
The Greatest Mathematical Paper of All Time 
A. J. Coleman 

You will say that my title is absurd. "Mathematical 
papers cannot be totally ordered. It's a great pity! Poor 
old Coleman has obviously gone berserk in his old 
age." Please read on. 

If in 1940 you had asked the starry-eyed Canadian 
graduate student who was lapping up the K-calculus 
from Alonzo Church in Princeton to name the single 
most important mathematics paper, without doubt I 
would have chosen Kurt G6del's bombshell [12] that 
had rocked the foundat ions  of mathematics a few 
years before. 

In 1970, after my twenty years of refereeing and re- 
viewing, if you had posed the same question, without 
any hesitation I would  have chosen the enormous 
paper of Walter Feit and John Thompson [11] con- 
firming Burnside's 1911 conjecture [3] that simple fi- 
nite groups have even order. 

Now, in the autumnal serenity of semi-retirement, 
having finally looked at some of Wilhelm Killing's 
writings, without any doubt or hesitation I choose his 
paper dated "Braunsberg, 2 Februar, 1888" as the 
most significant mathematical paper I have read or 
heard about in fifty years. Few can contest my choice 
since apart from Engel, Umlauf, Molien, and Cartan 
few seem to have read it. Even my friend Hans Zas- 
senhaus, whose Liesche Ringe (1940) was a landmark in 
the subject,  admitted over our second beer at the 
American Mathematical Society meeting in January 
1987 that he had not read a word of Killing. 

Presupposing that my reader has a rudimentary un- 
derstanding of linear algebra and group theory, I shall 
attempt to explain the main new ideas introduced in 
Killing's paper, describe its remarkable results, and 
suggest some of its subsequent effects. The paper that, 
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following Cartan, I shall refer to as Z.v.G.II, was the 
second of a series of four [18] about Lie algebras. The 
series was churned out in Braunsberg, a mathemati- 
cally isolated spot in East Prussia, during a period 
when Killing was overburdened with teaching, civic 
duties, and concerns about his family. 

The Ahistoricism of Mathematicians 

Most mathematicians seem to have little or no interest 
in history, so that often the name attached to a key 
result is that of the follow-up person who exploited an 
idea or theorem rather than its originator (Jordan form 
is due to Weierstrass; Wedderburn theory to Cartan 
and Molien [13]). No one has suffered from this ahis- 
toricism more than Killing. For example, the so-called 
"'Cartan sub-algebra" and "Cartan matrix, A = (aij)'" 
were  def ined and exploi ted by Killing. The very 
symbols aij and e for the rank are in Z.v.G.II. Hawkins 
[14, p. 290] correctly states: 

Such key notions as the rank of an algebra, semi-simple 
algebra, Cartan algebra, root systems and Cartan integers 
originated with Killing, as did the striking theorem enu- 
merating all possible structures for finite-dimensional Lie 
algebras over the complex numbers . . . .  Cartan and Mo- 
lien also used Killing's results as a paradigm for the devel- 
opment of the structure theory of finite dimensional linear 
associative algebras over the complex numbers, obtaining 
thereby the theorem on semisimple algebras later ex- 
tended by Wedderburn to abstract fields and then applied 
by Emmy Noether to the matrix representations of finite 
groups. 

In this same paper Killing invented the idea of root 
systems and of o~ root-sequences through/3. He exhib- 
ited the characteristic equation of an arbitrary element 
of the Weyl group when Weyl was 3 years old and 
listed the orders of the Coxeter transformation 19 
years before Coxeter was born! 

I have found no evidence that Hermann Weyl read 
anything by Killing. Weyl's important papers on the 
representations of semisimple groups [26], which laid 
the basis for the subsequent development of abstract 
harmonic analysis, are based squarely on Killing's re- 
sults. But Killing's name occurs only in two footnotes 
in contexts suggesting that Weyl had accepted uncriti- 
cally the universal myth that Killing's writings were so 
riddled with egregious errors that Cartan should be 
regarded as the true creator of the theory of simple Lie 
algebras. This is nonsense,  as must  be apparent to 
anyone who even glances at Z.v.G.II or indeed to 
anyone who reads Cartan's thesis carefully. Cartan 
was meticulous in noting his indebtedness to Killing. 
In Cartan's thesis there are 20 references to Lie and 63 
to Killing! For the most part the latter are the theorems 
or arguments of Killing that Cartan incorporated into 
his thesis, the first two-thirds of which is essentially a 
commentary on Z.v.G.II. 

