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Chapter 1

Topology

1.1 Metric Spaces and Normed Vector Spaces

Most spaces that we consider have a topological structure
given by a metric or a norm, and we first review these
notions.

We begin with metric spaces.

Recall that R+ = {x ∈ R | x ≥ 0}.
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Definition 1.1 A metric space is a set E together with
a function d : E×E → R+, called a metric, or distance,
assigning a nonnegative real number d(x, y) to any two
points x, y ∈ E, and satisfying the following conditions
for all x, y, z ∈ E:

(D1) d(x, y) = d(y, x). (symmetry)

(D2) d(x, y) ≥ 0, and d(x, y) = 0 iff x = y. (positivity)

(D3) d(x, z) ≤ d(x, y) + d(y, z). (triangle inequality)

Geometrically, condition (D3) expresses the fact that in
a triangle with vertices x, y, z, the length of any side is
bounded by the sum of the lengths of the other two sides.

From (D3), we immediately get

|d(x, y)− d(y, z)| ≤ d(x, z).
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Let us give some examples of metric spaces. Recall that
the absolute value |x| of a real number x ∈ R is defined
such that |x| = x if x ≥ 0, |x| = −x if x < 0, and for a
complex number x = a + ib, by |x| =

√
a2 + b2.

Example 1.1

1. Let E = R, and d(x, y) = |x− y|, the absolute value
of x− y. This is the so-called natural metric on R.

2. Let E = Rn (or E = Cn). We have the Euclidean
metric

d2(x, y) =
(
|x1 − y1|2 + · · · + |xn − yn|2

)1
2 ,

the distance between the points (x1, . . . , xn) and
(y1, . . . , yn).

3. For every set E, we can define the discrete metric,
defined such that d(x, y) = 1 iff x 6= y, and
d(x, x) = 0.
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4. For any a, b ∈ R such that a < b, we define the
following sets:

[a, b] = {x ∈ R | a ≤ x ≤ b}, (closed interval)

(a, b) = {x ∈ R | a < x < b}, (open interval)

[a, b) = {x ∈ R | a ≤ x < b}, (interval closed on
the left, open on the right)

(a, b] = {x ∈ R | a < x ≤ b}, (interval open on
the left, closed on the right)

Let E = [a, b], and d(x, y) = |x−y|. Then, ([a, b], d)
is a metric space.
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We will need to define the notion of proximity in order to
define convergence of limits and continuity of functions.
For this, we introduce some standard “small neighbor-
hoods.”

Definition 1.2 Given a metric space E with metric d,
for every a ∈ E, for every ρ ∈ R, with ρ > 0, the set

B(a, ρ) = {x ∈ E | d(a, x) ≤ ρ}

is called the closed ball of center a and radius ρ, the set

B0(a, ρ) = {x ∈ E | d(a, x) < ρ}

is called the open ball of center a and radius ρ, and the
set

S(a, ρ) = {x ∈ E | d(a, x) = ρ}
is called the sphere of center a and radius ρ. It should
be noted that ρ is finite (i.e., not +∞). A subset X of a
metric space E is bounded if there is a closed ball B(a, ρ)
such that X ⊆ B(a, ρ).

Clearly, B(a, ρ) = B0(a, ρ) ∪ S(a, ρ).
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Example 1.2

1. In E = R with the distance |x − y|, an open ball of
center a and radius ρ is the open interval (a−ρ, a+ρ).

2. In E = R2 with the Euclidean metric, an open ball
of center a and radius ρ is the set of points inside the
disk of center a and radius ρ, excluding the boundary
points on the circle.

3. In E = R3 with the Euclidean metric, an open ball
of center a and radius ρ is the set of points inside
the sphere of center a and radius ρ, excluding the
boundary points on the sphere.
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One should be aware that intuition can be misleading in
forming a geometric image of a closed (or open) ball.

For example, if d is the discrete metric, a closed ball of
center a and radius ρ < 1 consists only of its center a,
and a closed ball of center a and radius ρ ≥ 1 consists of
the entire space!

