
Chapter 3

Basic Properties of Convex Sets

3.1 Convex Sets

Convex sets play a very important role in geometry. In
this chapter, we state some of the “classics” of convex
affine geometry: Carathéodory’s Theorem, Radon’s The-
orem, and Helly’s Theorem.

These theorems share the property that they are easy to
state, but they are deep, and their proof, although rather
short, requires a lot of creativity.

Given an affine space E, recall that a subset V of E is
convex if for any two points a, b ∈ V , we have c ∈ V for
every point c = (1 − λ)a + λb, with 0 ≤ λ ≤ 1 (λ ∈ R).
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(a) (b)

Figure 3.1: (a) A convex set; (b) A nonconvex set

The notation [a, b] is often used to denote the line segment
between a and b, that is,

[a, b] = {c ∈ E | c = (1 − λ)a + λb, 0 ≤ λ ≤ 1},
and thus, a set V is convex if [a, b] ⊆ V for any two
points a, b ∈ V (a = b is allowed).

The empty set is trivially convex, every one-point set {a}
is convex, and the entire affine space E is of course convex.
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It is obvious that the intersection of any family (finite or
infinite) of convex sets is convex.

Then, given any (nonempty) subset S of E, there is a
smallest convex set containing S denoted by C(S) (or
conv(S)) and called the convex hull of S (namely, the
intersection of all convex sets containing S). The affine
hull of a subset, S, of E is the smallest affine set contain-
ing S and is denoted by 〈S〉 or aff(S).

Definition 3.1.1 The dimension of a nonempty con-
vex subset, S, of X , denoted by dim S, is the dimension
of the smallest affine subset 〈S〉 containing S.

Lemma 3.1.2 Given an affine space 〈E,
−→
E , +〉, for

any family (ai)i∈I of points in E, the set V of convex
combinations

∑
i∈I λiai (where

∑
i∈I λi = 1 and

λi ≥ 0) is the convex hull of (ai)i∈I.

In view of lemma 3.1.2, it is obvious that any affine sub-
space of E is convex.
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H+(f)

H−(f)

H

Figure 3.2: The two half-spaces determined by a hyperplane, H

Convex sets also arise in terms of hyperplanes. Given
a hyperplane H , if f : E → R is any nonconstant affine
form defining H (i.e., H = Ker f ), we can define the two
subsets

H+(f ) = {a ∈ E | f (a) ≥ 0},
H−(f ) = {a ∈ E | f (a) ≤ 0},

called (closed) half spaces associated with f .

Observe that if λ > 0, then H+(λf ) = H+(f ), but if
λ < 0, then H+(λf ) = H−(f ), and similarly for H−(λf ).

However, the set {H+(f ), H−(f )} only depends on the
hyperplane H , and the choice of a specific f defining H
amounts to the choice of one of the two half-spaces.
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For this reason, we will also say that H+(f ) and H−(f )
are the (closed) half spaces associated with H .

Clearly,

H+(f ) ∪ H−(f ) = E and H+(f ) ∩ H−(f ) = H.

It is immediately verified that H+(f ) and H−(f ) are con-
vex.

Bounded convex sets arising as the intersection of a finite
family of half-spaces associated with hyperplanes play a
major role in convex geometry and topology (they are
called convex polytopes).

It is natural to wonder whether lemma 3.1.2 can be sharp-
ened in two directions:

(1) is it possible have a fixed bound on the number of
points involved in the convex combinations?

(2) Is it necessary to consider convex combinations of all
points, or is it possible to only consider a subset with
special properties?
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The answer is yes in both cases. In case 1, assuming
that the affine space E has dimension m, Carathéodory’s
Theorem asserts that it is enough to consider convex
combinations of m + 1 points.

In case 2, the theorem of Krein and Milman asserts that
a convex set which is also compact is the convex hull of
its extremal points (see Berger [?] or Lang [?]).

First, we will prove Carathéodory’s Theorem.
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3.2 Carathéodory’s Theorem

The following technical (and dull!) lemma plays a crucial
role in the proof.

Lemma 3.2.1 Given an affine space 〈E,
−→
E , +〉, let

(ai)i∈I be a family of points in E. The family (ai)i∈I

is affinely dependent iff there is a family (λi)i∈I such
that λj 
= 0 for some j ∈ I,

∑
i∈I λi = 0, and∑

i∈I λixai = 0 for every x ∈ E.