Cartan did give a remarkably elegant and clear ex- 
position of Killing's results. He also made an essential 
contribution to the logic of the argument by proving 
that the "Cartan subalgebra" of a simple Lie algebra is 
abelian. This property was announced by Killing but  
his p roof  was  invalid. In parts ,  other  than II, of 
Killing's four papers there are major deficiencies 
which Cartan corrected, notably in the treatment of 
nilpotent Lie algebras. In the last third of Cartan's 
thesis, many new and important results are based 
upon and go beyond Killing's work. Personally, fol- 
lowing the value scheme of my teacher Claude Che- 
valley, I rank Cartan and Weyl as the two greatest 
mathematicians of the first half of the twentieth cen- 
tury. Cartan's work on infinite dimensional Lie al- 
gebras, exterior differential calculus, differential ge- 
ometry, and, above all, the representation theory of 
semisimple Lie algebras was of supreme value. But 
because one 's  Ph.D. thesis seems to predetermine 
one's mathematical life work, perhaps if Cartan had 
not hit upon the idea of basing his thesis on Killing's 
epoch-making work he might have ended his days as 
a teacher in a provincial lyc6e and the mathematical 
world would have never heard of him! 

The Foothills to Parnassus 

Before we enter directly into the content of Z.v.G.II, it 
may be well to provide some background. 

What we now call Lie algebras were invented by the 
Norwegian mathematician Sophus Lie about 1870 and 
independent ly  by Killing about  1880 [14]. Lie was 
seeking to develop an approach to the solution of dif- 
ferential equations analogous to the Galois theory of 
algebraic equations. Killing's consuming passion was 
non-Euclidean geometries and their generalizations, 
so he was led to the problem of classifying infinites- 
imal motions of a rigid body in any type of space (or 
Raumformen, as he called them). Thus in Euclidean 
space, the rotations of a rigid body about a fixed point 
form a group under composition which can be param- 
eterized by three real numbers - - the  Euler angles, for 
example. The tangent space at the identity to the pa- 
rameter space of this group is a three-dimensional 
linear space of "infinitesimal" rotations. Similarly, for 

J . 
a group that can be paramet~nzed by a smooth mani- 
fold of dimension r, there is an r-dimensional tangent 
space, _z?, at the identity element. If the product of two 
elements of the group is continuous and differentiable 
in the parameters of its factors, it is possible to define a 
binary operation on _z? which we denote by "o," such 
that for all x, y, z, ~ _E, (x, y) ~ x o y is linear in each 
factor, 

x o y  + y o x  = 0 (1) 
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Lyzeum Hosianum in 1835. 

and 

x o (y o z) + y o (z o x) + z o (x o y) = 0 (2a) 

or equivalently, 

x o (y o z) = (x o y) o z + y o (x o z). (2b) 

The equation in (2a) is called the Jacobi identity and in 
the form (2b) should remind you of the rule for differ- 
entiating a product. (_z?, + ,  o) is a Lie algebra with an 
anti-commutative non-associative product. The Jacobi 
identity replaces the associativity of familiar rings such 
as the integers or matrix algebras. 

Obviously if ~ is a subspace of L such that x, y E ~t 
x o y E d~, then �9 is a sub-algebra of 2?. Further, if p: 

(271, +,  o) --~ (2?2, + ,  o) is a homomorphism of one Lie 
algebra onto another, the kernel of p is not merely a 
subalgebra but an ideal. For if K = {x E d?l{p(x)=0}, 
then for any x E K and any y E 271, p(x o y) = p(x) o p(y) 
= 0. Thus K is not only a sub-algebra but  has the 
property, characteristic of an ideal, that for any x E K, 
we have y o x E K for every y E d? 1. We can then define 
a quotient algebra 2?1/K isomorphic to 2?2, in a manner 
analogous to groups with normal subgroups. Thus a 
Lie algebra 17 whose only ideals are {0} and 27 is homo- 
morphic only to 2? or {0}. Such an algebra is called 
simple. The simple Lie algebras are the building blocks 
in terms of which any Lie algebra can be analyzed. Lie 
recognized rather early that the search for solutions of 
systems of differential equations would be greatly fa- 
cilitated if all simple Lie algebras were known. But 
Lie's attempts to find them ran into the sands very 
quickly. 

