
Chapter 2

Introduction to Manifolds and
Classical Lie Groups

Le rôle prépondérant de la théorie des groupes en mathématiques a été longtemps

insoupçonné; il y a quatre-vingts ans, le nom même de groupe était ignoré. C’est Galois

qui, le premier, en a eu une notion claire, mais c’est seulement depuis les travaux de

Klein et surtout de Lie que l’on a commencé à voir qu’il n’y a presque aucune théorie

mathématique où cette notion ne tienne une place importante.

—Henri Poincaré

2.1 The Exponential Map

The inventors of Lie groups and Lie algebras (starting
with Lie!) regarded Lie groups as groups of symmetries
of various topological or geometric objects. Lie algebras
were viewed as the “infinitesimal transformations” asso-
ciated with the symmetries in the Lie group.
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For example, the group SO(n) of rotations is the group of
orientation-preserving isometries of the Euclidean space
En.

The Lie algebra so(n,R) consisting of real skew symmet-
ric n×n matrices is the corresponding set of infinitesimal
rotations.

The geometric link between a Lie group and its Lie alge-
bra is the fact that the Lie algebra can be viewed as the
tangent space to the Lie group at the identity.

There is a map from the tangent space to the Lie group,
called the exponential map.

The Lie algebra can be considered as a linearization of the
Lie group (near the identity element), and the exponential
map provides the “delinearization,” i.e., it takes us back
to the Lie group.
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These concepts have a concrete realization in the case of
groups of matrices, and for this reason we begin by study-
ing the behavior of the exponential map on matrices.

We begin by defining the exponential map on matrices
and proving some of its properties.

The exponential map allows us to “linearize” certain al-
gebraic properties of matrices.

It also plays a crucial role in the theory of linear differen-
tial equations with constant coefficients.

But most of all, as we mentioned earlier, it is a stepping
stone to Lie groups and Lie algebras.
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At first, we define manifolds as embedded submanifolds
of RN , and we define linear Lie groups, using the famous
result of Cartan (apparently actually due to Von Neu-
mann) that a closed subgroup of GL(n,R) is a manifold,
and thus, a Lie group.

This way, Lie algebras can be “computed” using tangent
vectors to curves of the form t "→ A(t), where A(t) is a
matrix.

Given an n× n (real or complex) matrix A = (ai, j), we
would like to define the exponential eA of A as the sum
of the series

eA = In +
∑

p≥1

Ap

p!
=
∑

p≥0

Ap

p!
,

letting A0 = In.

The following lemma shows that the above series is indeed
absolutely convergent.
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Lemma 2.1.1 Let A = (ai j) be a (real or complex)
n× n matrix, and let

µ = max{|ai j| | 1 ≤ i, j ≤ n}.

If Ap = (api j), then

|api j| ≤ (nµ)p

for all i, j, 1 ≤ i, j ≤ n. As a consequence, the n2

series
∑

p≥0

api j
p!

converge absolutely, and the matrix

eA =
∑

p≥0

Ap

p!

is a well-defined matrix.
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It is instructive to compute explicitly the exponential of
some simple matrices. As an example, let us compute the
exponential of the real skew symmetric matrix

A =

(
0 −θ
θ 0

)
.

We find that

eA =

(
cos θ − sin θ
sin θ cos θ

)
.

Thus, eA is a rotation matrix!

This is a general fact. If A is a skew symmetric matrix,
then eA is an orthogonal matrix of determinant +1, i.e.,
a rotation matrix.

Furthermore, every rotation matrix is of this form; i.e.,
the exponential map from the set of skew symmetric ma-
trices to the set of rotation matrices is surjective.
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In order to prove these facts, we need to establish some
properties of the exponential map.

But before that, let us work out another example showing
that the exponential map is not always surjective.

Let us compute the exponential of a real 2 × 2 matrix
with null trace of the form

A =

(
a b
c −a

)
.

We need to find an inductive formula expressing the pow-
ers An. Observe that

A2 = (a2 + bc)I2 = − det(A)I2.

If a2 + bc = 0, we have

eA = I2 + A.

If a2 + bc < 0, let ω > 0 be such that ω2 = −(a2 + bc).
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Then, A2 = −ω2I2, and we get

eA = cosω I2 +
sinω

ω
A.