Theorem 3.2.2 Given any affine space E of dimen-
sion m, for any (nonempty) family S = (ai)i∈L in E,
the convex hull C(S) of S is equal to the set of convex
combinations of families of m + 1 points of S.
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Proof sketch. By lemma 3.1.2,

C(S) = {
∑
i∈I

λiai | ai ∈ S,
∑
i∈I

λi = 1, λi ≥ 0,

I ⊆ L, I finite}.
We would like to prove that

C(S) = {
∑
i∈I

λiai | ai ∈ S,
∑
i∈I

λi = 1, λi ≥ 0,

I ⊆ L, |I| = m + 1}.
We proceed by contradiction. If the theorem is false, there
is some point b ∈ C(S) such that b can be expressed as
a convex combination b =

∑
i∈I λiai, where I ⊆ L is a

finite set of cardinality |I| = q with q ≥ m + 2, and b
cannot be expressed as any convex combination
b =

∑
j∈J µjaj of strictly less than q points in S

(with |J | < q).
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We shall prove that b can be written as a convex com-
bination of q − 1 of the ai. Since E has dimension m
and q ≥ m + 2, the points a1, . . . , aq must be affinely
dependent, and we use lemma 3.2.1.

If S is a finite (of infinite) set of points in the affine plane
A

2, theorem 3.2.2 confirms our intuition that C(S) is the
union of triangles (including interior points) whose ver-
tices belong to S.

Similarly, the convex hull of a set S of points in A
3 is

the union of tetrahedra (including interior points) whose
vertices belong to S.

We get the feeling that triangulations play a crucial role,
which is of course true!

An interesting consequence of Carathéodory’s theorem is
the following result:

Proposition 3.2.3 If K is any compact subset of A
m,

then the convex hull, conv(K), of K is also compact.
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There is also a version of Theorem 3.2.2 for convex cones.

This is a useful result since cones play such an impor-
tant role in convex optimization. let us recall some basic
definitions about cones.

Definition 3.2.4 Given any vector space, E, a subset,
C ⊆ E, is a convex cone iff C is closed under positive
linear combinations , that is, linear combinations of the
form,∑
i∈I

λivi, with vi ∈ C and λi ≥ 0 for all i ∈ I,

where I has finite support (all λi = 0 except for finitely
many i ∈ I). Given any set of vectors, S, the positive
hull of S, or cone spanned by S, denoted cone(S), is the
set of all positive linear combinations of vectors in S,

cone(S) =

{∑
i∈I

λivi | vi ∈ S, λi ≥ 0

}
.

Note that a cone always contains 0. When S consists of
a finite number of vector, the convex cone, cone(S), is
called a polyhedral cone.
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Theorem 3.2.5 Given any vector space, E, of di-
mension m, for any (nonvoid) family S = (vi)i∈L of
vectors in E, the cone, cone(S), spanned by S is equal
to the set of positive combinations of families of m
vectors in S.

There is an interesting generalization of Carathéodory’s
theorem known as the Colorful Carathéodory theorem.

This theorem due to Bárány and proved in 1982 can be
used to give a fairly short proof of a generalization of
Helly’s theorem known as Tverberg’s theorem (see Sec-
tion 3.4).
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Theorem 3.2.6 (Colorful Carathéodory theorem) Let
E be any affine space of dimension m. For any point,
b ∈ E, for any sequence of m + 1 nonempty sub-
sets, (S1, . . . , Sm+1), of E, if b ∈ conv(Si) for i =
1, . . . , m + 1, then there exists a sequence of m + 1
points, (a1, . . . , am+1), with ai ∈ Si, so that
b ∈ conv(a1, . . . , am+1), that is, b is a convex combina-
tion of the ai’s.

Although Theorem 3.2.6 is not hard to prove, we will not
prove it here. Instead, we refer the reader to Matousek
[?], Chapter 8, Section 8.2.

There is also a stronger version of Theorem 3.2.6, in which
it is enough to assume that b ∈ conv(Si ∪ Sj) for all i, j
with 1 ≤ i < j ≤ m + 1.
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3.3 Vertices, Extremal Points and Krein and Milman’s

Theorem

First, we define the notions of separation and of separat-
ing hyperplanes.

For this, recall the definition of the closed (or open) half–
spaces determined by a hyperplane.

Given a hyperplane H , if f : E → R is any nonconstant
affine form defining H (i.e., H = Ker f ), we define the
closed half-spaces associated with f by

H+(f ) = {a ∈ E | f (a) ≥ 0},
H−(f ) = {a ∈ E | f (a) ≤ 0}.

We saw earlier that {H+(f ), H−(f )} only depends on the
hyperplane H , and the choice of a specific f defining H
amounts to the choice of one of the two half-spaces.



106 CHAPTER 3. BASIC PROPERTIES OF CONVEX SETS
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Figure 3.3: (a) A separating hyperplane, H. (b) A strictly separating hyperplane, H

We also define the open half–spaces associated with f
as the two sets

◦
H+ (f ) = {a ∈ E | f (a) > 0},
◦
H− (f ) = {a ∈ E | f (a) < 0}.