In his quest for all uniform spatial forms Killing for- 
mulated the problem of classifying all Lie algebras 

over the rea ls - -a  task which in the case of nilpotent 
Lie algebras seems unlikely to have a satisfactory solu- 
tion. In particular, he was interested in simple real Lie 
algebras; as a step in this direction he was led, with 
the encouragement of Engel, to the problem of classi- 
fy ing all s imple  Lie a lgebras  over  the complex  
numbers. 

When ~ is an associative algebra--for example the 
set of n x n matrices over C - - t h e n  for X, Y, Z E ~ ,  
we define X o Y = X Y  - Y X  = IX, Y/--the so-called 
commutator of X and Y. It is then trivial to show that 
X o Y satisfies (1) and (2). Thus any associative algebra 
(~ ,  + ,  .) can be t r an s fo rmed  into a Lie algebra 
(~, + ,  ~ by the simple expedient of defining X ~ Y = 
IX, Y]. This immediately leads us to the notion of a 
linear representation of a Lie algebra (2?, + ,  o) as a map- 
ping p of _z? into Hom(V), satisfying the following con- 
dition: p(x o y) = [O(x), 0(Y)]. Although the definition 
of a representation of a Lie algebra in this simple gen- 
eral form was never given explicitly by Killing or 
others before 1900, the idea was implicit in what  
Engel, and Killing following him, called the adjoint 
group [15, p. 143] and what we now call the adjoint rep- 
resentation. 

In passing, let us note that until about 1930 what we 
now call Lie groups and Lie algebras were called "con- 
tinuous groups" and "infinitesimal groups" respec- 
tively; see [8], for example. These were the terms Weyl 
was still using in 1934/5 in his Princeton lectures [27]. 
However,  by 1930 Cartan used the term groupes de Lie 
[4, p. 1166]; the term Liesche Ringe appeared in the title 
of the famous article on enveloping algebras by Witt 
[28]; and, in his Classical Groups, Weyl [1938, p. 260] 
wrote "In homage to Sophus Lie such an algebra is 
called a Lie Algebra." Borel [1, p. 71] attributes the 
term "Lie group" to Cartan and "Lie algebra" to Ja- 
cobson. 
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Killing as rector, 1897-1898. 

For the adjoint representation of _t' the linear space 
V, above, is taken to be _Z' itself and p is defined by 

f)(x)z = x o z for every z E ~. (3) 

The reader is urged to verify that with this definition 
of p, the Jacobi identi ty (2b) implies that  f)(x o y) = 
[~(x), ~(v)]. 

K i l l i n g  I n t e r v e n e s  

Killing had completed his dissertation under  Weier- 
strass at Berlin in 1872 and  knew all about eigenvalues 
and what  we now call the Jordan canonical form of 
matrices, whereas Lie knew little of the algebra of the 
contemporary Berlin school. It was therefore Killing 
ra ther  than  Lie w h o  asked  the decisive quest ion:  
"What  can one say about  the eigenvalues of X : = p(x) 
in the adjoint representation for an arbitrary x E _s 
Since X x  = x o x = 0, X always has zero as an eigen- 
value. So Killing looked for the roots of the character- 
istic equation (a term he introduced!): 

[ ( o I - X [  = (or _ ~ I ( X ) ( o r - 1  q- ~ 2 ( X ) ( o  r - 2  - -  . . . 

----- ~ b ~ _ l ( X ) ( o  - -  0 .  ( 4 )  

He defined k to be the min imum for x E ~ of the 
multiplicity of zero as a root of (4). This is now called 
the rank of d?. But Killing and Cartan used the term 
rank for the number  of functionally independent  Oi re- 
garded as functions of x E _s Killing noted that O~i(x ) 
are po lynomia l  invar iants  of the Lie group corre- 
sponding to the Lie algebra considered. Though ex- 
pressed in a rather clumsier notation,  he realized that 

= {h E -s XPh = 0 for some p} 

is a subalgebra of d.  This follows from a sort of Leib- 
nitz differentiation rule: Xn(y o z) = Y~[~]Xn-Sy o XSz, 
for 0 ~ s ~ n. For arbitrary _s if X is such that the 
dim(~) is a minimum,  the subalgebra is now called a 
Cartan subalgebra. As a Lie algebra itself ~ is nilpotent 
or what  Killing called an algebra of zero rank. For the 
adjoint representation of ~ on ~ ,  I(oI-HI~ = (ok for all 
h E ~ ,  so all tbi vanish identically. If _z? is simple, ~ is in 
fact abelian. Killing convinced himself of this by an in- 
valid argument .  The filling of this lacuna was a signifi- 
cant contr ibut ion by Cartan to the classification of 
simple Lie algebras over C. It was a stroke of luck on 
Killing's part  that though his a rgument  was mildly de- 
fective, his conclusion on this important  matter was 
correct. 