If a2 + bc > 0, let ω > 0 be such that ω2 = (a2 + bc).
Then A2 = ω2I2, and we get

eA = coshω I2 +
sinhω

ω
A,

where coshω = (eω+ e−ω)/2 and sinhω = (eω− e−ω)/2.

It immediately verified that in all cases,

det
(
eA
)
= 1.
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This shows that the exponential map is a function from
the set of 2×2 matrices with null trace to the set of 2×2
matrices with determinant 1.

This function is not surjective. Indeed, tr(eA) = 2 cosω
when a2 + bc < 0, tr(eA) = 2 coshω when a2 + bc > 0,
and tr(eA) = 2 when a2 + bc = 0.

As a consequence, for any matrix A with null trace,

tr
(
eA
)
≥ −2,

and any matrix B with determinant 1 and whose trace is
less than −2 is not the exponential eA of any matrix A
with null trace. For example,

B =

(
a 0
0 a−1

)
,

where a < 0 and a '= −1, is not the exponential of any
matrix A with null trace.
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A fundamental property of the exponential map is that if
λ1, . . . ,λn are the eigenvalues of A, then the eigenvalues
of eA are eλ1, . . . , eλn. For this we need two lemmas.

Lemma 2.1.2 Let A and U be (real or complex) ma-
trices, and assume that U is invertible. Then

eUAU−1
= UeAU−1.

Say that a square matrix A is an upper triangular ma-
trix if it has the following shape,





a1 1 a1 2 a1 3 . . . a1n−1 a1n
0 a2 2 a2 3 . . . a2n−1 a2n
0 0 a3 3 . . . a3n−1 a3n
... ... ... . . . ... ...
0 0 0 . . . an−1n−1 an−1n

0 0 0 . . . 0 ann




,

i.e., ai j = 0 whenever j < i, 1 ≤ i, j ≤ n.
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Lemma 2.1.3 Given any complex n × n matrix A,
there is an invertible matrix P and an upper triangu-
lar matrix T such that

A = PTP−1.

Remark: If E is a Hermitian space, the proof of Lemma
2.1.3 can be easily adapted to prove that there is an or-
thonormal basis (u1, . . . , un) with respect to which the
matrix of f is upper triangular.

In terms of matrices, this means that there is a unitary
matrix U and an upper triangular matrix T such that
A = UTU ∗. This is usually known as Schur’s Lemma.

Using this result, we can immediately rederive the fact
that if A is a Hermitian matrix, then there is a unitary
matrix U and a real diagonal matrix D such that
A = UDU ∗.

If A = PTP−1 where T is upper triangular, note that
the diagonal entries on T are the eigenvalues λ1, . . . ,λn
of A.
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Indeed, A and T have the same characteristic polynomial.
This is because if A and B are any two matrices such that
A = PBP−1, then

det(A− λ I) = det(PBP−1 − λP IP−1),

= det(P (B − λ I)P−1),

= det(P ) det(B − λ I) det(P−1),

= det(P ) det(B − λ I) det(P )−1,

= det(B − λ I).

Furthermore, it is well known that the determinant of a
matrix of the form




λ1 − λ a1 2 a1 3 . . . a1n−1 a1n
0 λ2 − λ a2 3 . . . a2n−1 a2n
0 0 λ3 − λ . . . a3n−1 a3n
... ... ... . . . ... ...
0 0 0 . . . λn−1 − λ an−1n

0 0 0 . . . 0 λn − λ





is (λ1 − λ) · · · (λn − λ).
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Thus the eigenvalues of A = PTP−1 are the diagonal
entries of T . We use this property to prove the following
lemma:

Lemma 2.1.4 Given any complex n× n matrix A, if
λ1, . . . ,λn are the eigenvalues of A, then eλ1, . . . , eλn

are the eigenvalues of eA. Furthermore, if u is an
eigenvector of A for λi, then u is an eigenvector of eA

for eλi.

As a consequence, we can show that

det(eA) = etr(A),

where tr(A) is the trace of A, i.e., the sum a1 1+· · ·+ann

of its diagonal entries, which is also equal to the sum of
the eigenvalues of A.
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This is because the determinant of a matrix is equal to
the product of its eigenvalues, and if λ1, . . . ,λn are the
eigenvalues of A, then by Lemma 2.1.4, eλ1, . . . , eλn are
the eigenvalues of eA, and thus

det
(
eA
)
= eλ1 · · · eλn = eλ1+···+λn = etr(A).

