
Chapter 4

Basics of Euclidean Geometry

4.1 Inner Products, Euclidean Spaces

In Affine geometry, it is possible to deal with ratios of
vectors and barycenters of points, but there is no way to
express the notion of length of a line segment, or to talk
about orthogonality of vectors.

A Euclidean structure will allow us to deal with metric
notions such as orthogonality and length (or distance).

We begin by defining inner products and Euclidean Spaces.
The Cauchy-Schwarz inequality and the Minkovski in-
equality are shown.
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We define othogonality of vectors and of subspaces, oth-
ogonal families, and orthonormal families. We offer a
glimpse at Fourier series in terms of the orthogonal fam-
ilies (sin px)p≥1 ∪ (cos qx)q≥0 and (eikx)k∈Z.

We prove that every finite dimensional Euclidean space
has orthonormal bases.

The first proof uses duality, and the second one the Gram-
Schmidt procedure. The QR-decomposition of matrices
is shown as an application.

Linear isometries (also called orthogonal transformations)
are defined and studied briefly.

The orthogonal group and orthogonal matrices are stud-
ied briefly.

First, we define a Euclidean structure on a vector space,
and then, on an affine space.
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Definition 4.1.1 A real vector space E is a Euclidean
space iff it is equipped with a symmetric bilinear form
ϕ: E × E → R which is also positive definite ,which
means that

ϕ(u, u) > 0, for every u 6= 0.

More explicitly, ϕ: E × E → R satisfies the following
axioms:

ϕ(u1 + u2, v) = ϕ(u1, v) + ϕ(u2, v),

ϕ(u, v1 + v2) = ϕ(u, v1) + ϕ(u, v2),

ϕ(λu, v) = λϕ(u, v),

ϕ(u, λv) = λϕ(u, v),

ϕ(u, v) = ϕ(v, u),

u 6= 0 implies that ϕ(u, u) > 0.

The real number ϕ(u, v) is also called the inner product
(or scalar product) of u and v.
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We also define the quadratic form associated with ϕ as
the function Φ: E → R+ such that

Φ(u) = ϕ(u, u),

for all u ∈ E.

Since ϕ is bilinear, we have ϕ(0, 0) = 0, and since it is
positive definite, we have the stronger fact that

ϕ(u, u) = 0 iff u = 0,

that is Φ(u) = 0 iff u = 0.

Given an inner product ϕ: E ×E → R on a vector space
E, we also denote ϕ(u, v) by

u · v, or 〈u, v〉, or (u|v),

and
√

Φ(u) as ‖u‖.
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Example 1. The standard example of a Euclidean space
is R

n, under the inner product · defined such that

(x1, . . . , xn) · (y1, . . . , yn) = x1y1 + x2y2 + · · · + xnyn.

Example 2. Let E be a vector space of dimension 2, and
let (e1, e2) be a basis of E.

If a > 0 and b2 − ac < 0, the bilinear form defined such
that

ϕ(x1e1+y1e2, x2e1+y2e2) = ax1x2+b(x1y2+x2y1)+cy1y2

yields a Euclidean structure on E.

In this case,

Φ(xe1 + ye2) = ax2 + 2bxy + cy2.



128 CHAPTER 4. BASICS OF EUCLIDEAN GEOMETRY

Example 3. Let C[a, b] denote the set of continuous func-
tions f : [a, b] → R. It is easily checked that C[a, b] is a
vector space of infinite dimension.

Given any two functions f, g ∈ C[a, b], let

〈f, g〉 =

∫ b

a

f (t)g(t)dt.

We leave as an easy exercise that 〈−,−〉 is indeed an
inner product on C[a, b].

When [a, b] = [−π, π] (or [a, b] = [0, 2π], this makes
basically no difference), one should compute

〈sin px, sin qx〉, 〈sin px, cos qx〉,
and 〈cos px, cos qx〉,

for all natural numbers p, q ≥ 1. The outcome of these
calculations is what makes Fourier analysis possible!
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Let us observe that ϕ can be recovered from Φ. Indeed,
by bilinearity and symmetry, we have

Φ(u + v) = ϕ(u + v, u + v)

= ϕ(u, u + v) + ϕ(v, u + v)

= ϕ(u, u) + 2ϕ(u, v) + ϕ(v, v)

= Φ(u) + 2ϕ(u, v) + Φ(v).

Thus, we have

ϕ(u, v) =
1

2
[Φ(u + v) − Φ(u) − Φ(v)].

We also say that ϕ is the polar form of Φ.

