
Chapter 8

Basics of Hermitian Geometry

8.1 Sesquilinear Forms, Hermitian Forms, Hermitian

Spaces, Pre-Hilbert Spaces

In this chapter, we attempt to generalize the basic results
of Euclidean geometry presented in Chapter 5 to vector
spaces over the complex numbers .

Some complications arise, due to complex conjugation.

Recall that for any complex number z ∈ C, if z = x + iy
where x, y ∈ R, we let �z = x, the real part of z, and
�z = y, the imaginary part of z.

333



334 CHAPTER 8. BASICS OF HERMITIAN GEOMETRY

We also denote the conjugate of z = x+iy as z = x−iy,
and the absolute value (or length, or modulus) of z as |z|.
Recall that |z|2 = zz = x2 + y2.

There are many natural situations where a map
ϕ: E × E → C is linear in its first argument and only
semilinear in its second argument.

For example, the natural inner product to deal with func-
tions f : R → C, especially Fourier series, is

〈f, g〉 =

∫ π

−π

f (x)g(x)dx,

which is semilinear (but not linear) in g.

Definition 8.1.1 Given two vector spaces E and F over
the complex field C, a function f : E → F is semilinear
if

f (u + v) = f (u) + f (v),

f (λu) = λf (u),

for all u, v ∈ E and all λ ∈ C. The set of all semilinear
maps f : E → C is denoted as E

∗
.
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It is trivially verified that E
∗

is a vector space over C. It
is not quite the dual space E∗ of E.

Remark : Instead of defining semilinear maps, we could
have defined the vector space E as the vector space with
the same carrier set E, whose addition is the same as that
of E, but whose multiplication by a complex number is
given by

(λ, u) �→ λu.

Then, it is easy to check that a function f : E → C is
semilinear iff f : E → C is linear.

If E has finite dimension n, it is easy to see that E
∗

has
the same dimension n

We can now define sesquilinear forms and Hermitian forms.
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Definition 8.1.2 Given a complex vector space E, a
function ϕ: E × E → C is a sesquilinear form iff it is
linear in its first argument and semilinear in its second
argument, which means that

ϕ(u1 + u2, v) = ϕ(u1, v) + ϕ(u2, v),

ϕ(u, v1 + v2) = ϕ(u, v1) + ϕ(u, v2),

ϕ(λu, v) = λϕ(u, v),

ϕ(u, µv) = µϕ(u, v),

for all u, v, u1, u2, v1, v2 ∈ E, and all λ, µ ∈ C. A
function ϕ: E × E → C is a Hermitian form iff it is
sesquilinear and if

ϕ(v, u) = ϕ(u, v)

for all all u, v ∈ E.

Obviously, ϕ(0, v) = ϕ(u, 0) = 0.
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Also note that if ϕ: E × E → C is sesquilinear, we have

ϕ(λu + µv, λu + µv) = |λ|2ϕ(u, u) + λµϕ(u, v)

+ λµϕ(v, u) + |µ|2ϕ(v, v),

and if ϕ: E × E → C is Hermitian, we have

ϕ(λu + µv, λu + µv)

= |λ|2ϕ(u, u) + 2�(λµϕ(u, v)) + |µ|2ϕ(v, v).

Note that restricted to real coefficients, a sesquilinear
form is bilinear (we sometimes say R-bilinear).

The function Φ: E → C defined such that Φ(u) = ϕ(u, u)
for all u ∈ E is called the quadratic form associated with
ϕ.
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The standard example of a Hermitian form on C
n is the

map ϕ defined such that

ϕ((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + x2y2 + · · ·+ xnyn.

This map is also positive definite, but before dealing with
these issues, we show the following useful lemma.

Lemma 8.1.3 Given a complex vector space E, the
following properties hold:

(1) A sesquilinear form ϕ: E ×E → C is a Hermitian
form iff ϕ(u, u) ∈ R for all u ∈ E.

(2) If ϕ: E × E → C is a sesquilinear form, then

4ϕ(u, v) = ϕ(u + v, u + v) − ϕ(u − v, u − v)

+ iϕ(u + iv, u + iv) − iϕ(u − iv, u − iv),

and

2ϕ(u, v) = (1 + i)(ϕ(u, u) + ϕ(v, v))

− ϕ(u − v, u − v) − iϕ(u − iv, u − iv).

These are called polarization identities.
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Lemma 8.1.3 shows that a sesquilinear form is completely
determined by the quadratic form Φ(u) = ϕ(u, u), even
if ϕ is not Hermitian.