This shows that eA is always an invertible matrix, since
ez is never zero for every z ∈ C.

In fact, the inverse of eA is e−A, but we need to prove
another lemma.

This is because it is generally not true that

eA+B = eAeB,

unless A and B commute, i.e., AB = BA.

Lemma 2.1.5 Given any two complex n×n matrices
A,B, if AB = BA, then

eA+B = eAeB.
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Now, using Lemma 2.1.5, since A and −A commute, we
have

eAe−A = eA+−A = e0n = In,

which shows that the inverse of eA is e−A.

We will now use the properties of the exponential that we
have just established to show how various matrices can
be represented as exponentials of other matrices.

First, we review some more or less standard results about
matrices.
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2.2 Normal, Symmetric, Skew Symmetric, Orthogo-

nal, Hermitian, Skew Hermitian, and Unitary Ma-

trices

First, we consider real matrices.

Definition 2.2.1 Given a real m × n matrix A, the
transpose A*of A is the n × m matrix A* = (a*i, j)
defined such that

a*i, j = aj, i

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. A real n × n matrix
A is

1. normal iff
AA* = A*A,

2. symmetric iff
A* = A,

3. skew symmetric iff

A* = −A,

4. orthogonal iff

AA* = A*A = In.
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Theorem 2.2.2 For every normal matrix A, there is
an orthogonal matrix P and a block diagonal matrix
D such that A = PDP*, where D is of the form

D =





D1 . . .
D2 . . .

... ... . . . ...
. . . Dp





such that each block Di is either a one-dimensional
matrix (i.e., a real scalar) or a two-dimensional ma-
trix of the form

Di =

(
λi −µi
µi λi

)

where λi, µi ∈ R, with µi > 0.
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Theorem 2.2.3 For every symmetric matrix A, there
is an orthogonal matrix P and a diagonal matrix D
such that A = PDP*, where D is of the form

D =





λ1 . . .
λ2 . . .

... ... . . . ...
. . . λn





where λi ∈ R.
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Theorem 2.2.4 For every skew symmetric matrix A,
there is an orthogonal matrix P and a block diagonal
matrix D such that A = PDP*, where D is of the
form

D =





D1 . . .
D2 . . .

... ... . . . ...
. . . Dp





such that each block Di is either 0 or a two-dimensional
matrix of the form

Di =

(
0 −µi
µi 0

)

where µi ∈ R, with µi > 0. In particular, the eigen-
values of A are pure imaginary of the form iµi, or
0.
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Theorem 2.2.5 For every orthogonal matrix A, there
is an orthogonal matrix P and a block diagonal matrix
D such that A = PDP*, where D is of the form

D =





D1 . . .
D2 . . .

... ... . . . ...
. . . Dp





such that each block Di is either 1, −1, or a two-
dimensional matrix of the form

Di =

(
cos θi − sin θi
sin θi cos θi

)

where 0 < θi < π.

In particular, the eigenvalues of A are of the form
cos θi ± i sin θi, or 1, or −1.

If det(A) = +1 (A is a rotation matrix ), then the num-
ber of −1’s must be even.
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In this case, we can pair the entries −1 as matrices
(
−1 0
0 −1

)

which amounts to allowing θi = π. So, a rotation ma-
trix can be written as A = PDP* for some orthogonal
matrix, P , and some block diagonal matrix

D =





D1 . . .
D2 . . .

... ... . . . ...
. . . Dp



 ,

where each block Di is either 1 or a two-dimensional ma-
trix of the form

Di =

(
cos θi − sin θi
sin θi cos θi

)

where 0 < θi ≤ π. Furthermore, we can always regroup
the 1’s together.

We now consider complex matrices.
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Definition 2.2.6 Given a complex m × n matrix A,
the transpose A* of A is the n×m matrix A* = (a*i, j)
defined such that

a*i, j = aj, i

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The conjugate A of
A is the m× n matrix A = (bi, j) defined such that

bi, j = ai, j

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Given an n × n
complex matrix A, the adjoint A∗ of A is the matrix
defined such that

A∗ = (A*) = (A)*.