The set {
◦
H+ (f ),

◦
H− (f )} only depends on the hyper-

plane H .

Clearly,
◦
H+ (f ) = H+(f )−H and

◦
H− (f ) = H−(f )−H .

Definition 3.3.1 Given an affine space, X , and two
nonempty subsets, A and B, of X , we say that a hyper-
plane H separates (resp. strictly separates) A and B
if A is in one and B is in the other of the two half–spaces
(resp. open half–spaces) determined by H .
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The special case of separation where A is convex and B =
{a}, for some point, a, in A, is of particular importance.

Definition 3.3.2 Let X be an affine space and let A be
any nonempty subset of X . A supporting hyperplane of
A is any hyperplane, H , containing some point, a, of A,
and separating {a} and A. We say that H is a supporting
hyperplane of A at a.

Observe that if H is a supporting hyperplane of A at a,
then we must have a ∈ ∂A.

Also, if A is convex, then H ∩
◦
A = ∅.

One should experiment with various pictures and realize
that supporting hyperplanes at a point may not exist (for
example, if A is not convex), may not be unique, and may
have several distinct supporting points (see Figure 3.4).
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Figure 3.4: Examples of supporting hyperplanes

Next, we consider various types of boundary points of
closed convex sets.

Definition 3.3.3 Let X be an affine space of dimen-
sion d. For any nonempty closed and convex subset, A,
of dimension d, a point a ∈ ∂A has order k(a) if the
intersection of all the supporting hyperplanes of A at a
is an affine subspace of dimension k(a). We say that
a ∈ ∂A is a vertex if k(a) = 0; we say that a is smooth
if k(a) = d − 1, i.e., if the supporting hyperplane at a is
unique.

A vertex is a boundary point a such that there are d
independent supporting hyperplanes at a.
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A d-simplex has boundary points of order 0, 1, . . . , d− 1.
The following proposition is shown in Berger [?] (Propo-
sition 11.6.2):

Proposition 3.3.4 The set of vertices of a closed and
convex subset is countable.

Another important concept is that of an extremal point.

Definition 3.3.5 Let X be an affine space. For any
nonempty convex subset A, a point a ∈ ∂A is extremal
(or extreme) if A − {a} is still convex.

It is fairly obvious that a point a ∈ ∂A is extremal if it
does not belong to the interior of any closed nontrivial
line segment [x, y] ⊆ A (x 
= y, a 
= x, a 
= y).
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v1
v2

Figure 3.5: Examples of vertices and extreme points

Observe that a vertex is extremal, but the converse is
false. For example, in Figure 3.5, all the points on the
arc of parabola, including v1 and v2, are extreme points.
However, only v1 and v2 are vertices.

Also, if dimX ≥ 3, the set of extremal points of a compact
convex may not be closed.

Actually, it is not at all obvious that a nonempty compact
convex possesses extremal points.

In fact, a stronger results holds (Krein and Milman’s the-
orem).
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In preparation for the proof of this important theorem,
observe that any compact (nontrivial) interval of A

1 has
two extremal points, its two endpoints.

Lemma 3.3.6 Let X be an affine space of dimension
n, and let A be a nonempty compact and convex set.
Then, A = C(∂A), i.e., A is equal to the convex hull
of its boundary.

The following important theorem shows that only ex-
tremal points matter as far as determining a compact
and convex subset from its boundary.

The proof uses a proposition due to Minkowski (Proposi-
tion 4.2.1) which will be proved in the next chapter.

Theorem 3.3.7 (Krein and Milman) Let X be an
affine space of dimension n. Every compact and con-
vex nonempty subset A is equal to the convex hull of
its set of extremal points.
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Observe that Krein and Milman’s theorem implies that
any nonemty compact and convex set has a nonempty
subset of extremal points. This is intuitively obvious, but
hard to prove!

Krein and Milman’s theorem also holds for infinite di-
mensional affine spaces, provided that they are locally
convex.
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An important consequence of Krein and Millman’s theo-
rem is that every convex function on a convex and com-
pact set achieves its maximum at some extremal point.

Definition 3.3.8 Let A be a nonempty convex subset
of A

n. A function, f : A → R, is convex if

f ((1 − λ)a + λb) ≤ (1 − λ)f (a) + λf (b)

for all a, b ∈ A and for all λ ∈ [0, 1]. The function,
f : A → R, is strictly convex if

f ((1 − λ)a + λb) < (1 − λ)f (a) + λf (b)

for all a, b ∈ A with a 
= b and for all λ with 0 < λ <
1. A function, f : A → R, is concave (resp. strictly
concave) iff −f is convex (resp. −f is strictly convex).

