
Chapter 7

Basics of Combinatorial Topology

7.1 Simplicial and Polyhedral Complexes

In order to study and manipulate complex shapes it is
convenient to discretize these shapes and to view them
as the union of simple building blocks glued together in
a “clean fashion”.

The building blocks should be simple geometric objects,
for example, points, lines segments, triangles, tehrahedra
and more generally simplices, or even convex polytopes.

Definition 7.1.1 Let E be any normed affine space, say
E = E

m with its usual Euclidean norm. Given any n+ 1
affinely independent points a0, . . . , an in E , the n-simplex
(or simplex) σ defined by a0, . . . , an is the convex hull
of the points a0, . . . , an, that is, the set of all convex
combinations λ0a0 + · · ·+λnan, where λ0 + · · ·+λn = 1
and λi ≥ 0 for all i, 0 ≤ i ≤ n.

305



306 CHAPTER 7. BASICS OF COMBINATORIAL TOPOLOGY

We call n the dimension of the n-simplex σ, and the
points a0, . . . , an are the vertices of σ.

Given any subset {ai0, . . . , aik} of {a0, . . . , an} (where
0 ≤ k ≤ n), the k-simplex generated by ai0, . . . , aik is
called a k-face or simply a face of σ.

A face s of σ is a proper face if s �= σ (we agree that
the empty set is a face of any simplex). For any vertex
ai, the face generated by a0, . . . , ai−1, ai+1, . . . , an (i.e.,
omitting ai) is called the face opposite ai.

Every face that is an (n−1)-simplex is called a boundary
face or facet . The union of the boundary faces is the
boundary of σ, denoted by ∂σ, and the complement of
∂σ in σ is the interior Intσ = σ−∂σ of σ. The interior
Intσ of σ is sometimes called an open simplex .
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It should be noted that for a 0-simplex consisting of a
single point {a0}, ∂{a0} = ∅, and Int {a0} = {a0}.

Of course, a 0-simplex is a single point, a 1-simplex is the
line segment (a0, a1), a 2-simplex is a triangle (a0, a1, a2)
(with its interior), and a 3-simplex is a tetrahedron
(a0, a1, a2, a3) (with its interior).

The inclusion relation between any two faces σ and τ of
some simplex, s, is written σ � τ .

Clearly, a point x belongs to the boundary ∂σ of σ iff
at least one of its barycentric coordinates (λ0, . . . , λn) is
zero, and a point x belongs to the interior Intσ of σ iff
all of its barycentric coordinates (λ0, . . . , λn) are positive,
i.e., λi > 0 for all i, 0 ≤ i ≤ n.

Then, for every x ∈ σ, there is a unique face s such
that x ∈ Int s, the face generated by those points ai
for which λi > 0, where (λ0, . . . , λn) are the barycentric
coordinates of x.
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A simplex σ is convex, arcwise connected, compact, and
closed. The interior Intσ of a simplex is convex, arcwise
connected, open, and σ is the closure of Intσ.

We now put simplices together to form more complex
shapes. The intuition behind the next definition is that
the building blocks should be “glued cleanly”.

Definition 7.1.2 A simplicial complex in E
m (for short,

a complex in E
m) is a set K consisting of a (finite or

infinite) set of simplices in E
m satisfying the following

conditions:

(1) Every face of a simplex in K also belongs to K.

(2) For any two simplices σ1 and σ2 in K, if σ1 ∩ σ2 �= ∅,
then σ1 ∩ σ2 is a common face of both σ1 and σ2.
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Every k-simplex, σ ∈ K, is called a k-face (or face) of
K. A 0-face {v} is called a vertex and a 1-face is called
an edge. The dimension of the simplicial complex K is
the maximum of the dimensions of all simplices in K.

If dimK = d, then every face of dimension d is called a
cell and every face of dimension d− 1 is called a facet .

Condition (2) guarantees that the various simplices form-
ing a complex intersect nicely. It is easily shown that the
following condition is equivalent to condition (2):

(2′) For any two distinct simplices σ1, σ2,
Intσ1 ∩ Intσ2 = ∅.

Remarks:

1. A simplicial complex, K, is a combinatorial object,
namely, a set of simplices satisfying certain conditions
but not a subset of E

m. However, every complex, K,
yields a subset of E

m called the geometric realization
of K and denoted |K|. This object will be defined
shortly and should not be confused with the complex.
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Figure 7.1: A set of simplices forming a complex

Figure 7.1 illustrates this aspect of the definition of a
complex. For clarity, the two triangles (2-simplices)
are drawn as disjoint objects even though they share
the common edge, (v2, v3) (a 1-simplex) and similarly
for the edges that meet at some common vertex.

