3.4.1 Let X be an affine space of dimen-
sion d. For any nonempty closed and convex subset, A,
of dimension d, a point a ∈ ∂A has order k(a) if the
intersection of all the supporting hyperplanes of A at a
is an affine subspace of dimension k(a). We say that
a ∈ ∂A is a vertex if k(a) = 0; we say that a is smooth
if k(a) = d − 1, i.e., if the supporting hyperplane at a is
unique.

A vertex is a boundary point a such that there are d
independent supporting hyperplanes at a.

A d-simplex has boundary points of order 0, 1, . . . , d− 1.
The following proposition is shown in Berger [?] (Propo-
sition 11.6.2):
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Proposition 3.4.2 The set of vertices of a closed and
convex subset is countable.

Another important concept is that of an extremal point.

Definition 3.4.3 Let X be an affine space. For any
nonempty convex subset A, a point a ∈ ∂A is extremal
(or extreme) if A − {a} is still convex.

It is fairly obvious that a point a ∈ ∂A is extremal if
it does not belong to any closed nontrivial line segment
[x, y] ⊆ A (x 6= y).

Observe that a vertex is extremal, but the converse is
false.

Also, if dimX ≥ 3, the set of extremal points of a compact
convex may not be closed.

Actually, it is not at all obvious that a nonempty compact
convex possesses extremal points.
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In fact, a stronger results holds (Krein and Milman’s the-
orem).

In preparation for the proof of this important theorem,
observe that any compact (nontrivial) interval of A

1 has
two extremal points, its two endpoints.

Lemma 3.4.4 Let X be an affine space of dimension
n, and let A be a nonempty compact and convex set.
Then, A = C(∂A), i.e., A is equal to the convex hull
of its boundary.

The following important theorem shows that only ex-
tremal points matter as far as determining a compact
and convex subset from its boundary.

Theorem 3.4.5 (Krein and Milman) Let X be an
affine space of dimension n. Every compact and con-
vex nonempty subset A is equal to the convex hull of
its set of extremal points.
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Observe that Krein and Milman’s theorem implies that
any nonemty compact and convex set has a nonempty
subset of extremal points. This is intuitively obvious, but
hard to prove!

Krein and Milman’s theorem also holds for infinite di-
mensional affine spaces, provided that they are locally
convex.
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