One of the very important properties of an inner product
ϕ is that the map u 7→

√
Φ(u) is a norm.
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Lemma 4.1.2 Let E be a Euclidean space with inner
product ϕ and quadratic form Φ. For all u, v ∈ E, we
have the Cauchy-Schwarz inequality:

ϕ(u, v)2 ≤ Φ(u)Φ(v),

the equality holding iff u and v are linearly dependent.

We also have the Minkovski inequality:
√

Φ(u + v) ≤
√

Φ(u) +
√

Φ(v),

the equality holding iff u and v are linearly dependent,
where in addition if u 6= 0 and v 6= 0, then u = λv for
some λ > 0.
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Sketch of proof . Define the function T : R → R, such
that

T (λ) = Φ(u + λv),

for all λ ∈ R. Using bilinearity and symmetry, we can
show that

Φ(u + λv) = Φ(u) + 2λϕ(u, v) + λ2Φ(v).

Since ϕ is positive definite, we have T (λ) ≥ 0 for all
λ ∈ R.

If Φ(v) = 0, then v = 0, and we also have ϕ(u, v) = 0.
In this case, the Cauchy-Schwarz inequality is trivial,
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If Φ(v) > 0, then

λ2Φ(v) + 2λϕ(u, v) + Φ(u) = 0

can’t have distinct roots, which means that its discrimi-
nant

∆ = 4(ϕ(u, v)2 − Φ(u)Φ(v))

is zero or negative, which is precisely the Cauchy-Schwarz
inequality.

The Minkovski inequality can then be shown.
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Let us review the definition of a normed vector space.

Definition 4.1.3 Let E be a vector space over a field
K, where K is either the field R of reals, or the field
C of complex numbers. A norm on E is a function
‖ ‖ : E → R+, assigning a nonnegative real number ‖u‖
to any vector u ∈ E, and satisfying the following condi-
tions for all x, y, z ∈ E:

(N1) ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0. (positivity)

(N2) ‖λx‖ = |λ| ‖x‖ . (scaling)

(N3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ . (triangle inequality)

A vector space E together with a norm ‖ ‖ is called a
normed vector space .

From (N3), we easily get

| ‖x‖ − ‖y‖ | ≤ ‖x − y‖ .
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The Minkovski inequality
√

Φ(u + v) ≤
√

Φ(u) +
√

Φ(v)

shows that the map u 7→
√

Φ(u) satisfies the triangle
inequality , condition (N3) of definition 4.1.3, and since ϕ
is bilinear and positive definite, it also satisfies conditions
(N1) and (N2) of definition 4.1.3, and thus, it is a norm
on E.

The norm induced by ϕ is called the Euclidean norm
induced by ϕ.
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Note that the Cauchy-Schwarz inequality can be written
as

|u · v| ≤ ‖u‖ ‖v‖ ,

and the Minkovski inequality as

‖u + v‖ ≤ ‖u‖ + ‖v‖ .

u v

u + v

Figure 4.1: The triangle inequality

We now define orthogonality.
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4.2 Orthogonality

Definition 4.2.1 Given a Euclidean space E, any two
vectors u, v ∈ E are orthogonal, or perpendicular iff
u · v = 0. Given a family (ui)i∈I of vectors in E, we say
that (ui)i∈I is orthogonal iff ui · uj = 0 for all i, j ∈ I ,
where i 6= j. We say that the family (ui)i∈I is orthonor-
mal iff ui · uj = 0 for all i, j ∈ I , where i 6= j, and
‖ui‖ = ui · ui = 1, for all i ∈ I . For any subset F of E,
the set

F⊥ = {v ∈ E | u · v = 0, for all u ∈ F},
of all vectors orthogonal to all vectors in F , is called the
orthogonal complement of F .

Since inner products are positive definite, observe that for
any vector u ∈ E, we have

u · v = 0 for all v ∈ E iff u = 0.

It is immediately verified that the orthogonal complement
F⊥ of F is a subspace of E.
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Example 4. Going back to example 3, and to the inner
product

〈f, g〉 =

∫ π

−π

f (t)g(t)dt

on the vector space C[−π, π], it is easily checked that

〈sin px, sin qx〉 =

{
π if p = q, p, q ≥ 1,
0 if p 6= q, p, q ≥ 1

〈cos px, cos qx〉 =

{
π if p = q, p, q ≥ 1,
0 if p 6= q, p, q ≥ 0

and
〈sin px, cos qx〉 = 0,

for all p ≥ 1 and q ≥ 0, and of course,
〈1, 1〉 =

∫ π

−π
dx = 2π.

As a consequence, the family (sin px)p≥1 ∪ (cos qx)q≥0 is
orthogonal.