2. Some authors define a facet of a complex, K, of di-
mension d to be a d-simplex in K, as opposed to a
(d − 1)-simplex, as we did. This practice is not con-
sistent with the notion of facet of a polyhedron and
this is why we prefer the terminology cell for the d-
simplices in K.
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Figure 7.2: Collections of simplices not forming a complex

3. It is important to note that in order for a complex,
K, of dimension d to be realized in E

m, the dimension
of the “ambient space”, m, must be big enough. For
example, there are 2-complexes that can’t be realized
in E

3 or even in E
4. There has to be enough room in

order for condition (2) to be satisfied. It is not hard to
prove thatm = 2d+1 is always sufficient. Sometimes,
2d works, for example in the case of surfaces (where
d = 2).

Some collections of simplices violating some of the con-
ditions of Definition 7.1.2 are shown in Figure 7.2.

On the left, the intersection of the two 2-simplices is nei-
ther an edge nor a vertex of either triangle.

In the middle case, two simplices meet along an edge
which is not an edge of either triangle.

On the right, there is a missing edge and a missing vertex.
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Figure 7.3: The geometric realization of the complex of Figure 7.1

The union |K| of all the simplices in K is a subset of E
m.

We can define a topology on |K| by defining a subset F
of |K| to be closed iff F ∩ σ is closed in σ for every face
σ ∈ K.

It is immediately verified that the axioms of a topological
space are indeed satisfied.

The resulting topological space |K| is called the geomet-
ric realization of K.

The geometric realization of the complex from Figure 7.1
is show in Figure 7.1.
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Some “legal” simplicial complexes are shown in Figure
7.4.

Obviously, |σ| = σ for every simplex, σ. Also, note that
distinct complexes may have the same geometric realiza-
tion. In fact, all the complexes obtained by subdividing
the simplices of a given complex yield the same geometric
realization.

Figure 7.4: Examples of simplicial complexes
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A polytope is the geometric realization of some simplicial
complex. A polytope of dimension 1 is usually called a
polygon, and a polytope of dimension 2 is usually called
a polyhedron.

When K consists of infinitely many simplices we usually
require that K be locally finite, which means that every
vertex belongs to finitely many faces. IfK is locally finite,
then its geometric realization, |K|, is locally compact.

In the sequel, we will consider only finite simplicial com-
plexes, that is, complexes K consisting of a finite number
of simplices.

In this case, the topology of |K| defined above is identical
to the topology induced from E

m. For any simplex σ in

K, Intσ coincides with the interior
◦
σ of σ in the topo-

logical sense, and ∂σ coincides with the boundary of σ in
the topological sense.
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Definition 7.1.3 Given any complex, K2, a subset
K1 ⊆ K2 of K2 is a subcomplex of K2 iff it is also a
complex. For any complex, K, of dimension d, for any i
with 0 ≤ i ≤ d, the subset

K(i) = {σ ∈ K | dimσ ≤ i}
is called the i-skeleton of K. Clearly, K(i) is a subcom-
plex of K. We also let

Ki = {σ ∈ K | dimσ = i}.
Observe that K0 is the set of vertices of K and Ki is not
a complex.

A simplicial complex, K1 is a subdivision of a complex
K2 iff |K1| = |K2| and if every face of K1 is a subset of
some face of K2.

A complexK of dimension d is pure (or homogeneous) iff
every face ofK is a face of some d-simplex ofK (i.e., some
cell of K). A complex is connected iff |K| is connected.
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(a) (b)

v

Figure 7.5: (a) A complex that is not pure. (b) A pure complex

It is is easy to see that a complex is connected iff its
1-skeleton is connected.

The intuition behind the notion of a pure complex, K, of
dimension d is that a pure complex is the result of gluing
pieces all having the same dimension, namely, d-simplices.

For example, in Figure 7.5, the complex on the left is not
pure but the complex on the right is pure of dimension 2.

Most of the shapes that we will be interested in are well
approximated by pure complexes, in particular, surfaces
or solids.

However, pure complexes may still have undesirable “sin-
gularities” such as the vertex, v, in Figure 7.5(b).
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The notion of link of a vertex provides a technical way to
deal with singularities.