� If E = [a, b], and d(x, y) = |x−y|, as in Example 1.1,
an open ball B0(a, ρ), with ρ < b − a, is in fact the

interval [a, a + ρ), which is closed on the left.

We now consider a very important special case of metric
spaces, normed vector spaces.
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Definition 1.3 Let E be a vector space over a field K,
whereK is either the field R of reals, or the field C of com-
plex numbers. A norm on E is a function ‖ ‖ : E → R+,
assigning a nonnegative real number ‖u‖ to any vector
u ∈ E, and satisfying the following conditions for all
x, y, z ∈ E:

(N1) ‖x‖ ≥ 0, and ‖x‖ = 0 iff x = 0. (positivity)

(N2) ‖λx‖ = |λ| ‖x‖. (scaling)

(N3) ‖x + y‖ ≤ ‖x‖ + ‖y‖. (convexity inequality)

A vector space E together with a norm ‖ ‖ is called a
normed vector space.

From (N3), we easily get

|‖x‖ − ‖y‖| ≤ ‖x− y‖.
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Given a normed vector space E, if we define d such that

d(x, y) = ‖x− y‖,

it is easily seen that d is a metric. Thus, every normed
vector space is immediately a metric space.

Note that the metric associated with a norm is invariant
under translation, that is,

d(x + u, y + u) = d(x, y).

For this reason, we can restrict ourselves to open or closed
balls of center 0.

Let us give some examples of normed vector spaces.
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Example 1.3

1. Let E = R, and ‖x‖ = |x|, the absolute value of x.
The associated metric is |x− y|, as in Example 1.1.

2. Let E = Rn (or E = Cn). There are three standard
norms. For every (x1, . . . , xn) ∈ E, we have the norm
‖x‖1, defined such that,

‖x‖1 = |x1| + · · · + |xn|,

we have the Euclidean norm ‖x‖2, defined such that,

‖x‖2 =
(
|x1|2 + · · · + |xn|2

)1
2 ,

and the sup-norm ‖x‖∞, defined such that,

‖x‖∞ = max{|xi| | 1 ≤ i ≤ n}.

Some work is required to show the convexity inequality
for the Euclidean norm, but this can be found in any
standard text.
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Note that the Euclidean distance is the distance associ-
ated with the Euclidean norm.

One should work out what are the open balls in R2 for
‖ ‖1 and ‖ ‖∞. The following proposition is easy to show.

Proposition 1.1 The following inequalities hold for
all x ∈ Rn (or x ∈ Cn):

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞,
‖x‖∞ ≤ ‖x‖2 ≤

√
n‖x‖∞,

‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2.

In a normed vector space, we define a closed ball or an
open ball of radius ρ as a closed ball or an open ball of
center 0. We may use the notation B(ρ) and B0(ρ).
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We will now define the crucial notions of open sets and
closed sets, and of a topological space.

Definition 1.4 Let E be a metric space with metric d.
A subset U ⊆ E is an open set in E if either U = ∅,
or for every a ∈ U , there is some open ball B0(a, ρ) such
that, B0(a, ρ) ⊆ U .1 A subset F ⊆ E is a closed set in
E if its complement E − F is open in E.

The set E itself is open, since for every a ∈ E, every
open ball of center a is contained in E.

In E = Rn, given n intervals [ai, bi], with ai < bi, it is
easy to show that the open n-cube

{(x1, . . . , xn) ∈ E | ai < xi < bi, 1 ≤ i ≤ n}

is an open set.

1Recall that ρ > 0.
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In fact, it is possible to find a metric for which such open
n-cubes are open balls!

Similarly, we can define the closed n-cube

{(x1, . . . , xn) ∈ E | ai ≤ xi ≤ bi, 1 ≤ i ≤ n},

which is a closed set.