This is false for a real bilinear form, unless it is symmetric.

For example, the bilinear form ϕ: R × R → R defined
such that

ϕ((x1, y1), (x2, y2)) = x1y2 − x2y1

is not identically zero, and yet, it is null on the diagonal.

However, a real symmetric bilinear form is indeed deter-
mined by its values on the diagonal, as we saw in Chapter
8.

As in the Euclidean case, Hermitian forms for which
ϕ(u, u) ≥ 0 play an important role.
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Definition 8.1.4 Given a complex vector space E, a
Hermitian form ϕ: E×E → C is positive iff ϕ(u, u) ≥ 0
for all u ∈ E, and positive definite iff ϕ(u, u) > 0 for all
u 
= 0. A pair 〈E, ϕ〉 where E is a complex vector space
and ϕ is a Hermitian form on E is called a pre-Hilbert
space if ϕ is positive, and a Hermitian (or unitary)
space if ϕ is positive definite.

We warn our readers that some authors, such as Lang
[?], define a pre-Hilbert space as what we define to be a
Hermitian space.

We prefer following the terminology used in Schwartz [?]
and Bourbaki [?].

The quantity ϕ(u, v) is usually called the Hermitian prod-
uct of u and v. We will occasionally call it the inner
product of u and v.



8.1. SESQUILINEAR FORMS, HERMITIAN FORMS 341

Given a pre-Hilbert space 〈E,ϕ〉, as in the case of a Eu-
clidean space, we also denote ϕ(u, v) as

u · v, or 〈u, v〉, or (u|v),

and
√

Φ(u) as ‖u‖.

Example 1. The complex vector space C
n under the

Hermitian form

ϕ((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + x2y2 + · · · + xnyn

is a Hermitian space.

Example 2. Let l2 denote the set of all countably in-
finite sequences x = (xi)i∈N of complex numbers such
that

∑∞
i=0 |xi|2 is defined (i.e. the sequence

∑n
i=0 |xi|2

converges as n → ∞).

It can be shown that the map ϕ: l2× l2 → C defined such
that

ϕ ((xi)i∈N, (yi)i∈N) =

∞∑
i=0

xiyi

is well defined, and l2 is a Hermitian space under ϕ. Ac-
tually, l2 is even a Hilbert space (see Chapter ??).
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Example 3. Consider the set Cpiece[a, b] of piecewise bounded
continuous functions f : [a, b] → C under the Hermitian
form

〈f, g〉 =

∫ b

a

f (x)g(x)dx.

It is easy to check that this Hermitian form is positive,
but it is not definite. Thus, under this Hermitian form,
Cpiece[a, b] is only a pre-Hilbert space.

Example 4. Consider the set C[−π, π] of continuous func-
tions f : [−π, π] → C under the Hermitian form

〈f, g〉 =

∫ b

a

f (x)g(x)dx.

It is easy to check that this Hermitian form is positive
definite. Thus, C[−π, π] is a Hermitian space.

The Cauchy-Schwarz inequality and the Minkowski in-
equalities extend to pre-Hilbert spaces and to Hermitian
spaces.
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Lemma 8.1.5 Let 〈E, ϕ〉 be a pre-Hilbert space with
associated quadratic form Φ. For all u, v ∈ E, we
have the Cauchy-Schwarz inequality:

|ϕ(u, v)| ≤
√

Φ(u)
√

Φ(v).

Furthermore, if 〈E, ϕ〉 is a Hermitian space, the equal-
ity holds iff u and v are linearly dependent.

We also have the Minkovski inequality:√
Φ(u + v) ≤

√
Φ(u) +

√
Φ(v).

Furthermore, if 〈E, ϕ〉 is a Hermitian space, the equal-
ity holds iff u and v are linearly dependent, where in
addition, if u 
= 0 and v 
= 0, then u = λv for some
real λ such that λ > 0.

As in the Euclidean case, if 〈E, ϕ〉 is a Hermitian space,
the Minkovski inequality√

Φ(u + v) ≤
√

Φ(u) +
√

Φ(v)

shows that the map u �→ √
Φ(u) is a norm on E.
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The norm induced by ϕ is called the Hermitian norm
induced by ϕ.

We usually denote
√

Φ(u) as ‖u‖, and the Cauchy-Schwarz
inequality is written as

|u · v| ≤ ‖u‖ ‖v‖ .

Since a Hermitian space is a normed vector space, it is
a topological space under the topology induced by the
norm (a basis for this topology is given by the open balls
B0(u, ρ) of center u and radius ρ > 0, where

B0(u, ρ) = {v ∈ E | ‖v − u‖ < ρ}.