Definition 7.1.4 Let K be any complex and let σ be
any face of K. The star , St(σ) (or if we need to be very
precise, St(σ,K)), of σ is the subcomplex of K consisting
of all faces, τ , containing σ and of all faces of τ , i.e.,

St(σ) = {s ∈ K | (∃τ ∈ K)(σ � τ and s � τ )}.

The link , Lk(σ) (or Lk(σ,K)) of σ is the subcomplex of
K consisting of all faces in St(σ) that do not intersect σ,
i.e.,

Lk(σ) = {τ ∈ K | τ ∈ St(σ) and σ ∩ τ = ∅}.

To simplify notation, if σ = {v} is a vertex we write St(v)
for St({v}) and Lk(v) for Lk({v}).
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Figure 7.6: (a) A complex. (b) Star and Link of v

Figure 7.6 shows:

(a) A complex (on the left).

(b) The star of the vertex v, indicated in gray and the
link of v, showed as thicker lines.

If K is pure and of dimension d, then St(σ) is also pure
of dimension d and if dimσ = k, then Lk(σ) is pure of
dimension d− k − 1.

For technical reasons, following Munkres [?], besides defin-
ing the complex, St(σ), it is useful to introduce the open
star of σ, denoted st(σ), defined as the subspace of |K|
consisting of the union of the interiors, Int(τ ) = τ − ∂ τ ,
of all the faces, τ , containing, σ.



7.1. SIMPLICIAL AND POLYHEDRAL COMPLEXES 319

According to this definition, the open star of σ is not a
complex but instead a subset of |K|.

Note that
st(σ) = |St(σ)|,

that is, the closure of st(σ) is the geometric realization of
the complex St(σ).

Then, lk(σ) = |Lk(σ)| is the union of the simplices in
St(σ) that are disjoint from σ.

If σ is a vertex, v, we have

lk(v) = st(v) − st(v).

However, beware that if σ is not a vertex, then lk(σ) is
properly contained in st(σ) − st(σ)!

One of the nice properties of the open star, st(σ), of σ is
that it is open. This follows from the fact that the open
star, st(v), of a vertex, v is open.
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Furthermore, for every point, a ∈ |K|, there is a unique
smallest simplex, σ, so that a ∈ Int(σ) = σ − ∂ σ.

As a consequence, for any k-face, σ, ofK, if σ = (v0, . . . , vk),
then

st(σ) = st(v0) ∩ · · · ∩ st(vk).

Consequently, st(σ) is open and path connected.

� Unfortunately, the “nice” equation

St(σ) = St(v0) ∩ · · · ∩ St(vk)

is false! (and anagolously for Lk(σ).)

For a counter-example, consider the boundary of a tetra-
hedron with one face removed.

Recall that in E
d, the (open) unit ball, Bd, is defined by

Bd = {x ∈ E
d | ‖x‖ < 1},

the closed unit ball, B
d
, is defined by

B
d

= {x ∈ E
d | ‖x‖ ≤ 1},

and the (d− 1)-sphere, Sd−1, by

Sd−1 = {x ∈ E
d | ‖x‖ = 1}.
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Obviously, Sd−1 is the boundary of B
d

(and Bd).

Definition 7.1.5 Let K be a pure complex of dimen-
sion d and let σ be any k-face of K, with 0 ≤ k ≤ d− 1.
We say that σ is nonsingular iff the geometric realiza-
tion, lk(σ), of the link of σ is homeomorphic to either

Sd−k−1 or to B
d−k−1

; this is written as lk(σ) ≈ Sd−k−1

or lk(σ) ≈ B
d−k−1

, where ≈ means homeomorphic.

In Figure 7.6, note that the link of v is not homeomorphic
to S1 or B1, so v is singular.

It will also be useful to express St(v) in terms of Lk(v),
where v is a vertex, and for this, we define the notion of
cone.
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Definition 7.1.6 Given any complex, K, in E
n, if

dimK = d < n, for any point, v ∈ E
n, such that v does

not belong to the affine hull of |K|, the cone on K with
vertex v, denoted, v ∗ K, is the complex consisting of
all simplices of the form (v, a0, . . . , ak) and their faces,
where (a0, . . . , ak) is any k-face of K. If K = ∅, we set
v ∗K = v.

It is not hard to check that v ∗K is indeed a complex of
dimension d + 1 containing K as a subcomplex.

Proposition 7.1.7 For any complex, K, of dimen-
sion d and any vertex, v ∈ K, we have

St(v) = v ∗ Lk(v).