If f is convex, a simple induction shows that

f (
∑
i∈I

λiai) ≤
∑
i∈I

λif (ai)

for every finite convex combination in A, i.e., for any
finite family (ai)i∈I of points in A and any family (λi)i∈I

with
∑

i∈I λi = 1 and λi ≥ 0 for all i ∈ I .



114 CHAPTER 3. BASIC PROPERTIES OF CONVEX SETS

Proposition 3.3.9 Let A be a nonempty convex and
compact subset of A

n and let f : A → R be any func-
tion. If f is convex and continuous, then f achieves
its maximum at some extreme point of A.

Proposition 3.3.9 plays an important role in convex op-
timization: It guarantees that the maximum value of a
convex objective function on a compact and convex set is
achieved at some extreme point.

Thus, it is enough to look for a maximum at some extreme
point of the domain.

Proposition 3.3.9 fails for minimal values of a convex func-
tion. For example, the function, x → f (x) = x2, defined
on the compact interval [−1, 1] achieves it minimum at
x = 0, which is not an extreme point of [−1, 1].

However, if f is concave, then f achieves its minimum
value at some extreme point of A. In particular, if f is
affine, it achieves its minimum and its maximum at some
extreme points of A.
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3.4 Radon’s, Helly’s, Tverberg’s Theorems and Cen-

terpoints

We begin with Radon’s theorem.

Theorem 3.4.1 Given any affine space E of dimen-
sion m, for every subset X of E, if X has at least
m + 2 points, then there is a partition of X into two
nonempty disjoint subsets X1 and X2 such that the
convex hulls of X1 and X2 have a nonempty intersec-
tion.

A partition, (X1, X2), of X satisfying the conditions of
Theorem 3.4.1 is sometimes called a Radon partition of
X . A point in conv(X1) ∩ conv(X2) is called a Radon
point . Figure 3.6 shows two Radon partitions of five
points in the plane.

Figure 3.6: Examples of Radon Partitions
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Figure 3.7: The Radon Partitions of four points (in A
2)

It can be shown that a finite set, X ⊆ E, has a unique
Radon partition iff it has m + 2 elements and any m + 1
points of X are affinely independent.

For example, there are exactly two possible cases in the
plane as shown in Figure 3.7.

There is also a version of Radon’s theorem for the class
of cones with an apex.

Say that a convex cone, C ⊆ E, has an apex (or is a
pointed cone) iff there is some hyperplane, H , such that
C ⊆ H+ and H ∩ C = {0}.

For example, the cone obtained as the intersection of two
half spaces in R

3 is not pointed since it is a wedge with a
line as part of its boundary.
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Theorem 3.4.2 Given any vector space E of dimen-
sion m, for every subset X of E, if cone(X) is a
pointed cone such that X has at least m + 1 nonzero
vectors, then there is a partition of X into two nonempty
disjoint subsets, X1 and X2, such that the cones,
cone(X1) and cone(X2), have a nonempty intersection
not reduced to {0}.

There is a beautiful generalization of Radon’s theorem
known as Tverberg’s Theorem.

Theorem 3.4.3 (Tverberg’s Theorem, 1966) Let E
be any affine space of dimension m. For any natural
number, r ≥ 2, for every subset, X, of E, if X has at
least (m+1)(r−1)+1 points, then there is a partition,
(X1, . . . , Xr), of X into r nonempty pairwise disjoint
subsets so that

⋂r
i=1 conv(Xi) 
= ∅.

A partition as in Theorem 3.4.3 is called a Tverberg par-
tition and a point in

⋂r
i=1 conv(Xi) is called a Tverberg

point .
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Theorem 3.4.3 was conjectured by Birch and proved by
Tverberg in 1966. Tverberg’s original proof was techni-
cally quite complicated. Tverberg then gave a simpler
proof in 1981 and other simpler proofs were later given,
notably by Sarkaria (1992) and Onn (1997), using the
Colorful Carathéodory theorem.

A proof along those lines can be found in Matousek [?],
Chapter 8, Section 8.3. A colored Tverberg theorem and
more can also be found in Matousek [?] (Section 8.3).
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Next, we state a version of Helly’s theorem.

Theorem 3.4.4 Given any affine space E of dimen-
sion m, for every family {K1, . . . , Kn} of n convex
subsets of E, if n ≥ m+2 and the intersection

⋂
i∈I Ki

of any m + 1 of the Ki is nonempty (where I ⊆
{1, . . . , n}, |I| = m + 1), then

⋂n
i=1 Ki is nonempty.

An amusing corollary of Helly’s theorem is the following
result: Consider n ≥ 4 parallel line segments in the affine
plane A

2. If every three of these line segments meet a
line, then all of these line segments meet a common line.
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Centerpoints generalize the notion of median to higher
dimensions.

Recall that if we have a set of n data points,
S = {a1, . . . , an}, on the real line, a median for S is
a point, x, such that both intervals [x,∞) and (−∞, x]
contain at least n/2 of the points in S (by n/2, we mean
the largest integer greater than or equal to n/2).