If E has finite dimension, every linear map is continuous,
see Lang [?, ?], or Schwartz [?, ?]).
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The Cauchy-Schwarz inequality

|u · v| ≤ ‖u‖ ‖v‖
shows that ϕ: E × E → C is continuous, and thus, that
‖ ‖ is continuous.

If 〈E,ϕ〉 is only pre-Hilbertian, ‖u‖ is called a semi-
norm.

In this case, the condition

‖u‖ = 0 implies u = 0

is not necessarily true.

However, the Cauchy-Schwarz inequality shows that if
‖u‖ = 0, then u · v = 0 for all v ∈ E.

We will now basically mirror the presentation of Euclidean
geometry given in Chapter 5 rather quickly, leaving out
most proofs, except when they need to be seriously amended.
This will be the case for the Cartan-Dieudonné theorem.
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8.2 Orthogonality, Duality, Adjoint of A Linear Map

In this section, we assume that we are dealing with Her-
mitian spaces. We denote the Hermitian inner product
as u · v or 〈u, v〉.

The concepts of orthogonality, orthogonal family of vec-
tors, orthonormal family of vectors, and orthogonal com-
plement of a set of vectors, are unchanged from the Eu-
clidean case (Definition 5.2.1).

For example, the set C[−π, π] of continuous functions
f : [−π, π] → C is a Hermitian space under the product

〈f, g〉 =

∫ π

−π

f (x)g(x)dx,

and the family (eikx)k∈Z is orthogonal.

Lemma 5.2.2 and 5.2.3 hold without any changes.

It is easy to show that∥∥∥∥∥
n∑

i=1

ui

∥∥∥∥∥
2

=

n∑
i=1

‖ui‖2 +
∑

1≤i<j≤n

2�(ui · uj).
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Analogously to the case of Euclidean spaces of finite di-
mension, the Hermitian product induces a canonical bi-
jection (i.e., independent of the choice of bases) between
the vector space E and the space E∗.

This is one of the places where conjugation shows up, but
in this case, troubles are minor.

Given a Hermitian space E, for any vector u ∈ E, let
ϕl

u: E → C be the map defined such that

ϕl
u(v) = u · v,

for all v ∈ E.

Similarly, for any vector v ∈ E, let ϕr
v: E → C be the

map defined such that

ϕr
v(u) = u · v,

for all u ∈ E.

Since the Hermitian product is linear in its first argument
u, the map ϕr

v is a linear form in E∗, and since it is
semilinear in its second argument v, the map ϕl

u is a
semilinear form in E

∗
.
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Thus, we have two maps �l: E → E
∗

and �r: E → E∗,
defined such that

�l(u) = ϕl
u, and �r(v) = ϕr

v.

Lemma 8.2.1 let E be a Hermitian space E.

(1) The map �l: E → E
∗

defined such that

�l(u) = ϕl
u,

is linear and injective.

(2) The map �r: E → E∗ defined such that

�r(v) = ϕr
v,

is semilinear and injective.

When E is also of finite dimension, the maps
�l: E → E

∗
and �r: E → E∗ are canonical isomor-

phisms.
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The inverse of the isomorphism �l: E → E
∗

is denoted as
�l: E

∗ → E, and the inverse of the isomorphism
�r: E → E∗ is denoted as �r: E∗ → E.

As a corollary of the isomorphism �r: E → E∗, if E is
a Hermitian space of finite dimension, every linear form
f ∈ E∗ corresponds to a unique v ∈ E, such that

f (u) = u · v,

for every u ∈ E.

In particular, if f is not the null form, the kernel of f ,
which is a hyperplane H , is precisely the set of vectors
that are orthogonal to v.

Remark . The “musical map” �r: E → E∗ is not surjec-
tive when E has infinite dimension.

This result will be salvaged in Section ?? by restricting
our attention to continuous linear maps, and by assuming
that the vector space E is a Hilbert space.
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The existence of the isomorphism �l: E → E
∗

is crucial
to the existence of adjoint maps.

Indeed, Lemma 8.2.1 allows us to define the adjoint of a
linear map on a Hermitian space.

Let E be a Hermitian space of finite dimension n, and let
f : E → E be a linear map.

For every u ∈ E, the map

v �→ u · f (v)

is clearly a semilinear form in E
∗
, and by lemma 8.2.1,

there is a unique vector in E denoted as f ∗(u), such that

f ∗(u) · v = u · f (v),

for every v ∈ E.