More generally, for any face, σ, of K, we have

st(σ) = |St(σ)| ≈ σ × |v ∗ Lk(σ)|,
for every v ∈ σ and

st(σ) − st(σ) = ∂ σ × |v ∗ Lk(σ)|,
for every v ∈ ∂ σ.
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Figure 7.7: More examples of links and stars

Figure 7.7 shows a 3-dimensional complex. The link of the
edge (v6, v7) is the pentagon P = (v1, v2, v3, v4, v5) ≈ S1.
The link of the vertex v7 is the cone v6 ∗ P ≈ B2. The
link of (v1, v2) is (v6, v7) ≈ B1 and the link of v1 is the
union of the triangles (v2, v6, v7) and (v5, v6, v7), which is
homeomorphic to B2.

Remark: Unfortunately, the word “cone” is overloaded.
It might have been better to use the term pyramid as
some authors do (including Ziegler).

Given a pure complex, it is necessary to distinguish be-
tween two kinds of faces.
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Definition 7.1.8 LetK be any pure complex of dimen-
sion d. A k-face, σ, of K is a boundary or external face
iff it belongs to a single cell (i.e., a d-simplex) of K and
otherwise it is called an internal face (0 ≤ k ≤ d − 1).
The boundary of K, denoted bd(K), is the subcomplex
of K consisting of all boundary facets of K together with
their faces.

It is clear by definition that bd(K) is a pure complex of
dimension d− 1.

Even if K is connected, bd(K) is not connected, in gen-
eral.

For example, if K is a 2-complex in the plane, the bound-
ary ofK usually consists of several simple closed polygons
(i.e, 1 dimensional complexes homeomorphic to the circle,
S1).
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Proposition 7.1.9 Let K be any pure complex of di-
mension d. For any k-face, σ, of K the boundary
complex, bd(Lk(σ)), is nonempty iff σ is a boundary
face of K (0 ≤ k ≤ d− 2). Furthermore,

Lkbd(K)(σ) = bd(Lk(σ))

for every face, σ, of bd(K), where Lkbd(K)(σ) denotes
the link of σ in bd(K).

Proposition 7.1.9 shows that if every face of K is non-
singular, then the link of every internal face is a sphere
whereas the link of every external face is a ball.

Proposition 7.1.10 Let K be any pure complex of
dimension d. If every vertex of K is nonsingular, then
st(σ) ≈ Bd for every k-face, σ, of K (1 ≤ k ≤ d− 1).

Here are more useful propositions about pure complexes
without singularities.



326 CHAPTER 7. BASICS OF COMBINATORIAL TOPOLOGY

Proposition 7.1.11 Let K be any pure complex of
dimension d. If every vertex of K is nonsingular,
then for every point, a ∈ |K|, there is an open subset,
U ⊆ |K|, containing a such that U ≈ Bd or
U ≈ Bd ∩ H

d, where
H
d = {(x1, . . . , xd) ∈ R

d | xd ≥ 0}.

Proposition 7.1.12 Let K be any pure complex of
dimension d. If every facet of K is nonsingular, then
every facet of K, is contained in at most two cells
(d-simplices).

Proposition 7.1.13 Let K be any pure and connected
complex of dimension d. If every face of K is non-
singular, then for every pair of cells (d-simplices), σ
and σ′, there is a sequence of cells, σ0, . . . , σp, with
σ0 = σ and σp = σ′, and such that σi and σi+1 have a
common facet, for i = 0, . . . , p− 1.
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Proposition 7.1.14 Let K be any pure complex of
dimension d. If every facet of K is nonsingular, then
the boundary, bd(K), of K is a pure complex of di-
mension d−1 with an empty boundary. Furthermore,
if every face of K is nonsingular, then every face of
bd(K) is also nonsingular.

The building blocks of simplicial complexes, namely, sim-
plicies, are in some sense mathematically ideal. However,
in practice, it may be desirable to use a more flexible set
of building blocks.

We can indeed do this and use convex polytopes as our
building blocks.

Definition 7.1.15 A polyhedral complex in E
m (for

short, a complex in E
m) is a set, K, consisting of a (finite

or infinite) set of convex polytopes in E
m satisfying the

following conditions:

(1) Every face of a polytope in K also belongs to K.