It is not orthonormal, but becomes so if we divide every
trigonometric function by

√
π, and 1 by

√
2π.
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Remark : Observe that if we allow complex valued func-
tions, we obtain simpler proofs. For example, it is imme-
diately checked that

∫ π

−π

eikxdx =

{
2π if k = 0;
0 if k 6= 0,

because the derivative of eikx is ikeikx.

Ä However, beware that something strange is going on!

Indeed, unless k = 0, we have

〈eikx, eikx〉 = 0,

since

〈eikx, eikx〉 =

∫ π

−π

(eikx)2dx =

∫ π

−π

ei2kxdx = 0.

The inner product 〈eikx, eikx〉 should be strictly positive.
What went wrong?
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The problem is that we are using the wrong inner product.
When we use complex-valued functions, we must use the
Hermitian inner product

〈f, g〉 =

∫ π

−π

f (x)g(x)dx,

where g(x) is the conjugate of g(x).

The Hermitian inner product is not symmetric. Instead,

〈g, f〉 = 〈f, g〉.

(Recall that if z = a+ib, where a, b ∈ R, then z = a−ib.
Also eiθ = cos θ + i sin θ).

With the Hermitian inner product, everthing works out
beautifully! In particular, the family (eikx)k∈Z is orthog-
onal.
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Lemma 4.2.2 Given a Euclidean space E, for any
family (ui)i∈I of nonnull vectors in E, if (ui)i∈I is or-
thogonal, then it is linearly independent.

Lemma 4.2.3 Given a Euclidean space E, any two
vectors u, v ∈ E are orthogonal iff

‖u + v‖2 = ‖u‖2 + ‖v‖2 .

One of the most useful features of orthonormal bases is
that they afford a very simple method for computing the
coordinates of a vector over any basis vector.

Indeed, assume that (e1, . . . , em) is an orthonormal basis.
For any vector

x = x1e1 + · · · + xmem,

if we compute the inner product x · ei, we get
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x · ei = x1e1 · ei + · · · + xiei · ei + · · · + xmem · ei = xi,

since

ei · ej =

{
1 if i = j,
0 if i 6= j,

is the property characterizing an orthonormal family.

Thus,
xi = x · ei,

which means that xiei = (x·ei)ei is the orthogonal projec-
tion of x onto the subspace generated by the basis vector
ei.

If the basis is orthogonal but not necessarily orthonormal,
then

xi =
x · ei

ei · ei
=

x · ei

‖ei‖2 .

All this is true even for an infinite orthonormal (or or-
thogonal) basis (ei)i∈I .
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Ä However, remember that every vector x is expressed as
a linear combination

x =
∑

i∈I

xiei

where the family of scalars (xi)i∈I has finite support,
which means that xi = 0 for all i ∈ I − J , where J is a
finite set.

Thus, even though the family (sin px)p≥1 ∪ (cos qx)q≥0

is orthogonal (it is not orthonormal, but becomes one if
we divide every trigonometric function by

√
π, and 1 by√

2π; we won’t because it looks messy!), the fact that a
function f ∈ C0[−π, π] can be written as a Fourier series
as

f (x) = a0 +

∞∑

k=1

(ak cos kx + bk sin kx)

does not mean that (sin px)p≥1 ∪ (cos qx)q≥0 is a basis
of this vector space of functions, because in general, the
families (ak) and (bk) do not have finite support!
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In order for this infinite linear combination to make sense,
it is necessary to prove that the partial sums

a0 +

n∑

k=1

(ak cos kx + bk sin kx)

of the series converge to a limit when n goes to infinity.

This requires a topology on the space.

Still, a small miracle happens. If f ∈ C[−π, π] can indeed
be expressed as a Fourier series

f (x) = a0 +

∞∑

k=1

(ak cos kx + bk sin kx),

the coefficients a0 and ak, bk, k ≥ 1, can be computed
by projecting f over the basis functions, i.e. by taking
inner products with the basis functions in (sin px)p≥1 ∪
(cos qx)q≥0.
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Indeed, for all k ≥ 1, we have

a0 =
〈f, 1〉
‖1‖2 ,

and

ak =
〈f, cos kx〉
‖cos kx‖2 , bk =

〈f, sin kx〉
‖sin kx‖2 ,

that is

a0 =
1

2π

∫ π

−π

f (x)dx,

and

ak =
1

π

∫ π

−π

f (x) cos kx dx, bk =
1

π

∫ π

−π

f (x) sin kx dx.
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If we allow f to be complex-valued and use the family
(eikx)k∈Z, which is is indeed orthogonal w.r.t. the Hermi-
tian inner product

〈f, g〉 =

∫ π

−π

f (x)g(x)dx,

we consider functions f ∈ C[−π, π] that can be expressed
as the sum of a series

f (x) =
∑

k∈Z

cke
ikx.