Definition 3.4.5 Let S = {a1, . . . , an} be a set of n
points in A

d. A point, c ∈ A
d, is a centerpoint of S iff

for every hyperplane, H , whenever the closed half-space
H+ (resp. H−) contains c, then H+ (resp. H−) contains
at least n

d+1 points from S (by n
d+1, we mean the largest

integer greater than or equal to n
d+1, namely the ceiling

� n
d+1� of n

d+1).

So, for d = 2, for each line, D, if the closed half-plane
D+ (resp. D−) contains c, then D+ (resp. D−) contains
at least a third of the points from S.

For d = 3, for each plane, H , if the closed half-space H+

(resp. H−) contains c, then H+ (resp. H−) contains at
least a fourth of the points from S, etc.
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Figure 3.8: Example of a centerpoint

Example 3.8 shows nine points in the plane and one of
their centerpoints (in red). This example shows that the
bound 1

3 is tight.

Observe that a point, c ∈ A
d, is a centerpoint of S iff

c belongs to every open half-space,
◦

H+ (resp.
◦

H−) con-
taining at least dn

d+1 + 1 points from S (again, we mean

� dn
d+1� + 1).

We are now ready to prove the existence of centerpoints.
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Theorem 3.4.6 Every finite set, S = {a1, . . . , an}, of
n points in A

d has some centerpoint.

The proof is by induction and its uses the second charac-
terization of centerpoints involving open half-spaces con-
taining at least dn

d+1 + 1 points.

The proof actually shows that the set of centerpoints of
S is a convex set.

It should also be noted that Theorem 3.4.6 can be proved
easily using Tverberg’s theorem (Theorem 3.4.3). Indeed,
for a judicious choice of r, any Tverberg point is a cen-
terpoint!

In fact, it is a finite intersection of convex hulls of finitely
many points, so it is the convex hull of finitely many
points, in other words, a polytope.
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Jadhav and Mukhopadhyay have given a linear-time algo-
rithm for computing a centerpoint of a finite set of points
in the plane.

For d ≥ 3, it appears that the best that can be done
(using linear programming) is O(nd).

However, there are good approximation algorithms (Clark-
son, Eppstein, Miller, Sturtivant and Teng) and in E

3

there is a near quadratic algorithm (Agarwal, Sharir and
Welzl).

Miller and Sheehy (2009) have given an algorithm for find-
ing an approximate centerpoint in sub-exponential time
together with a polynomial-checkable proof of the approx-
imation guarantee.
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Chapter 4

Separation and Supporting
Hyperplanes

4.1 Separation Theorems and Farkas Lemma

It seems intuitively rather obvious that if A and B are
two nonempty disjoint convex sets in A

2, then there is
a line, H , separating them, in the sense that A and B
belong to the two (disjoint) open half–planes determined
by H .

However, this is not always true! For example, this fails
if both A and B are closed and unbounded (find an ex-
ample).

Nevertheless, the result is true if both A and B are open,
or if the notion of separation is weakened a little bit.

125
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The key result, from which most separation results follow,
is a geometric version of the Hahn-Banach theorem.

In the sequel, we restrict our attention to real affine spaces
of finite dimension. Then, if X is an affine space of di-
mension d, there is an affine bijection f between X and
A

d.

Now, A
d is a topological space, under the usual topology

on R
d (in fact, A

d is a metric space).

Recall that if a = (a1, . . . , ad) and b = (b1, . . . , bd)
are any two points in A

d, their Euclidean distance,
d(a, b), is given by

d(a, b) =
√

(b1 − a1)2 + · · · + (bd − ad)2,

which is also the norm, ‖ab‖, of the vector ab and that
for any ε > 0, the open ball of center a and radius ε,
B(a, ε), is given by

B(a, ε) = {b ∈ A
d | d(a, b) < ε}.
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A subset U ⊆ A
d is open (in the norm topology) if

either U is empty or for every point, a ∈ U , there is
some (small) open ball, B(a, ε), contained in U .

A subset C ⊆ A
d is closed iff A

d − C is open. For
example, the closed balls , B(a, ε), where

B(a, ε) = {b ∈ A
d | d(a, b) ≤ ε},

are closed.

A subset W ⊆ A
d is bounded iff there is some ball (open

or closed), B, so that W ⊆ B.

A subset W ⊆ A
d is compact iff every family, {Ui}i∈I ,

that is an open cover of W (which means that
W =

⋃
i∈I(W∩Ui), with each Ui an open set) possesses a

finite subcover (which means that there is a finite subset,
F ⊆ I , so that W =

⋃
i∈F (W ∩ Ui)).