The open sets satisfy some important properties that lead
to the definition of a topological space.
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Proposition 1.2 Given a metric space E with metric
d, the family O of all open sets defined in Definition
1.4 satisfies the following properties:

(O1) For every finite family (Ui)1≤i≤n of sets Ui ∈ O,
we have U1 ∩ · · · ∩Un ∈ O, i.e., O is closed under
finite intersections.

(O2) For every arbitrary family (Ui)i∈I of sets Ui ∈ O,
we have

⋃
i∈I Ui ∈ O, i.e., O is closed under arbi-

trary unions.

(O3) ∅ ∈ O, and E ∈ O, i.e., ∅ and E belong to O.

Furthermore, for any two distinct points a 6= b in E,
there exist two open sets Ua and Ub such that, a ∈ Ua,
b ∈ Ub, and Ua ∩ Ub = ∅.
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The above proposition leads to the very general concept
of a topological space.

� One should be careful that, in general, the family of
open sets is not closed under infinite intersections.

For example, in R under the metric |x− y|, letting Un =
(−1/n, +1/n), each Un is open, but

⋂
nUn = {0}, which

is not open.
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1.2 Topological Spaces

Definition 1.5 Given a set E, a topology on E (or a
topological structure on E), is defined as a family O of
subsets of E called open sets , and satisfying the following
three properties:

(1) For every finite family (Ui)1≤i≤n of sets Ui ∈ O, we
have U1 ∩ · · · ∩ Un ∈ O, i.e., O is closed under finite
intersections.

(2) For every arbitrary family (Ui)i∈I of sets Ui ∈ O, we
have

⋃
i∈I Ui ∈ O, i.e., O is closed under arbitrary

unions.

(3) ∅ ∈ O, and E ∈ O, i.e., ∅ and E belong to O.

A set E together with a topology O on E is called a
topological space. Given a topological space (E,O), a
subset F of E is a closed set if F = E − U for some
open set U ∈ O, i.e., F is the complement of some open
set.
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� It is possible that an open set is also a closed set. For
example, ∅ and E are both open and closed. When a

topological space contains a proper nonempty subset U
which is both open and closed, the space E is said to be
disconnected .

A topological space (E,O) is said to satisfy the
Hausdorff separation axiom (or T2-separation axiom)
if for any two distinct points a 6= b in E, there exist two
open sets Ua and Ub such that, a ∈ Ua, b ∈ Ub, and
Ua ∩ Ub = ∅. When the T2-separation axiom is satisfied,
we also say that (E,O) is a Hausdorff space.

Sometimes, it is more convenient to define a topology in
terms of its closed sets .

As shown by Proposition 1.2, any metric space is a topo-
logical Hausdorff space, the family of open sets being in
fact the family of arbitrary unions of open balls.
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Similarly, any normed vector space is a topological Haus-
dorff space, the family of open sets being the family of
arbitrary unions of open balls. The topology O consist-
ing of all subsets of E is called the discrete topology .

Remark: Most (if not all) spaces used in analysis are
Hausdorff spaces. Intuitively, the Hausdorff separation
axiom says that there are enough “small” open sets.

Without this axiom, some counter-intuitive behaviors may
arise. For example, a sequence may have more than one
limit point (or a compact set may not be closed).

Nevertheless, non-Hausdorff topological spaces arise nat-
urally in algebraic geometry. In the Zariski topology , the
closed sets are the zero loci of sets of algebraic equations.
But even there, some substitute for separation is used.
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One of the reasons why topological spaces are important
is that the definition of a topology only involves a certain
family O of sets, and not how such family is generated
from a metric or a norm.

For example, different metrics or different norms can de-
fine the same family of open sets. Many topological prop-
erties only depend on the familyO and not on the specific
metric or norm.

But the fact that a topology is definable from a metric
or a norm is important, because it usually implies nice
properties of a space.

All our examples will be spaces whose topology is defined
by a metric or a norm.
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By taking complements, we can state properties of the
closed sets dual to those of Definition 1.5. Thus, ∅ and E
are closed sets, and the closed sets are closed under finite
unions and arbitrary intersections.