Note that the index k is allowed to be a negative integer.
Then, the formula giving the ck is very nice:

ck =
〈f, eikx〉
‖eikx‖2 ,

that is

ck =
1

2π

∫ π

−π

f (x)e−ikxdx.
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Note the presence of the negative sign in e−ikx, which is
due to the fact that the inner product is Hermitian.

Of course, the real case can be recovered from the complex
case. If f is a real-valued function, then we must have

ak = ck + c−k and bk = i(ck − c−k).

Also note that

1

2π

∫ π

−π

f (x)e−ikxdx

is not only defined for all discrete values k ∈ Z, but for
all k ∈ R, and that if f is continuous over R, the integral
makes sense.
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This suggests defining

f̂ (k) =

∫ ∞

−∞
f (x)e−ikxdx,

called the Fourier transform of f . It analyses the func-
tion f in the “frequency domain” in terms of its spectrum
of harmonics.

Amazingly, there is an inverse Fourier transform (change
e−ikx to e+ikx and divide by the scale factor 2π) which
reconstructs f (under certain assumptions on f ).
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A very important property of Euclidean spaces of finite
dimension is that the inner product induces a canonical
bijection (i.e., independent of the choice of bases) between
the vector space E and its dual E∗.

Given a Euclidean space E, for any vector u ∈ E, let
ϕu: E → R be the map defined such that

ϕu(v) = u · v,

for all v ∈ E.
Since the inner product is bilinear, the map ϕu is a

linear form in E∗.
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Thus, we have a map [: E → E∗, defined such that

[(u) = ϕu.

Lemma 4.2.4 Given a Euclidean space E, the map
[: E → E∗, defined such that

[(u) = ϕu,

is linear and injective. When E is also of finite di-
mension, the map [: E → E∗ is a canonical isomor-
phism.

The inverse of the isomorphism [: E → E∗ is denoted by
]: E∗ → E.
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As a consequence of lemma 4.2.4, if E is a Euclidean space
of finite dimension, every linear form f ∈ E∗ corresponds
to a unique u ∈ E, such that

f (v) = u · v,

for every v ∈ E.

In particular, if f is not the null form, the kernel of f ,
which is a hyperplane H , is precisely the set of vectors
that are orthogonal to u.

Lemma 4.2.4 allows us to define the adjoint of a linear
map on a Euclidean space.
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Let E be a Euclidean space of finite dimension n, and let
f : E → E be a linear map.

For every u ∈ E, the map

v 7→ u · f (v)

is clearly a linear form in E∗, and by lemma 4.2.4, there
is a unique vector in E denoted as f ∗(u), such that

f ∗(u) · v = u · f (v),

for every v ∈ E.

Lemma 4.2.5 Given a Euclidean space E of finite
dimension, for every linear map f : E → E, there is a
unique linear map f ∗: E → E, such that

f ∗(u) · v = u · f (v),

for all u, v ∈ E. The map f ∗ is called the adjoint of
f (w.r.t. to the inner product).
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Linear maps f : E → E such that f = f ∗ are called
self-adjoint maps.

They play a very important role because they have real
eigenvalues, and because orthonormal bases arise from
their eigenvectors.

Furthermore, many physical problems lead to self-adjoint
linear maps (in the form of symmetric matrices).

Linear maps such that f−1 = f ∗, or equivalently

f ∗ ◦ f = f ◦ f ∗ = id,

also play an important role. They are isometries . Rota-
tions are special kinds of isometries.
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Another important class of linear maps are the linear
maps satisfying the property

f ∗ ◦ f = f ◦ f ∗,

called normal linear maps .

We will see later on that normal maps can always be
diagonalized over orthonormal bases of eigenvectors, but
this will require using a Hermitian inner product (over
C).

Given two Euclidean spaces E and F , where the inner
product on E is denoted as 〈−,−〉1 and the inner product
on F is denoted as 〈−,−〉2, given any linear map f : E →
F , it is immediately verified that the proof of lemma 4.2.5
can be adapted to show that there is a unique linear map
f ∗: F → E such that

〈f (u), v〉2 = 〈u, f ∗(v)〉1

for all u ∈ E and all v ∈ F . The linear map f ∗ is also
called the adjoint of f .
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Remark : Given any basis for E and any basis for F , it is
possible to characterize the matrix of the adjoint f ∗ of f
in terms of the matrix of f , and the symmetric matrices
defining the inner products. We will do so with respect
to orthonormal bases.