In A
d, it can be shown that a subset W is compact iff W

is closed and bounded.
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Given a function, f : Am → A
n, we say that f is con-

tinuous if f−1(V ) is open in A
m whenever V is open in

A
n.

If f : Am → A
n is a continuous function, although it is

generally false that f (U) is open if U ⊆ A
m is open,

it is easily checked that f (K) is compact if K ⊆ A
m is

compact.

An affine space X of dimension d becomes a topological
space if we give it the topology for which the open subsets
are of the form f−1(U), where U is any open subset of
A

d and f : X → A
d is an affine bijection.

Given any subset, A, of a topological space X , the small-
est closed set containing A is denoted by A, and is called
the closure or adherence of A.

A subset, A, of X , is dense in X if A = X .

The largest open set contained in A is denoted by
◦
A, and

is called the interior of A.



4.1. SEPARATION THEOREMS AND FARKAS LEMMA 129

x y

u

v

z

U
V

W

Figure 4.1: Illustration for the proof of Lemma 4.1.1

The set Fr A = A ∩ X − A, is called the boundary (or
frontier ) of A. We also denote the boundary of A by
∂A.

In order to prove the Hahn-Banach theorem, we will need
two lemmas.

Given any two distinct points x, y ∈ X , we let

]x, y[ = {(1 − λ)x + λy ∈ X | 0 < λ < 1}.

Lemma 4.1.1 Let S be a nonempty convex set, and

let x ∈
◦
S and y ∈ S. Then, we have ]x, y[ ⊆ S.

Corollary 4.1.2 If S is convex, then
◦
S is also convex

and we have
◦
S =

◦
S. Further, if

◦
S 
= ∅, then S =

◦
S.
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Beware that if S is a closed set, then its convex hull,
conv(S), is not necessarily closed! However, conv(S) is
closed when S is compact (see Proposition 3.2.3).

There is a simple criterion to test whether a convex set
has an empty interior, based on the notion of dimension
of a convex set.

Proposition 4.1.3 A nonempty convex set S has a
nonempty interior iff dim S = dim X.

� Proposition 4.1.3 is false in infinite dimension.

Proposition 4.1.4 If S is convex, then S is also con-
vex.

One can also easily prove that convexity is preserved un-
der direct image and inverse image by an affine map.
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The next lemma, which seems intuitively obvious, is the
core of the proof of the Hahn-Banach theorem. This is
the case where the affine space has dimension two.

First, we need to define what is a convex cone with vertex
x.

Definition 4.1.5 A convex set, C, is a convex cone
with vertex x if C is invariant under all central magnifi-
cations Hx,λ of center x and ratio λ, with λ > 0
(i.e., Hx,λ(C) = C).

Given a convex set, S, and a point x /∈ S, we can define

conex(S) =
⋃
λ>0

Hx,λ(S).

It is easy to check that this is a convex cone with vertex
x.

Lemma 4.1.6 Let B be a nonempty open and convex
subset of A

2, and let O be a point of A
2 so that

O /∈ B. Then, there is some line, L, through O, so
that L ∩ B = ∅.
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Figure 4.2: Hahn-Banach Theorem in the plane (Lemma 4.1.6)

Finally, we come to the Hahn-Banach theorem.

Theorem 4.1.7 (Hahn-Banach theorem, geometric
form) Let X be a (finite-dimensional) affine space, A
be a nonempty open and convex subset of X and L be
an affine subspace of X so that A∩L = ∅. Then, there
is some hyperplane, H, containing L, that is disjoint
from A.

Proof . The case where dim X = 1 is trivial. Thus, we
may assume that dimX ≥ 2. We reduce the proof to the
case where dim X = 2.

Remark: The geometric form of the Hahn-Banach the-
orem also holds when the dimension of X is infinite,
but a more sophisticated proof is required (it uses Zorn’s
lemma).
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A

L

H

Figure 4.3: Hahn-Banach Theorem, geometric form (Theorem 4.1.7)

� Theorem 4.1.7 is false if we omit the assumption that
A is open. For a counter-example, let A ⊆ A

2 be the
union of the half space y < 0 with the close segment
[0, 1] on the x-axis and let L be the point (2, 0) on the
boundary of A. It is also false if A is closed! (Find a
counter-example).
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A

L

H

Figure 4.4: Hahn-Banach Theorem, second version (Theorem 4.1.8)

Theorem 4.1.7 has many important corollaries.

We begin with the following version of the Hahn-Banach
theorem:

Theorem 4.1.8 (Hahn-Banach, second version)
Let X be a (finite-dimensional) affine space, A be a
nonempty convex subset of X with nonempty interior
and L be an affine subspace of X so that A ∩ L = ∅.
Then, there is some hyperplane, H, containing L and
separating L and A.
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A
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H

Figure 4.5: Separation Theorem, version 1 (Corollary 4.1.9)

Corollary 4.1.9 Given an affine space, X, let A and
B be two nonempty disjoint convex subsets and as-

sume that A has nonempty interior (
◦
A 
= ∅). Then,

there is a hyperplane separating A and B.