(2) For any two polytopes σ1 and σ2 in K, if σ1∩σ2 �= ∅,
then σ1 ∩ σ2 is a common face of both σ1 and σ2.
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Every polytope, σ ∈ K, of dimension k, is called a k-
face (or face) of K. A 0-face {v} is called a vertex
and a 1-face is called an edge. The dimension of the
polyhedral complex K is the maximum of the dimensions
of all polytopes in K. If dimK = d, then every face of
dimension d is called a cell and every face of dimension
d− 1 is called a facet .

Every Polytope, P , yields two natural polyhedral com-
plexes:

(i) The polyhedral complex, K(P ), consisting of P to-
gether with all of its faces. This complex has a single
cell, namely, P itself.

(ii) The boundary complex , K(∂P ), consisting of all faces
of P other than P itself. The cells of K(∂P ) are the
facets of P .

The notions of k-skeleton and pureness are defined just
as in the simplicial case.
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The notions of star and link are defined for polyhedral
complexes just as they are defined for simplicial com-
plexes except that the word “face” now means face of
a polytope.

Now, by Theorem 6.3.1, every polytope, σ, is the convex
hull of its vertices. Let vert(σ) denote the set of vertices
of σ.

We have the following crucial observation: Given any poy-
hedral complex, K, for every point, x ∈ |K|, there is a
unique polytope, σx ∈ K, such that
x ∈ Int(σx) = σx − ∂ σx.

Now, just as in the simplicial case, the open star, st(σ),
of σ is given by

st(σ) =
⋂

v∈vert(σ)

st(v).

and st(σ) is open in |K|.
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The next proposition is another result that seems quite
obvious, yet a rigorous proof is more involved that we
might think.

This proposition states that a convex polytope can always
be cut up into simplices, that is, it can be subdivided into
a simplicial complex.

In other words, every convex polytope can be triangu-
lated. This implies that simplicial complexes are as gen-
eral as polyhedral complexes.

Proposition 7.1.16 Every convex d-polytope, P , can
be subdivided into a simplicial complex without adding
any new vertices, i.e., every convex polytope can be
triangulated.

With all this preparation, it is now quite natural to define
combinatorial manifolds.
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7.2 Combinatorial and Topological Manifolds

The notion of pure complex without singular faces turns
out to be a very good “discrete” approximation of the
notion of (topological) manifold because it of its highly
to computational nature.

Definition 7.2.1 A combinatorial d-manifold is any
space, X , homeomorphic to the geometric realization,
|K| ⊆ E

n, of some pure (simplicial or polyhedral) com-
plex, K, of dimension d whose faces are all nonsingular.
If the link of every k-face of K is homeomorphic to the
sphere Sd−k−1, we say that X is a combinatorial mani-
fold without boundary , else it is a combinatorial manifold
with boundary .

Other authors use the term triangulation for what we
call a computational manifold.

It is easy to see that the connected components of a com-
binatorial 1-manifold are either simple closed polygons or
simple chains (simple, means that the interiors of distinct
edges are disjoint).
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A combinatorial 2-manifold which is connected is also
called a combinatorial surface (with or without bound-
ary). Proposition 7.1.14 immediately yields the following
result:

Proposition 7.2.2 If X is a combinatorial d-manifold
with boundary, then bd(X) is a combinatorial (d−1)-
manifold without boundary.

Now, because we are assuming that X sits in some Eu-
clidean space, E

n, the space X is Hausdorff and second-
countable.

(Recall that a topological space is second-countable iff
there is a countable family of open sets of X , {Ui}i≥0,
such that every open subset of X is the union of open
sets from this family.)
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Since it is desirable to have a good match between man-
ifolds and combinatorial manifolds, we are led to the fol-
lowing definition:

Recall that

H
d = {(x1, . . . , xd) ∈ R

d | xd ≥ 0}.

Definition 7.2.3 For any d ≥ 1, a (topological) d-
manifold with boundary is a second-countable, topolog-
ical Hausdorff space M , together with an open cover,
(Ui)i∈I , of open sets in M and a family, (ϕi)i∈I , of home-
omorphisms, ϕi:Ui → Ωi, where each Ωi is some open
subset of H

d in the subset topology.

Each pair (U, ϕ) is called a coordinate system, or chart ,
of M , each homeomorphism ϕi:Ui → Ωi is called a co-
ordinate map, and its inverse ϕ−1

i : Ωi → Ui is called a
parameterization of Ui. The family (Ui, ϕi)i∈I is often
called an atlas for M .
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A (topological) bordered surface is a connected 2-manifold
with boundary. If for every homeomorphism,
ϕi:Ui → Ωi, the open set Ωi ⊆ H

d is actually an open set
in R

d (which means that xd > 0 for every (x1, . . . , xd) ∈
Ωi), then we say that M is a d-manifold .