Assuming that  ~f is abelian, it is trivial to show that  
in the equation 

i(oi_ HI = (ok II~((o - oL(h)), (5) 

the roots, oL(h), are linear functions of h E ~f. Thus {x E 
~*, the dual space of ~ .  Following current usage we 
denote by /~  the set of roots ~ that  occur in (5). Killing 
proceeded on the assumpt ion  that  all ~ had  multi- 
plicity one, or that the r - k functions c~(h) were dis- 
tinct. It follows that for each oL there is an element e~ E 
d? such that  h o e~ = ~(h) e~ for all h E ~ .  Then using 
(2b) it easily follows that for (x, [3, E A 

Ja/o (e~ o e~) = (or(h) + 13(h))G, o e, .  (6) 

This equation is the key to the classification of the root 
systems/~ that  can occur for simple Lie algebras. From 
(6) we can immediately conclude: 

(i) e~oel~ # O ~ a  + 13 E /N 

(ii) a + 13 ~ ~ e a o e ~  = 0 

(iii) 0 # e ~ o e ~  E ~ o ~  + 13 = 0. 

It turns  out  that  for every o~ E A, there is a corre- 
sponding -c~ E /X such that 0 # ha: = e~ o e_~ E ~.  So 
the number  of roots is even, say 2m, and r = k + 2m 

= dim(_s 
In the adjoint representation let E~ correspond to e~, 

and for any  e~ # 0 consider the element E~e~ for n E 
Z +. Starting from (6) we see by induction that 
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h o E~ea = (~(h) + no~(h))E"~e~. 

Thus if E]ea ~ O, f3 + n a  ~ A .  But vectors with distinct 
eigenvalues are linearly independent .  Thus if 2? is fi- 
n i t e -d imens iona l  t he re  is a h ighes t  va lue  of  n for  
which E"~el~ ~ O. Call it p. Similarly let q be the largest 
value of n such that E"__~ea ~ O. Thus for a, 13 ~ A there 
is an n-sequence of roots th rough  13 of length p + q + 
1 - - w h a t  Killing called Wurzelreihe:  

13 - qa, 13 - ( q - 1 ) a  . . . .  ,[3,[3 + a . . . . .  
+ pa. (7) 

Because H~ = [E~, E_~], the trace of H= is zero, which 
implies 

2f3(h~,) + (p -q)a(h~ , )  = O. (8) 

This ,  in o u r  n o t a t i o n ,  is e q u a t i o n  (7), p. 16, of 
Z.v.G.II.  The d imension of the Cartan subalgebra is 
n o w  called the rank  of -/'. For simple Lie algebras this 
def ini t ion and  Killing's defini t ion of rank  coincide.  
That  is, for simple Lie algebras k = e. Hence  dim(~*) 
= f ,  so there can be at most  f linearly i ndependen t  
roots.  Using (8), Killing showed  that  there  exists a 
ba'sis B = { a l , a  2 . . . . .  a e }  of gs where  a i ~ Z~ is such 
that each ~3 E A has rational components  in the basis 
B. Indeed,  the a i { B can be so chosen that a i is a top 
root  in any aj-sequence through it. Thus for each i and 
j there is a root-sequence 

%, ai - o 9 . . . . .  ai + aila i (9) 

where  aq is a non-pos i t ive  integer.  In part icular,  it 
turns out  that aii -= - 2 .  