It is also worth noting that the Hausdorff separation ax-
iom implies that for every a ∈ E, the set {a} is closed.

Given a topological space (E,O), given any subset A of
E, since E ∈ O and E is a closed set, the family

CA = {F | A ⊆ F, F a closed set}

of closed sets containing A is nonempty, and since any
arbitrary intersection of closed sets is a closed set, the in-
tersection

⋂
CA of the sets in the family CA is the smallest

closed set containing A.

By a similar reasoning, the union of all the open subsets
contained in A is the largest open set contained in A.
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Definition 1.6 Given a topological space (E,O), given
any subset A of E, the smallest closed set containing A
is denoted by A, and is called the closure, or adherence
of A. A subset A of E is dense in E if A = E. The

largest open set contained in A is denoted by
◦
A, and is

called the interior of A. The set Fr A = A ∩ E − A is
called the boundary (or frontier) of A. We also denote
the boundary of A by ∂A.

Remark: The notation A for the closure of a subset A
of E is somewhat unfortunate, since A is often used to
denote the set complement of A in E.

Still, we prefer it to more cumbersome notations such
as clo(A), and we denote the complement of A in E by
E − A (or sometimes, Ac).
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By definition, it is clear that a subset A of E is closed
iff A = A. The set Q of rationals is dense in R. It is

easily shown that A =
◦
A ∪ ∂A and

◦
A ∩ ∂A = ∅. An-

other useful characterization ofA is given by the following
proposition.

Proposition 1.3 Given a topological space (E,O),
given any subset A of E, the closure A of A is the
set of all points x ∈ E such that for every open set U
containing x, then U ∩ A 6= ∅.

Often, it is necessary to consider a subset A of a topolog-
ical space E, and to view the subset A as a topological
space. The following proposition shows how to define a
topology on a subset.
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Proposition 1.4 Given a topological space (E,O),
given any subset A of E, let

U = {U ∩ A | U ∈ O}

be the family of all subsets of A obtained as the inter-
section of any open set in O with A. The following
properties hold.

(1) The space (A,U) is a topological space.

(2) If E is a metric space with metric d, then the re-
striction dA : A × A → R+ of the metric d to A
defines a metric space. Furthermore, the topology
induced by the metric dA agrees with the topology
defined by U , as above.

Proposition 1.4 suggests the following definition.
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Definition 1.7 Given a topological space (E,O), given
any subset A of E, the subspace topology on A induced
by O is the family U of open sets defined such that

U = {U ∩ A | U ∈ O}

is the family of all subsets of A obtained as the intersec-
tion of any open set in O with A. We say that (A,U)
has the subspace topology . If (E, d) is a metric space,
the restriction dA : A× A→ R+ of the metric d to A is
called the subspace metric.

For example, if E = Rn and d is the Euclidean metric,
we obtain the subspace topology on the closed n-cube

{(x1, . . . , xn) ∈ E | ai ≤ xi ≤ bi, 1 ≤ i ≤ n}.

� One should realize that every open set U ∈ O which
is entirely contained in A is also in the family U , but
U may contain open sets that are not in O.
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For example, if E = R with |x− y|, and A = [a, b], then
sets of the form [a, c), with a < c < b belong to U , but
they are not open sets for R under |x − y|. However,
there is agreement in the following situation.

Proposition 1.5 Given a topological space (E,O),
given any subset A of E, if U is the subspace topology,
then the following properties hold.

(1) If A is an open set A ∈ O, then every open set
U ∈ U is an open set U ∈ O.

(2) If A is a closed set in E, then every closed set
w.r.t. the subspace topology is a closed set w.r.t.
O.

The concept of product topology is also useful. We have
the following proposition.
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Proposition 1.6 Given n topological spaces (Ei,Oi),
let B be the family of subsets of E1× · · · ×En defined
as follows:

B = {U1 × · · · × Un | Ui ∈ Oi, 1 ≤ i ≤ n},

and let P be the family consisting of arbitrary unions
of sets in B, including ∅. Then, P is a topology on
E1 × · · · × En.