A complex n× n matrix A is

1. normal iff
AA∗ = A∗A,

2. Hermitian iff
A∗ = A,

3. skew Hermitian iff

A∗ = −A,

4. unitary iff
AA∗ = A∗A = In.
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Theorem 2.2.7 For every complex normal matrix A,
there is a unitary matrix U and a diagonal matrix D
such that A = UDU ∗. Furthermore, if A is Hermi-
tian, D is a real matrix, if A is skew Hermitian, then
the entries in D are pure imaginary or zero, and if A
is unitary, then the entries in D have absolute value
1.
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2.3 The Lie Groups GL(n,R), SL(n,R), O(n), SO(n), the
Lie Algebras gl(n,R), sl(n,R), o(n), so(n), and the

Exponential Map

The set of real invertible n × n matrices forms a group
under multiplication, denoted by GL(n,R).

The subset ofGL(n,R) consisting of those matrices hav-
ing determinant +1 is a subgroup of GL(n,R), denoted
by SL(n,R).

It is also easy to check that the set of real n×n orthogonal
matrices forms a group under multiplication, denoted by
O(n).

The subset of O(n) consisting of those matrices hav-
ing determinant +1 is a subgroup of O(n), denoted by
SO(n). We will also call matrices in SO(n) rotation
matrices .
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Staying with easy things, we can check that the set of real
n × n matrices with null trace forms a vector space un-
der addition, and similarly for the set of skew symmetric
matrices.

Definition 2.3.1 The groupGL(n,R) is called the gen-
eral linear group, and its subgroup SL(n,R) is called the
special linear group. The group O(n) of orthogonal ma-
trices is called the orthogonal group, and its subgroup
SO(n) is called the special orthogonal group (or group
of rotations). The vector space of real n × n matrices
with null trace is denoted by sl(n,R), and the vector
space of real n × n skew symmetric matrices is denoted
by so(n).

Remark: The notation sl(n,R) and so(n) is rather strange
and deserves some explanation. The groups GL(n,R),
SL(n,R), O(n), and SO(n) are more than just groups.
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They are also topological groups, which means that they
are topological spaces (viewed as subspaces of Rn2) and
that the multiplication and the inverse operations are con-
tinuous (in fact, smooth).

Furthermore, they are smooth real manifolds.

The real vector spaces sl(n) and so(n) are what is called
Lie algebras .

However, we have not defined the algebra structure on
sl(n,R) and so(n) yet.

The algebra structure is given by what is called the Lie
bracket , which is defined as

[A, B] = AB −BA.

Lie algebras are associated with Lie groups.
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What is going on is that the Lie algebra of a Lie group
is its tangent space at the identity, i.e., the space of all
tangent vectors at the identity (in this case, In).

In some sense, the Lie algebra achieves a “linearization”
of the Lie group.

The exponential map is a map from the Lie algebra to
the Lie group, for example,

exp: so(n) → SO(n)

and
exp: sl(n,R) → SL(n,R).

The exponential map often allows a parametrization of
the Lie group elements by simpler objects, the Lie algebra
elements.
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One might ask, what happened to the Lie algebras gl(n,R)
and o(n) associated with the Lie groups GL(n,R) and
O(n)?

We will see later that gl(n,R) is the set of all real n× n
matrices, and that o(n) = so(n).

The properties of the exponential map play an important
role in studying a Lie group.

For example, it is clear that the map

exp: gl(n,R) → GL(n,R)

is well-defined, but since every matrix of the form eA has
a positive determinant, exp is not surjective.
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Similarly, since
det(eA) = etr(A),

the map
exp: sl(n,R) → SL(n,R)

is well-defined. However, we showed in Section 2.1 that
it is not surjective either.

As we will see in the next theorem, the map

exp: so(n) → SO(n)

is well-defined and surjective.

The map
exp: o(n) → O(n)

is well-defined, but it is not surjective, since there are
matrices in O(n) with determinant −1.

Remark: The situation for matrices over the field C of
complex numbers is quite different, as we will see later.
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We now show the fundamental relationship between SO(n)
and so(n).

Theorem 2.3.2 The exponential map

exp: so(n) → SO(n)

is well-defined and surjective.

When n = 3 (and A is skew symmetric), it is possible to
work out an explicit formula for eA.