The Still Point of  the Turning World 

The definition of the integers aq was a turning point  in 
mathematical  history. It appears  at the top of page 16 
of II. By page 33 Killing had found the systems A for 
all simple Lie algebras over  C together  with the orders 
of the associated Coxeter  t ransformat ions .  We con- 
tinue, using Killing's own  words  taken from the last 
paragraph of his introduct ion,  unchanged  except for 
notation: 

If ct i and % are two of these (~ roots, there are two integers 
aij and a# that define a certain relation between the two 
roots. Here we mention only that together with cti and txj 
both ct i + aqet, and e 9 + ajie q and ct i + atxj are roots where a 
is an integer ~etween aij and 0. The coefficients ali are all 
equal to -2 ;  the others are by no means arbitrary; indeed 
they satisfy many constraining equalities. One series of 
these constraints deriveg from the fact that a certain linear 
transformation, defined in terms of a 0, when iterated gives 
the identity transformation. Each system of these coeffi- 
cients is simple or splits into simple systems. These two 
possibilities are distinguished as follows. Begin with any 
index i, 1 ~< i ~< 2. Adjoin to it all j such that a~ i # 0; then 

Wilhelm Killing in his later years. 

adjoin all k for which an ajk ~ O. Continue as far as pos- 
sible. Then, if all indices 1,2 . . . .  • have been included, 
the system of a 0 is simple. The roots of a simple system 
correspond to a simple group. Conversely, the roots of a 
simple group can be regarded as determined by a simple 
system. In this way one obtains the simple groups. For 
each f there are four structures supplemented for f ( {2, 
4, 6, 7, 8} by exceptional simple groups. For these excep- 
tional groups I have various results that are not in fully 
developed form; I hope later to be able to exhibit these 
groups in simple form and therefore am not communi- 
cating the representations for them that have been found 
so far. 

In read ing  this, recall that  Lie and  Killing used  the 
t e rm " g r o u p "  to inc lude  the  m e a n i n g  w e  n o w  at- 
tribute to "'Lie algebra."  His s ta tement  is correct as it 
s tands for (~ > 3 but  as is apparen t  f rom his explicit list 
of simple algebras he knew that  for f = 1 there is only 
one  i somorphism class and for f = 2 and 3 there are 
three. Replacing a i by - a  i gives rise to integers satis- 
fying aij = 2, aij ~ 0  for i # j, which is currently the 
usual  convent ion.  The "certain linear transformation'" 
m e n t i o n e d  by  Killing is the Coxeter  t ransformat ion  
discussed below. It is wor th  not ing that in Killing's ex- 
plicit tables the coefficients for all roots in terms of his 
chosen  basis are integers ,  so he  came close to ob- 
taining wha t  we now call a basis of simple roo t s / l  la 
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Dynkin. As far as I am aware, such a basis appeared 
explicitly for the first time in Cartan's beautiful 1927 
paper [4, p. 793] on the geometry of simple groups. 

The one minor error in Killing's classification was 
the exhibition of two exceptional groups of rank four. 
Cartan noticed that Killing's two root systems are 
easily seen to be equivalent. It is peculiar that Killing 
overlooked this since his mastery of calculation and 
algebraic formalism was quite phenomenal. Killing's 
notation for the various simple Lie algebras, slightly 
modified by Cartan, is what we still employ: A n de- 
no te s  the  i s o m o r p h i s m  class c o r r e s p o n d i n g  to 
se(n+ l,C); B n corresponds to so(2n+ I); C n to sp(2n); 
D n to so(2n). The classes A n, B n, D n were known to Lie 
and Killing before 1888. Killing was unaware of the 
existence of type Cn though Lie knew about it, at least 
for small values of n. On this point see the careful dis- 
cussion of Hawkins [15, pp. 146-150]. 

The exceptional algebra of rank two which we now 
label G2 was denoted as IIC by Killing. It has dimen- 
sion 14 and has a linear representation of dimension 7. 
In a letter to Engel [ 15, p. 156] Killing remarked that 
G2 might occur as a group of point transformations in 
five, but not fewer, dimensions. That such a represen- 
tation exists was subsequently verified independently 
by Cartan and Engel [4, p. 130]. The exceptional al- 
gebras F4, E a, E7, E 8 of rank 4, 6, 7, 8 have dimension 
52, 78, 133, 248, respectively. The largest of Killing's 
exceptional groups, E 8 of dimension 248, is now the 
darling of super-string theorists! 