Remark: Theorem 4.1.8 and Corollary 4.1.9 also hold

in the infinite case.

Corollary 4.1.10 Given an affine space, X, let A
and B be two nonempty disjoint open and convex sub-
sets. Then, there is a hyperplane strictly separating
A and B.
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Beware that Corollary 4.1.10 fails for closed convex sets.
However, Corollary 4.1.10 holds if we also assume that A
(or B) is compact.

We need to review the notion of distance from a point
to a subset .

Let X be a metric space with distance function d. Given
any point a ∈ X and any nonempty subset B of X , we
let

d(a, B) = inf
b∈B

d(a, b)

(where inf is the notation for least upper bound).

Now, if X is an affine space of dimension d, it can be
given a metric structure by giving the corresponding vec-
tor space a metric structure, for instance, the metric in-
duced by a Euclidean structure.

We have the following important property: For any
nonempty closed subset, S ⊆ X (not necessarily con-
vex), and any point, a ∈ X , there is some point s ∈ S
“achieving the distance from a to S,” i.e., so that

d(a, S) = d(a, s).
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Corollary 4.1.11 Given an affine space, X, let A
and B be two nonempty disjoint closed and convex
subsets, with A compact. Then, there is a hyperplane
strictly separating A and B.

A “cute” application of Corollary 4.1.11 is one of the
many versions of “Farkas Lemma” (1893-1894, 1902), a
basic result in the theory of linear programming.

For any vector, x = (x1, . . . , xn) ∈ R
n, and any real,

α ∈ R, write x ≥ α iff xi ≥ α, for i = 1, . . . , n.
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Lemma 4.1.12 (Farkas Lemma, Version I) Given any
d × n real matrix, A, and any vector, z ∈ R

d, exactly
one of the following alternatives occurs:

(a) The linear system, Ax = z, has a solution, x =
(x1, . . . , xn), such that x ≥ 0 and x1 + · · ·+xn = 1,
or

(b) There is some c ∈ R
d and some α ∈ R such that

c�z < α and c�A ≥ α.

Remark: If we relax the requirements on solutions of
Ax = z and only require x ≥ 0 (x1 + · · · + xn = 1 is
no longer required) then, in condition (b), we can take
α = 0. This is another version of Farkas Lemma.

In this case, instead of considering the convex hull of
{A1, . . . , An} we are considering the convex cone,

cone(A1, . . . , An) =

{λA1 + · · · + λnAn | λi ≥ 0, 1 ≤ i ≤ n},
that is, we are dropping the condition λ1 + · · ·+ λn = 1.
For this version of Farkas Lemma we need the following
separation lemma:
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H ′ H

a
O C

Figure 4.6: Illustration for the proof of Proposition 4.1.13

Proposition 4.1.13 Let C ⊆ E
d be any closed convex

cone with vertex O. Then, for every point, a, not
in C, there is a hyperplane, H, passing through O
separating a and C with a /∈ H.

Lemma 4.1.14 (Farkas Lemma, Version II) Given
any d × n real matrix, A, and any vector, z ∈ R

d,
exactly one of the following alternatives occurs:

(a) The linear system, Ax = z, has a solution, x, such
that x ≥ 0, or

(b) There is some c ∈ R
d such that c�z < 0 and

c�A ≥ 0.

One can show that Farkas II implies Farkas I.
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Here is another version of Farkas Lemma having to do
with a system of inequalities, Ax ≤ z. Although, this
version may seem weaker that Farkas II, it is actually
equivalent to it!

Lemma 4.1.15 (Farkas Lemma, Version III) Given
any d × n real matrix, A, and any vector, z ∈ R

d,
exactly one of the following alternatives occurs:

(a) The system of inequalities, Ax ≤ z, has a solution,
x, or

(b) There is some c ∈ R
d such that c ≥ 0, c�z < 0

and c�A = 0.

The proof uses two tricks from linear programming:

1. We convert the system of inequalities, Ax ≤ z, into a
system of equations by introducing a vector of slack
variables , γ = (γ1, . . . , γd), where the system of equa-
tions is

(A, I)

(
x
γ

)
= z,

with γ ≥ 0.

2. We replace each “unconstrained variable”, xi, by
xi = Xi − Yi, with Xi, Yi ≥ 0.
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Then, the original system Ax ≤ z has a solution, x (un-
constrained), iff the system of equations

(A,−A, I)

(
X
Y
γ

)
= z

has a solution with X,Y, γ ≥ 0.