For any 3× 3 real skew symmetric matrix

A =




0 −c b
c 0 −a
−b a 0



 ,

letting θ =
√
a2 + b2 + c2 and

B =




a2 ab ac
ab b2 bc
ac bc c2



 ,

we have the following result known as Rodrigues’s for-
mula (1840):
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Lemma 2.3.3 The exponential map
exp: so(3) → SO(3) is given by

eA = cos θ I3 +
sin θ

θ
A +

(1− cos θ)

θ2
B,

or, equivalently, by

eA = I3 +
sin θ

θ
A +

(1− cos θ)

θ2
A2

if θ '= 0, with e03 = I3.

The above formulae are the well-known formulae express-
ing a rotation of axis specified by the vector (a, b, c) and
angle θ.

Since the exponential is surjective, it is possible to write
down an explicit formula for its inverse (but it is a mul-
tivalued function!).

This has applications in kinematics, robotics, and motion
interpolation.
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2.4 Symmetric Matrices, Symmetric Positive Definite

Matrices, and the Exponential Map

Recall that a real symmetric matrix is called positive (or
positive semidefinite) if its eigenvalues are all positive or
zero, and positive definite if its eigenvalues are all strictly
positive.

We denote the vector space of real symmetric n× n ma-
trices by S(n), the set of symmetric positive matrices by
SP(n), and the set of symmetric positive definite matri-
ces by SPD(n).

The next lemma shows that every symmetric positive defi-
nite matrixA is of the form eB for some unique symmetric
matrix B.

The set of symmetric matrices is a vector space, but it
is not a Lie algebra because the Lie bracket [A,B] is not
symmetric unless A and B commute, and the set of sym-
metric (positive) definite matrices is not a multiplicative
group, so this result is of a different flavor as Theorem
2.3.2.
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Lemma 2.4.1 For every symmetric matrix B, the ma-
trix eB is symmetric positive definite. For every sym-
metric positive definite matrix A, there is a unique
symmetric matrix B such that A = eB.

Lemma 2.4.1 can be reformulated as stating that the map
exp:S(n) → SPD(n) is a bijection.

It can be shown that it is a homeomorphism.

In the case of invertible matrices, the polar form theorem
can be reformulated as stating that there is a bijection
between the topological space GL(n,R) of real n × n
invertible matrices (also a group) and O(n)× SPD(n).

As a corollary of the polar form theorem and Lemma
2.4.1, we have the following result:
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For every invertible matrix A there is a unique orthogonal
matrix R and a unique symmetric matrix S such that

A = ReS.

Thus, we have a bijection between GL(n,R) and
O(n)× S(n).

But S(n) itself is isomorphic to Rn(n+1)/2. Thus, there is
a bijection between GL(n,R) and O(n)× Rn(n+1)/2.

It can also be shown that this bijection is a homeomor-
phism.

This is an interesting fact. Indeed, this homeomorphism
essentially reduces the study of the topology ofGL(n,R)
to the study of the topology of O(n).

This is nice, since it can be shown that O(n) is compact.
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In A = ReS, if det(A) > 0, then R must be a rotation
matrix (i.e., det(R) = +1), since det

(
eS
)
> 0.

In particular, if A ∈ SL(n,R), since
det(A) = det(R) = +1, the symmetric matrix S must
have a null trace, i.e., S ∈ S(n) ∩ sl(n,R).

Thus, we have a bijection between SL(n,R) and
SO(n)× (S(n) ∩ sl(n,R)).
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2.5 The Lie Groups GL(n,C), SL(n,C), U(n), SU(n), the
Lie Algebras gl(n,C), sl(n,C), u(n), su(n), and the

Exponential Map

The set of complex invertible n×nmatrices forms a group
under multiplication, denoted by GL(n,C).

The subset ofGL(n,C) consisting of those matrices hav-
ing determinant +1 is a subgroup of GL(n,C), denoted
by SL(n,C).

It is also easy to check that the set of complex n × n
unitary matrices forms a group under multiplication, de-
noted by U(n).

The subset of U(n) consisting of those matrices hav-
ing determinant +1 is a subgroup of U(n), denoted by
SU(n).
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We can also check that the set of complex n×n matrices
with null trace forms a real vector space under addition,
and similarly for the set of skew Hermitian matrices and
the set of skew Hermitian matrices with null trace.