Definition 1.8 Given n topological spaces (Ei,Oi), the
product topology on E1 × · · · × En is the family P of
subsets of E1 × · · · × En defined as follows: if

B = {U1 × · · · × Un | Ui ∈ Oi, 1 ≤ i ≤ n},

then P is the family consisting of arbitrary unions of sets
in B, including ∅.
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If each (Ei, ‖‖i) is a normed vector space, there are three
natural norms that can be defined on E1 × · · · × En:

‖(x1, . . . , xn)‖1 = ‖x1‖1 + · · · + ‖xn‖n,

‖(x1, . . . , xn)‖2 =
(
‖x1‖21 + · · · + ‖xn‖2n

)1
2
,

‖(x1, . . . , xn)‖∞ = max {‖x1‖1, . . . , ‖xn‖n} .

It is easy to show that they all define the same topology,
which is the product topology. It can also be verified
that when Ei = R, with the standard topology induced
by |x − y|, the topology product on Rn is the standard
topology induced by the Euclidean norm.

Definition 1.9 Two metrics d and d′ on a space E are
equivalent if they induce the same topology O on E (i.e.,
they define the same family O of open sets). Similarly,
two norms ‖ ‖ and ‖ ‖′ on a space E are equivalent if
they induce the same topology O on E.
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Remark: Given a topological space (E,O), it is often
useful, as in Proposition 1.6, to define the topology O in
terms of a subfamily B of subsets of E.

We say that a family B of subsets of E is a basis for the
topology O, if B is a subset of O, and if every open set
U in O can be obtained as some union (possibly infinite)
of sets in B (agreeing that the empty union is the empty
set).

A subbasis for O is a family S of subsets of E, such
that the family B of all finite intersections of sets in S
(including E itself, in case of the empty intersection) is a
basis of O.

We now consider the fundamental property of continuity.
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1.3 Continuous Functions, Limits

Definition 1.10 Let (E,OE) and (F,OF ) be topolog-
ical spaces, and let f : E → F be a function. For every
a ∈ E, we say that f is continuous at a, if for every
open set V ∈ OF containing f (a), there is some open
set U ∈ OE containing a, such that, f (U) ⊆ V . We say
that f is continuous if it is continuous at every a ∈ E.

Define a neighborhood of a ∈ E as any subset N of E
containing some open set O ∈ O such that a ∈ O.

Now, if f is continuous at a and N is any neighborhood
of f (a), there is some open set V ⊆ N containing f (a),
and since f is continuous at a, there is some open set U
containing a, such that f (U) ⊆ V .

Since V ⊆ N , the open set U is a subset of f−1(N)
containing a, and f−1(N) is a neighborhood of a.
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Conversely, if f−1(N) is a neighborhood of a whenever
N is any neighborhood of f (a), it is immediate that f is
continuous at a.

It is easy to see that Definition 1.10 is equivalent to the
following statements.

Proposition 1.7 Let (E,OE) and (F,OF ) be topolog-
ical spaces, and let f : E → F be a function. For every
a ∈ E, the function f is continuous at a ∈ E iff for
every neighborhood N of f (a) ∈ F , then f−1(N) is a
neighborhood of a. The function f is continuous on
E iff f−1(V ) is an open set in OE for every open set
V ∈ OF .
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If E and F are metric spaces defined by metrics dE and
dF , we can show easily that f is continuous at a iff

for every ε > 0, there is some η > 0, such that, for every
x ∈ E,

if dE(a, x) ≤ η, then dF (f (a), f (x)) ≤ ε.

Similarly, if E and F are normed vector spaces defined
by norms ‖ ‖E and ‖ ‖F , we can show easily that f is
continuous at a iff

for every ε > 0, there is some η > 0, such that, for every
x ∈ E,

if ‖x− a‖E ≤ η, then ‖f (x)− f (a)‖F ≤ ε.