Forward to Coxeter 

For an arbitrary simple Lie algebra of rank n, the di- 
mension is n(h+l ) ,  where h is the order of a remark- 
able element of the Weyl group now called the Coxeter 
transformation (because Coxeter expounded its proper- 
ties as part of his study of finite groups generated by 
reflections or, as they are now called, Coxeter groups [6, 
7]). Coxeter employed a graph to classify this type of 
g roup .  Dur ing  the  1934/5 lec tures  by Weyl  at 
Princeton, he noticed that the finite group of permuta- 
tions of the roots which played a key role in Killing's 
argument and which is isomorphic to what we now 
call the Weyl group is in fact generated by involutions. 
The notes of Weyl's course [27] contain an Appendix 
by Coxeter in which a set of diagrams equivalent to 
those of Table 1 appears. Some years later Dynkin in- 
dependently made use of similar diagrams for charac- 
terizing sets of simple roots so that they are now gen- 
erally described as Coxeter-Dynkin diagrams. 

The lef t -hand column of Table 1 encapsulates  
Killing's classification of simple Lie algebras. By 
studying the Coxeter transformation for Lie algebras 
of rank 2, Killing showed [Z.v.G.II, p. 22] that aijaji 
{0, 1, 2, 3}. There is a one-to-one correspondence be- 
tween the Cartan matrices of finite-dimensional simple 

Lie algebras and the left-hand column of Table 1. The 
n nodes of a graph correspond to Killing's indices 1, 2, 
3 . . . . .  n, or to the roots of a basis or to generators Si 
of the Weyl group. A triple bond as in G 2 means that 
aijaji = 3. Double and single bonds are interpreted 
similarly. 

On to Kac and Moody! 

If we use the current convention that aii = 2 and that 
aij is a non-positive integer if i # j, it is not difficult to 
see that Killing's conditions imply that d? is a finite-di- 
mensional Lie algebra if and only if the determinant of 
A = (aq) and those of all its principal minors are 
strictly positive. Further ,  Killing's equations (6) 
[Z.v.G.II. p. 21] imply that A is symmetrisable--that  is, 
there exist non-zero numbers d i such that diai j  = djaji. 
In particular, aii and aii are zero or non-zero together. 

Almost simultaneously in 1967, Victor Kac [16] in 
the USSR and Robert Moody [22] in Canada noticed 
that if Killing's conditions on (aij) were relaxed, it was 
still possible to associate to the Cartan matrix A a Lie 
algebra which, necessarily, would be infinite dimen- 
sional. The current method of proving the existence of 
such Lie algebras derives from a short paper of Che- 
valley [5]. This paper was also basic to the work of my 
students Bouwer [2] and LeMire [19], who discussed 
infinite dimensional representations of finite Lie al- 
gebras. Chevalley's paper also initiated the current 
widespread exploitation of the universal associative 
enveloping algebras of Lie algebras--a concept first 
rigorously defined by Witt [28]. 

Among the Kac-Moody algebras the most tractable 
are the symmetrisable. The most extensively studied 
and applied are the affine Lie algebras which satisfy all 
Killing's conditions except that the determinant [A[ is 
0. The Cartan matrices for the affine Lie algebras are in 
one-to-one correspondence with the graphs in the 
right-hand column of Table 1, which first appeared in 
[27]. 

Wilhelm Kil l ing the Man 

Killing was born in Burbach in Westphalia, Germany, 
on 10 May 1847 and died in M~inster on 11 February 
1923. Killing began university study in M~inster in 
1865 but quickly moved to Berlin and came under the 
influence of Kummer  and Weierstrass. His thesis, 
completed in March 1872, was supervised by Weier- 
strass and applied the latter's recently developed 
theory of elementary divisors of a matrix to "Bundles 
of Surfaces of the Second Degree." From 1868 to 1882 
much of Killing's energy was devoted to teaching at 
the gymnasium level in Berlin and Brilon (south of 
M~inster). At one stage when Weierstrass was urging 
him to write up his research on space structures 
(Raumformen) he was spending as much as 36 hours 
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1 2 3 4 2 