Definition 2.5.1 The groupGL(n,C) is called the gen-
eral linear group, and its subgroup SL(n,C) is called
the special linear group. The group U(n) of unitary
matrices is called the unitary group, and its subgroup
SU(n) is called the special unitary group. The real vec-
tor space of complex n × n matrices with null trace is
denoted by sl(n,C), the real vector space of skew Her-
mitian matrices is denoted by u(n), and the real vector
space u(n) ∩ sl(n,C) is denoted by su(n).
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Remarks:

(1) As in the real case, the groups GL(n,C), SL(n,C),
U(n), and SU(n) are also topological groups (viewed
as subspaces of R2n2), and in fact, smooth real mani-
folds. Such objects are called (real) Lie groups .

The real vector spaces sl(n,C), u(n), and su(n) are
Lie algebras associated with SL(n,C), U(n), and
SU(n).

The algebra structure is given by the Lie bracket ,
which is defined as

[A, B] = AB −BA.

(2) It is also possible to define complex Lie groups, which
means that they are topological groups and smooth
complex manifolds. It turns out that GL(n,C) and
SL(n,C) are complex manifolds, but not U(n) and
SU(n).
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! One should be very careful to observe that even
though the Lie algebras sl(n,C), u(n), and su(n)

consist of matrices with complex coefficients, we view
them as real vector spaces. The Lie algebra sl(n,C) is
also a complex vector space, but u(n) and su(n) are not!
Indeed, if A is a skew Hermitian matrix, iA is not skew
Hermitian, but Hermitian!

Again the Lie algebra achieves a “linearization” of the Lie
group. In the complex case, the Lie algebras gl(n,C) is
the set of all complex n×n matrices, but u(n) '= su(n),
because a skew Hermitian matrix does not necessarily
have a null trace.
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The properties of the exponential map also play an im-
portant role in studying complex Lie groups.

For example, it is clear that the map

exp: gl(n,C) → GL(n,C)

is well-defined, but this time, it is surjective! One way to
prove this is to use the Jordan normal form. Similarly,
since

det
(
eA
)
= etr(A),

the map
exp: sl(n,C) → SL(n,C)

is well-defined, but it is not surjective! As we will see in
the next theorem, the maps

exp: u(n) → U(n)

and
exp: su(n) → SU(n)

are well-defined and surjective.
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Theorem 2.5.2 The exponential maps

exp: u(n) → U(n) and exp: su(n) → SU(n)

are well-defined and surjective.

We now extend the result of Section 2.4 to Hermitian
matrices.
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2.6 Hermitian Matrices, Hermitian Positive Definite

Matrices, and the Exponential Map

Recall that a Hermitian matrix is called positive (or pos-
itive semidefinite) if its eigenvalues are all positive or
zero, and positive definite if its eigenvalues are all strictly
positive.

We denote the real vector space of Hermitian n× n ma-
trices by H(n), the set of Hermitian positive matrices by
HP(n), and the set of Hermitian positive definite matri-
ces by HPD(n).

The next lemma shows that every Hermitian positive defi-
nite matrixA is of the form eB for some unique Hermitian
matrix B.

As in the real case, the set of Hermitian matrices is a real
vector space, but it is not a Lie algebra because the Lie
bracket [A,B] is not Hermitian unless A andB commute,
and the set of Hermitian (positive) definite matrices is not
a multiplicative group.
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Lemma 2.6.1 For every Hermitian matrix B, the ma-
trix eB is Hermitian positive definite. For every Her-
mitian positive definite matrix A, there is a unique
Hermitian matrix B such that A = eB.

Lemma 2.6.1 can be reformulated as stating that the map
exp:H(n) → HPD(n) is a bijection. In fact, it can be
shown that it is a homeomorphism.

In the case of complex invertible matrices, the polar form
theorem can be reformulated as stating that there is a bi-
jection between the topological space GL(n,C) of com-
plex n× n invertible matrices (also a group) and
U(n)×HPD(n).

As a corollary of the polar form theorem and Lemma
2.6.1, we have the following result: For every complex
invertible matrix A, there is a unique unitary matrix U
and a unique Hermitian matrix S such that

A = U eS.
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Thus, we have a bijection between GL(n,C) and
U(n)×H(n).