It is worth noting that continuity is a topological notion,
in the sense that equivalent metrics (or equivalent norms)
define exactly the same notion of continuity.
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If (E,OE) and (F,OF ) are topological spaces, and
f : E → F is a function, for every nonempty subset
A ⊆ E of E, we say that f is continuous on A if the
restriction of f to A is continuous with respect to (A,U)
and (F,OF ), where U is the subspace topology induced
by OE on A.

Given a product E1 × · · · × En of topological spaces, as
usual, we let πi : E1 × · · · × En → Ei be the projection
function such that, πi(x1, . . . , xn) = xi. It is immediately
verified that each πi is continuous.

Given a topological space (E,O), we say that a point
a ∈ E is isolated if {a} is an open set in O.

Then, if (E,OE) and (F,OF ) are topological spaces, any
function f : E → F is continuous at every isolated point
a ∈ E. In the discrete topology, every point is isolated.
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In a nontrivial normed vector space (E, ‖ ‖) (with
E 6= {0}), no point is isolated.

The following proposition is easily shown.

Proposition 1.8 Given topological spaces (E,OE),
(F,OF ), and (G,OG), and two functions f : E → F
and g : F → G, if f is continuous at a ∈ E and
g is continuous at f (a) ∈ F , then g ◦ f : E → G
is continuous at a ∈ E. Given n topological spaces
(Fi,Oi), for every function f : E → F1 × · · · × Fn,
then f is continuous at a ∈ E iff every fi : E → Fi is
continuous at a, where fi = πi ◦ f .

One can also show that in a metric space (E, d), the
norm d : E × E → R is continuous, where E × E has
the product topology, and that for a normed vector space
(E, ‖ ‖), the norm ‖ ‖ : E → R is continuous.
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Given a function f : E1×· · ·×En → F , we can fix n−1
of the arguments, say a1, . . . , ai−1, ai+1, . . . , an, and view
f as a function of the remaining argument,

xi 7→ f (a1, . . . , ai−1, xi, ai+1, . . . , an),

where xi ∈ Ei. If f is continuous, it is clear that each fi
is continuous.

� One should be careful that the converse is false! For
example, consider the function f : R×R→ R, defined

such that,

f (x, y) =
xy

x2 + y2
if (x, y) 6= (0, 0), and f (0, 0) = 0.

The function f is continuous on R×R−{(0, 0)}, but on
the line y = mx, with m 6= 0, we have f (x, y) = m

1+m2 6=
0, and thus, on this line, f (x, y) does not approach 0
when (x, y) approaches (0, 0).
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The following proposition is useful for showing that real-
valued functions are continuous.

Proposition 1.9 If E is a topological space, and
(R, |x− y|) the reals under the standard topology, for
any two functions f : E → R and g : E → R, for any
a ∈ E, for any λ ∈ R, if f and g are continuous at a,
then f + g, λf , f · g, are continuous at a, and f/g is
continuous at a if g(a) 6= 0.

Using Proposition 1.9, we can show easily that every real
polynomial function is continuous.

The notion of isomorphism of topological spaces is defined
as follows.

Definition 1.11 Let (E,OE) and (F,OF ) be topolog-
ical spaces, and let f : E → F be a function. We say
that f is a homeomorphism between E and F if f is
bijective, and both f : E → F and f−1 : F → E are
continuous.
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� One should be careful that a bijective continuous func-
tion f : E → F is not necessarily an homeomorphism.

For example, if E = R with the discrete topology, and
F = R with the standard topology, the identity is not a
homeomorphism.

Another interesting example involving a parametric curve
is given below. Let L : R → R2 be the function, defined
such that,

L1(t) =
t(1 + t2)

1 + t4
,

L2(t) =
t(1− t2)

1 + t4
.