Note that a d-manifold is also a d-manifold with bound-
ary.

Letting ∂H
d = R

d−1×{0}, it can be shown using homol-
ogy, that if some coordinate map, ϕ, defined on p maps
p into ∂H

d, then every coordinate map, ψ, defined on p
maps p into ∂H

d.

Thus, M is the disjoint union of two sets ∂M and IntM ,
where ∂M is the subset consisting of all points p ∈ M
that are mapped by some (in fact, all) coordinate map,
ϕ, defined on p into ∂H

d, and where IntM = M − ∂M .

The set ∂M is called the boundary of M , and the set
IntM is called the interior of M , even though this ter-
minology clashes with some prior topological definitions.
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A good example of a bordered surface is the Möbius strip.
The boundary of the Möbius strip is a circle.

The boundary ∂M of M may be empty, but IntM is
nonempty. Also, it can be shown using homology, that
the integer d is unique.

It is clear that IntM is open, and an d-manifold, and
that ∂M is closed.

It is easy to see that ∂M is an (d− 1)-manifold.

Proposition 7.2.4 Every combinatorial d-manifold is
a d-manifold with boundary.

Proof . This is an immediate consequence of Proposition
7.1.11.

Is the converse of Proposition 7.2.4 true?
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It turns out that answer is yes for d = 1, 2, 3 but no for
d ≥ 4. This is not hard to prove for d = 1.

For d = 2 and d = 3, this is quite hard to prove; among
other things, it is necessary to prove that triangulations
exist and this is very technical.

For d ≥ 4, not every manifold can be triangulated (in
fact, this is undecidable!).

What if we assume that M is a triangulated manifold,
which means thatM ≈ |K|, for some pure d-dimensional
complex, K?

Surprinsingly, for d ≥ 5, there are triangulated manifolds
whose links are not spherical (i.e., not homeomorphic to

B
d−k−1

or Sd−k−1).

Fortunately, we will only have to deal with d = 2, 3!
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Another issue that must be addressed is orientability.

Assume that fix a total ordering of the vertices of a com-
plex, K. Let σ = (v0, . . . , vk) be any simplex.

Recall that every permutation (of {0, . . . , k}) is a prod-
uct of transpositions , where a transposition swaps two
distinct elements, say i and j, and leaves every other el-
ement fixed.

Furthermore, for any permutation, π, the parity of the
number of transpositions needed to obtain π only depends
on π and it called the signature of π.

We say that two permutations are equivalent iff they have
the same signature. Consequently, there are two equiv-
alence classes of permutations: Those of even signature
and those of odd signature.
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Then, an orientation of σ is the choice of one of the two
equivalence classes of permutations of its vertices. If σ
has been given an orientation, then we denote by −σ the
result of assigning the other orientation to it (we call it
the opposite orientation).

For example, (0, 1, 2) has the two orientation classes:

{(0, 1, 2), (1, 2, 0), (2, 0, 1)}
and

{(2, 1, 0), (1, 0, 2), (0, 2, 1)}.

Definition 7.2.5 Let X ≈ |K| be a combinatorial d-
manifold. We say that X is orientable if it is possible to
assign an orientation to all of its cells (d-simplices) so that
whenever two cells σ1 and σ2 have a common facet, σ, the
two orientations induced by σ1 and σ2 on σ are opposite.
A combinatorial d-manifold together with a specific ori-
entation of its cells is called an oriented manifold . If X
is not orientable we say that it is non-orientable.
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There are non-orientable (combinatorial) surfaces, for ex-
ample, the Möbius strip which can be realized in E

3. The
Möbius strip is a surface with boundary, its boundary
being a circle.

There are also non-orientable (combinatorial) surfaces such
as the Klein bottle or the projective plane but they can
only be realized in E

4 (in E
3, they must have singularities

such as self-intersection).

We will only be dealing with orientable manifolds, and
most of the time, surfaces.

One of the most important invariants of combinatorial
(and topological) manifolds is their Euler characteristic.

In the next chapter, we prove a famous formula due to
Poincaré giving the Euler characteristic of a convex poly-
tope. For this, we will introduce a technique of indepen-
dent interest called shelling .



340 CHAPTER 7. BASICS OF COMBINATORIAL TOPOLOGY