By Farkas II, this system has no solution iff there exists
some c ∈ R

d with c�z < 0 and

c�(A,−A, I) ≥ 0,

that is, c�A ≥ 0, −c�A ≥ 0, and c ≥ 0.

However, these four conditions reduce to c�z < 0,
c�A = 0 and c ≥ 0.
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Figure 4.7: Separation Theorem, final version (Theorem 4.1.16)

Finally, we have the separation theorem announced ear-
lier for arbitrary nonempty convex subsets. The proof
is by descending induction on dim(A). (For a different
proof, see Berger [?], Corollary 11.4.7.)

Corollary 4.1.16 (Separation Theorem, final version)
Given an affine space, X, let A and B be two nonempty
disjoint convex subsets. Then, there is a hyperplane
separating A and B.
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Remarks:

(1) The reader should compare the proof from Valentine
[?], Chapter II with Berger’s proof using compactness
of the projective space P

d [?] (Corollary 11.4.7).

(2) Rather than using the Hahn-Banach theorem to de-
duce separation results, one may proceed differently
and use the following intuitively obvious lemma, as in
Valentine [?] (Theorem 2.4):

Lemma 4.1.17 If A and B are two nonempty con-
vex sets such that A∪B = X and A∩B = ∅, then
V = A ∩ B is a hyperplane.

One can then deduce Corollaries 4.1.9 and 4.1.16. Yet
another approach is followed in Barvinok [?].

(3) How can some of the above results be generalized to
infinite dimensional affine spaces, especially Theorem
4.1.7 and Corollary 4.1.9?
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One approach is to simultaneously relax the notion
of interior and tighten a little the notion of closure,
in a more “linear and less topological” fashion, as in
Valentine [?].

Given any subset A ⊆ X (where X may be infi-
nite dimensional, but is a Hausdorff topological vector
space), say that a point x ∈ X is linearly accessi-
ble from A iff there is some a ∈ A with a 
= x and
]a, x[ ⊆ A. We let lina A be the set of all points
linearly accessible from A and lin A = A ∪ lina A.

A point a ∈ A is a core point of A iff for every
y ∈ X , with y 
= a, there is some z ∈]a, y[ , such
that [a, z] ⊆ A. The set of all core points is denoted
core A.

It is not difficult to prove that lin A ⊆ A and
◦
A ⊆ core A. If A has nonempty interior, then

lin A = A and
◦
A = core A.
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Also, if A is convex, then core A and lin A are con-
vex. Then, Lemma 4.1.17 still holds (where X is not
necessarily finite dimensional) if we redefine V as
V = lin A ∩ lin B and allow the possibility that V
could be X itself.

Corollary 4.1.9 also holds in the general case if we as-
sume that core A is nonempty. For details, see Valen-
tine [?], Chapter I and II.

(4) Yet another approach is to define the notion of an
algebraically open convex set, as in Barvinok [?].

A convex set, A, is algebraically open iff the inter-
section of A with every line, L, is an open interval,
possibly empty or infinite at either end (or all of L).

An open convex set is algebraically open. Then, the
Hahn-Banach theorem holds provided that A is an
algebraically open convex set and similarly, Corollary
4.1.9 also holds provided A is algebraically open.

For details, see Barvinok [?], Chapter 2 and 3. We do
not know how the notion “algebraically open” relates
to the concept of core.



146 CHAPTER 4. SEPARATION AND SUPPORTING HYPERPLANES

(5) Theorems 4.1.7, 4.1.8 and Corollary 4.1.9 are proved
in Lax using the notion of gauge function in the more
general case where A has some core point (but beware
that Lax uses the terminology interior point instead
of core point!).

An important special case of separation is the case where
A is convex and B = {a} for some point a in A.
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4.2 Supporting Hyperplanes and Minkowski’s Propo-

sition

Recall the definition of a supporting hyperplane given in
Definition 3.3.2. We have the following important propo-
sition first proved by Minkowski (1896):

Proposition 4.2.1 (Minkowski) Let A be a nonempty
closed and convex subset. Then, for every point,
a ∈ ∂A, there is a supporting hyperplane to A through
a.

� Beware that Proposition 4.2.1 is false when the dimen-

sion X of A is infinite and when
◦
A = ∅.

The proposition below gives a sufficient condition for a
closed subset to be convex.

Proposition 4.2.2 Let A be a closed subset with
nonempty interior. If there is a supporting hyperplane
for every point a ∈ ∂A, then A is convex.

� The condition that A has nonempty interior is crucial!
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The proposition below characterizes closed convex sets in
terms of (closed) half–spaces. It is another intuitive fact
whose rigorous proof is nontrivial.

Proposition 4.2.3 Let A be a nonempty closed and
convex subset. Then, A is the intersection of all the
closed half–spaces containing it.