�9 �9 �9 �9 0 F 4 �9 
1 2 3 2 1 

O1 
B 1 0 

�9 O ~ O ~ O . . .  � 9  �9 
n 1 2 2 2 2 2 - - 2  

B2 
n: 1 - - I  1 1 1 1 - - I  

BC2n : O : = ~ = O m O ~ O . - .  O ~ O = ~ = O  
1 - - 2  2 2 2 2 - - 2  

C n : O ~ O ~ O . . .  0 ~ 0 ~ 0  
n(2n+l)  1 ,2 3 n-2 n - l - - n  

1 O = ~ O m O ~ O . . .  0 ~ 0 ~ - - - 0 ,  
Cn"  1 - - 2  2 2 2 2 1 

o l  
2 i O ~ I = ~ = = I  C n :  I ~ O ~ I , . -  

1 2 2 2 2 " 1  

Table 1. Coxeter-Dynkin Diagram of the finite and affine Lie algebras�9 
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Braunsberg, with a view of the thirteenth-century St. Catherine's Church. 

per week in the classroom or tutoring. (Now many 
mathematicians consider 6 hours a week an intolerable 
burden!) On the recommendat ion  of Weierstrass,  
Killing was appointed Professor of Mathematics at the 
Lyzeum Hosianum in Braunsberg in East Prussia (now 
Braniewo in the region of Olsztyn in Poland). This was 
a college founded in 1565 by Bishop Stanislaus Hosius, 
whose treatise on the Christian faith ran into 39 edi- 
tions! 

When Killing arrived the building of the Lyzeum 
must  have looked very much as it appears in the ac- 
companying picture. The main object of the college 
was the training of Roman Catholic clergy, so Killing 
had to teach a wide range of topics including the rec- 
onciliation of faith and science. Although he was iso- 
lated mathematically during his ten years in Brauns- 
berg, this was the most creative period in his mathe- 
matical life. Killing produced his brilliant work despite 
worries about the health of his wife and seven chil- 
dren, demanding administrative duties as rector of 
the college and as a member and chairman of the City 
Council, and his active role in the church of St. Cath- 
erine. 

Killing announced his ideas in the form of Pro- 
grammschriften [15] from Braunsberg. These dealt with 
(i) Non-Euclidean geometries in n-dimensions (1883); 

(ii) "The Extension of the Concept of Space" (1884); 
and (iii) his first tentative thoughts about Lie's trans- 
formation groups (1886). Killing's original treatment of 
Lie algebras first appeared in (ii). It was only after this 
that he learned of Lie's work, most of which was inac- 
cessible to Killing because it never occurred to the col- 
lege librarian to subscribe to the Archiv fiir Mathematik 
of the University of Christiana (now, Oslo) where Lie 
published. Fortunately Engel played a role with re- 
spect to Killing similar to that of Halley with Newton, 
teasing out of him Z.v.G.I-IV, which appeared in the 
Math. Annalen. 

In 1892 he was called back to his native Westphalia 
as professor of mathematics at the University of M~in- 
ster, where he was quickly submerged in teaching, 
administration, and charitable activities. He was Rector 
Magnificus for some period and president of the St. 
Vincent de Paul charitable society for ten years. 

Throughout his life Killing evinced a high sense of 
duty and a deep concern for anyone in physical or 
spiritual need. He was steeped in what the mathema- 
tician Engel characterized as "the rigorous Westpha- 
lian Catholicism of the 1850s and 1860s." St. Francis of 
Assisi was his model, so that at the age of 39 he, to- 
gether with his wife, entered the Third Order of the 
Franciscans [24, p. 399]. His students loved and ad- 
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mired Killing because he gave himself unsparingly of 
time and energy to them, never being satisfied until 
they understood the matter at hand in depth [23]. Nor 
was Killing satisfied for them to become narrow spe- 
cialists, so he spread his lectures over many topics 
beyond geometry and groups. 

Killing was conservative in his political views and 
vigorously opposed the attempt to reform the exami- 
nation requirements for graduate students at the Uni- 
versity of Mfinster by deleting the compulsory study 
of philosophy. Engel comments "Killing could not see 
that for most candidates the test in philosophy was 
vollstfindig wertlos" (completely worthless). Nor do 
my sources suggest that he had much of a sense of 
humour .  He had a profound patriotic love of his 
country, so that his last years (1918-1923) were deeply 
pained by the collapse of social cohesion in Germany 
after the War of 1914-18. Nonetheless, the accompa- 
nying photograph of Killing in his old age radiates 
kindliness and serenity. He was greatly cheered by the 
award of the Lobachevsky Prize by the Physico-Mathe- 
mafical Society of Kazan in 1900 for his work in geom- 
etry. 

Why was Kil l ing's  Work Neglected? 