But H(n) itself is isomorphic to Rn2, and so there is a
bijection between GL(n,C) and U(n)× Rn2.

It can also be shown that this bijection is a homeomor-
phism. This is an interesting fact.

Indeed, this homeomorphism essentially reduces the study
of the topology of GL(n,C) to the study of the topology
of U(n).

This is nice, since it can be shown that U(n) is compact
(as a real manifold).
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In the polar decomposition A = UeS, we have
| det(U )| = 1, since U is unitary, and tr(S) is real, since
S is Hermitian (since it is the sum of the eigenvalues of
S, which are real), so that det

(
eS
)
> 0.

Thus, if det(A) = 1, we must have det
(
eS
)
= 1, which

implies that S ∈ H(n) ∩ sl(n,C).

Thus, we have a bijection between SL(n,C) and
SU(n)× (H(n) ∩ sl(n,C)).

In the next section we study the group SE(n) of affine
maps induced by orthogonal transformations, also called
rigid motions, and its Lie algebra.

We will show that the exponential map is surjective. The
groups SE(2) and SE(3) play play a fundamental role in
robotics, dynamics, and motion planning.
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2.7 The Lie Group SE(n) and the Lie Algebra se(n)

First, we review the usual way of representing affine maps
of Rn in terms of (n + 1)× (n + 1) matrices.

Definition 2.7.1 The set of affine maps ρ ofRn, defined
such that

ρ(X) = RX + U,

where R is a rotation matrix (R ∈ SO(n)) and U is
some vector in Rn, is a group under composition called
the group of direct affine isometries, or rigid motions ,
denoted by SE(n).

Every rigid motion can be represented by the
(n + 1)× (n + 1) matrix

(
R U
0 1

)

in the sense that(
ρ(X)
1

)
=

(
R U
0 1

)(
X
1

)

iff
ρ(X) = RX + U.
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Definition 2.7.2 The vector space of real
(n + 1)× (n + 1) matrices of the form

A =

(
Ω U
0 0

)
,

where Ω is a skew symmetric matrix and U is a vector in
Rn, is denoted by se(n).

Remark: The group SE(n) is a Lie group, and its Lie

algebra turns out to be se(n).

We will show that the exponential map
exp: se(n) → SE(n) is surjective. First, we prove the
following key lemma.
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Lemma 2.7.3 Given any (n + 1)× (n + 1) matrix of
the form

A =

(
Ω U
0 0

)

where Ω is any matrix and U ∈ Rn,

Ak =

(
Ωk Ωk−1U
0 0

)
,

where Ω0 = In. As a consequence,

eA =

(
eΩ V U
0 1

)
,

where

V = In +
∑

k≥1

Ωk

(k + 1)!
.

We can now prove our main theorem.

We will need to prove that V is invertible when Ω is a
skew symmetric matrix.
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It would be tempting to write V as

V = Ω−1(eΩ − I).

Unfortunately, for odd n, a skew symmetric matrix of
order n is not invertible! Thus, we have to find another
way of proving that V is invertible.

Remark: We have

V = In +
∑

k≥1

Ωk

(k + 1)!
=

∫ 1

0
eΩtdt.

This can be used to give a more explicit formula for V if
we have an explicit formula for eΩt (see below for n = 3).

Theorem 2.7.4 The exponential map

exp: se(n) → SE(n)

is well-defined and surjective.
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In the case n = 3, given a skew symmetric matrix

Ω =




0 −c b
c 0 −a
−b a 0



 ,

letting θ =
√
a2 + b2 + c2, it it easy to prove that if θ = 0,

then

eA =

(
I3 U
0 1

)
,

and that if θ '= 0 (using the fact that Ω3 = −θ2Ω), then

eΩ = I3 +
sin θ

θ
Ω +

(1− cos θ)

θ2
Ω2

and

V = I3 +
(1− cos θ)

θ2
Ω +

(θ − sin θ)

θ3
Ω2.

We finally reach the best vista point of our hike, the for-
mal definition of (linear) Lie groups and Lie algebras.
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Our next goal is to define an embedded submanifold .

Before doing this, we believe that it is useful to review
the notion of derivative of a function, f :E → F , where
E and F are normed vector spaces.