We can also use lemma 4.2.4 to show that any Euclidean
space of finite dimension has an orthonormal basis.

Lemma 4.2.6 Given any nontrivial Euclidean space
E of finite dimension n ≥ 1, there is an orthonormal
basis (u1, . . . , un) for E.

There is a more constructive way of proving lemma 4.2.6,
using a procedure known as the Gram–Schmidt orthonor-
malization procedure .

Among other things, the Gram–Schmidt orthonormal-
ization procedure yields the so-called QR-decomposition
for matrices , an important tool in numerical methods.
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Lemma 4.2.7 Given any nontrivial Euclidean space
E of dimension n ≥ 1, from any basis (e1, . . . , en) for
E, we can construct an orthonormal basis (u1, . . . , un)
for E, with the property that for every k, 1 ≤ k ≤ n,
the families (e1, . . . , ek) and (u1, . . . , uk) generate the
same subspace.

Proof . We proceed by induction on n. For n = 1, let

u1 =
e1

‖e1‖
.

For n ≥ 2, we define the vectors uk and u′
k as follows.

u′
1 = e1, u1 =

u′
1

‖u′
1‖

,

and for the inductive step

u′
k+1 = ek+1 −

k∑

i=1

(ek+1 · ui) ui, uk+1 =
u′

k+1∥∥u′
k+1

∥∥.
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We need to show that u′
k+1 is nonzero, and we conclude

by induction.

e1

e2

e3

u1

(e2 · u1)u1

(e3 · u1)u1

(e3 · u2)u2u2
u′

2

u3

u′
3

Figure 4.2: The Gram-Schmidt orthonormalization procedure
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Remarks :

(1) Note that u′
k+1 is obtained by subtracting from ek+1

the projection of ek+1 itself onto the orthonormal vectors
u1, . . . , uk that have already been computed. Then, we
normalize u′

k+1.

The QR-decomposition can now be obtained very easily.
We will do this in section 4.4.

(2) We could compute u′
k+1 using the formula

u′
k+1 = ek+1 −

k∑

i=1

(
ek+1 · u′

i

‖u′
i‖

2

)
u′

i,

and normalize the vectors u′
k at the end.

This time, we are subtracting from ek+1 the projection of
ek+1 itself onto the orthogonal vectors u′

1, . . . , u
′
k.

This might be preferable when writing a computer pro-
gram.
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(3) The proof of lemma 4.2.7 also works for a countably
infinite basis for E, producing a countably infinite or-
thonormal basis.

Example 5. If we consider polynomials and the inner
product

〈f, g〉 =

∫ 1

−1

f (t)g(t)dt,

applying the Gram–Schmidt orthonormalization proce-
dure to the polynomials

1, x, x2, . . . , xn, . . . ,

which form a basis of the polynonials in one variable with
real coefficients, we get a family of orthonormal polyno-
mials Qn(x) related to the Legendre polynomials .

The Legendre polynomials Pn(x) have many nice proper-
ties. They are orthogonal, but their norm is not always
1. The Legendre polynomials Pn(x) can be defined as
follows:
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If we let fn be the function

fn(x) = (x2 − 1)n,

we define Pn(x) as follows:

P0(x) = 1, and Pn(x) =
1

2nn!
f (n)

n (x),

where f
(n)
n is the nth derivative of fn.

They can also be defined inductively as follows:

P0(x) = 1,

P1(x) = x,

Pn+1(x) =
2n + 1

n + 1
xPn(x) − n

n + 1
Pn−1(x).

It turns out that the polynomials Qn are related to the
Legendre polynomials Pn as follows:

Qn(x) =
2n(n!)2

(2n)!
Pn(x).
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As a consequence of lemma 4.2.6 (or lemma 4.2.7), given
any Euclidean space of finite dimension n, if (e1, . . . , en)
is an orthonormal basis for E, then for any two vectors
u = u1e1 + · · · + unen and v = v1e1 + · · · + vnen, the
inner product u · v is expressed as

u ·v = (u1e1 + · · ·+unen) · (v1e1 + · · ·+vnen) =

n∑

i=1

uivi,

and the norm ‖u‖ as

‖u‖ = ‖u1e1 + · · · + unen‖ =

√√√√
n∑

i=1

u2
i .

We can also prove the following lemma regarding orthog-
onal spaces.

Lemma 4.2.8 Given any nontrivial Euclidean space
E of finite dimension n ≥ 1, for any subspace F of
dimension k, the orthogonal complement F⊥ of F has
dimension n− k, and E = F ⊕ F⊥. Furthermore, we
have F⊥⊥ = F .