Killing was a modest  man with high standards; he 
vastly underrated his own achievement. His interest 
was geometry and for this he needed all real Lie al- 
gebras. To obtain merely the simple Lie algebras over 
the complex numbers did not appear to him to be very 
significant. Once Z.v.G.IV had appeared, Killing's re- 
search energies went  back to Raumformen. I recall 
that one day in 1940 during the regular tea-coffee 
ritual in Fine Hall at Princeton, Marston Morse de- 
claimed "A successful mathematician always believes 
that his current theorem is the most important piece of 
mathematics the world has ever seen." Few have lived 
this philosophy with more 61an than Morse! And of 
course even though I immediately formed a deep- 
seated dislike for Morse, there is something in what he 
said. If you do not think your stuff is important, why  
will anyone else? But Morse's philosophy is far re- 
moved from St. Francis of Assisi! 

Also Lie was quite negative about Killing's work. 
This, I suspect, was partly sour grapes, because Lie 
admitted that he had merely paged through Z.v.G.II. 
At the top of page 770 of Lie-Engel III [20] we find the 
following less than generous comment about Killing's 
1886 Programmschrift: "with the exception of the pre- 
ceding unproved theorem,  . . all the theorems that 
are correct are due to Lie and all the false ones are due 
to Killing!" 

According to Engel [9, p. 221/2] there was no love 
lost between Lie and Killing. This comes through in 
the nine references to Killing's work in volume III of 

Wilhelm Killing, probably about 1889-1891. 

[20]. With one exception they are negative and seem to 
have the purpose of proving that anything of value 
about transformation groups was first discovered by 
Lie. Even if this were true, it does not do justice to the 
fact that there was no possibility of Killing in Brauns- 
berg knowing Lie's results published in Christiana. So 
if Lie's results are wonderful, Killing's independent 
discovery of them is equally wonderful! 

It seems to me that even Hawkins, who has done 
more than anyone else to rehabilitate Killing, some- 
times allows himself to be too greatly influenced by 
the widespread  negativism surrounding Killing's 
work. The misunderstanding about the relation of 
Cartan to Killing would never have occurred if readers 
of Cartan's thesis had taken the trouble to look up the 
63 references to Killing's papers that Cartan supplied. 

Conclus ion 

Why do I think that Z.v.G.II was an epoch-making 
paper? 

(1) It was the paradigm for subsequent  efforts to 
classify the possible structures for any mathematical 
object. Hawkins [15] documents the fact that Killing's 
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paper was the immediate inspiration for the work of 
Cartan, Molien, and Maschke on the structure of 
linear associative algebras which culminated in Wed- 
derburn's theorems. Killing's success was certainly an 
example which gave Richard Brauer the will to persist 
in the attempt to classify simple groups. 

(2) Weyl 's  theory of the representat ion of semi- 
s imple  Lie g roups  w o u l d  have been  imposs ib le  
without  ideas, results, and methods originated by 
Killing in Z.v.G.II. Weyl's fusion of global and local 
analysis laid the basis for the work of Harish-Chandra 
and the flowering of abstract harmonic analysis. 

(3) The whole industry of root systems evinced in 
the writings of I. Macdonald, V. Kac, R. Moody, and 
others started with Killing. For the latest see [21]. 

(4) The Weyl group and the Coxeter transformation 
are in Z.v.G.II. There they are realized not as orthog- 
onal motions of Euclidean space but as permutations 
of the roots. In my view, this is the proper way  to 
think of them for general Kac-Moody algebras. Fur- 
ther, the conditions for symmetrisability which play a 
key role in Kac's book [17] are given on p. 21 of 
Z.v.G.II. 

(5) It was Killing who discovered the exceptional 
Lie algebra Ea, which apparently is the main hope for 
saving Super-String Theory- -no t  that I expect it to be 
saved! 

(6) Roughly one third of the extraordinary work of 
Elie Car tan was  b a s e d  more  or less d i rec t ly  on 
Z.v.G.II. 

Euclid's Elements and Newton's  Principia are more 
important than Z.v.G.II. But if you can name one 
paper in the past 200 years of equal significance to the 
paper which was sent off diffidently to Felix Klein on 2 
February 1888 from an isolated outpost of Bismarck's 
empire, please inform the Editor of the Mathematical 
Intelligencer. 
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