If we think of (x(t), y(t)) = (L1(t), L2(t)) as a geometric
point in R2, the set of points (x(t), y(t)) obtained by
letting t vary in R from −∞ to +∞, defines a curve
having the shape of a “figure eight”, with self-intersection
at the origin, called the “lemniscate of Bernoulli.”
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The map L is continuous, and in fact bijective, but its
inverse L−1 is not continuous.

Indeed, when we approach the origin on the branch of the
curve in the upper left quadrant (i.e., points such that,
x ≤ 0, y ≥ 0), then t goes to−∞, and when we approach
the origin on the branch of the curve in the lower right
quadrant (i.e., points such that, x ≥ 0, y ≤ 0), then t
goes to +∞.

We also review the concept of limit of a sequence. Given
any set E, a sequence is any function x : N→ E, usually
denoted by (xn)n∈N, or (xn)n≥0, or even by (xn).

Definition 1.12 Given a topological space (E,O), we
say that a sequence (xn)n∈N converges to some a ∈ E if
for every open set U containing a, there is some n0 ≥ 0,
such that, xn ∈ U , for all n ≥ n0. We also say that a is
a limit of (xn)n∈N.
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When E is a metric space with metric d, it is easy to
show that this is equivalent to the fact that,

for every ε > 0, there is some n0 ≥ 0, such that,
d(xn, a) ≤ ε, for all n ≥ n0.

When E is a normed vector space with norm ‖ ‖, it is
easy to show that this is equivalent to the fact that,

for every ε > 0, there is some n0 ≥ 0, such that,
‖xn − a‖ ≤ ε, for all n ≥ n0.

The following proposition shows the importance of the
Hausdorff separation axiom.

Proposition 1.10 Given a topological space (E,O),
if the Hausdorff separation axiom holds, then every
sequence has at most one limit.
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It is worth noting that the notion of limit is topological,
in the sense that a sequence converge to a limit b iff it
converges to the same limit b in any equivalent metric
(and similarly for equivalent norms).

We still need one more concept of limit for functions.

Definition 1.13 Let (E,OE) and (F,OF ) be topolog-
ical spaces, let A be some nonempty subset of E, and let
f : A→ F be a function. For any a ∈ A and any b ∈ F ,
we say that f (x) approaches b as x approaches a with
values in A if for every open set V ∈ OF containing b,
there is some open set U ∈ OE containing a, such that,
f (U ∩ A) ⊆ V . This is denoted by

lim
x→a,x∈A

f (x) = b.

First, note that by Proposition 1.3, since a ∈ A, for every
open set U containing a, we have U ∩ A 6= ∅, and the
definition is nontrivial. Also, even if a ∈ A, the value
f (a) of f at a plays no role in this definition.
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When E and F are metric space with metrics dE and dF ,
it can be shown easily that the definition can be stated
as follows:

For every ε > 0, there is some η > 0, such that, for every
x ∈ A,

if dE(x, a) ≤ η, then dF (f (x), b) ≤ ε.

When E and F are normed vector spaces with norms ‖‖E
and ‖ ‖F , it can be shown easily that the definition can
be stated as follows:

For every ε > 0, there is some η > 0, such that, for every
x ∈ A,

if ‖x− a‖E ≤ η, then ‖f (x)− b‖F ≤ ε.
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We have the following result relating continuity at a point
and the previous notion.

Proposition 1.11 Let (E,OE) and (F,OF ) be two
topological spaces, and let f : E → F be a function.
For any a ∈ E, the function f is continuous at a
iff f (x) approaches f (a) when x approaches a (with
values in E).

Another important proposition relating the notion of con-
vergence of a sequence to continuity, is stated without
proof.

Proposition 1.12 Let (E,OE) and (F,OF ) be two
topological spaces, and let f : E → F be a function.

(1) If f is continuous, then for every sequence (xn)n∈N
in E, if (xn) converges to a, then (f (xn)) converges
to f (a).

(2) If E is a metric space, and (f (xn)) converges to
f (a) whenever (xn) converges to a, for every se-
quence (xn)n∈N in E, then f is continuous.