The following lemma shows that the map f ∗ is linear.
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Lemma 8.2.2 Given a Hermitian space E of finite
dimension, for every linear map f : E → E, there is a
unique linear map f ∗: E → E, such that

f ∗(u) · v = u · f (v),

for all u, v ∈ E. The map f ∗ is called the adjoint of
f (w.r.t. to the Hermitian product).

The fact that
v · u = u · v

implies that the adjoint f ∗ of f is also characterized by

f (u) · v = u · f ∗(v),

for all u, v ∈ E. It is also obvious that f ∗∗ = f .
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Given two Hermitian spaces E and F , where the Hermi-
tian product on E is denoted as 〈−,−〉1 and the Hermi-
tian product on F is denoted as 〈−,−〉2, given any linear
map f : E → F , it is immediately verified that the proof
of lemma 8.2.2 can be adapted to show that there is a
unique linear map f ∗: F → E such that

〈f (u), v〉2 = 〈u, f ∗(v)〉1
for all u ∈ E and all v ∈ F . The linear map f ∗ is also
called the adjoint of f .

As in the Euclidean case, lemma 8.2.1 can be used to
show that any Hermitian space of finite dimension has an
orthonormal basis. The proof is unchanged.
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Lemma 8.2.3 Given any nontrivial Hermitian space
E of finite dimension n ≥ 1, there is an orthonormal
basis (u1, . . . , un) for E.

The Gram–Schmidt orthonormalization procedure also
applies to Hermitian spaces of finite dimension, without
any changes from the Euclidean case!

Lemma 8.2.4 Given any nontrivial Hermitian space
E of finite dimension n ≥ 1, from any basis (e1, . . . , en)
for E, we can construct an orthonormal basis
(u1, . . . , un) for E, with the property that for every k,
1 ≤ k ≤ n, the families (e1, . . . , ek) and (u1, . . . , uk)
generate the same subspace.

Remarks : The remarks made after lemma 5.2.7 also ap-
ply here, except that in the QR-decomposition, Q is a
unitary matrix.
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As a consequence of lemma 5.2.6 (or lemma 8.2.4), given
any Hermitian space of finite dimension n, if (e1, . . . , en)
is an orthonormal basis for E, then for any two vectors
u = u1e1 + · · · + unen and v = v1e1 + · · · + vnen, the
Hermitian product u · v is expressed as

u ·v = (u1e1 + · · ·+unen) · (v1e1 + · · ·+vnen) =

n∑
i=1

uivi,

and the norm ‖u‖ as

‖u‖ = ‖u1e1 + · · · + unen‖ =

√√√√ n∑
i=1

|ui|2.

Lemma 5.2.8 also holds unchanged.
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Lemma 8.2.5 Given any nontrivial Hermitian space
E of finite dimension n ≥ 1, for any subspace F of
dimension k, the orthogonal complement F⊥ of F has
dimension n− k, and E = F ⊕ F⊥. Furthermore, we
have F⊥⊥ = F .

Affine Hermitian spaces are defined just as affine Eu-
clidean spaces, except that we modify definition 5.2.9 to
require that the complex vector space E be a Hermitian
space.

We denote as E
m
C

the Hermitian affine space obtained
from the affine space A

m
C

by defining on the vector space
C

m the standard Hermitian product

(x1, . . . , xm) · (y1, . . . , ym) = x1y1 + · · · + xmym.
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The corresponding Hermitian norm is

‖(x1, . . . , xm)‖ =
√

|x1|2 + · · · + |xm|2.
Lemma 7.2.2 also holds for Hermitian spaces, and the
proof is the same.

Lemma 8.2.6 Let E be a Hermitian space of finite
dimension n, and let f : E → E be an isometry. For
any subspace F of E, if f (F ) = F , then f (F⊥) ⊆ F⊥

and E = F ⊕ F⊥.
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8.3 Linear Isometries (also called Unitary Transforma-

tions)

In this section, we consider linear maps between Hermi-
tian spaces that preserve the Hermitian norm.

All definitions given for Euclidean spaces in Section 5.3
extend to Hermitian spaces, except that orthogonal trans-
formations are called unitary transformation, but Lemma
5.3.2 only extends with a modified condition (2).

Indeed, the old proof that (2) implies (3) does not work,
and the implication is in fact false! It can be repaired by
strengthening condition (2). For the sake of completeness,
we state the Hermitian version of Definition 5.3.1.

Definition 8.3.1 Given any two nontrivial Hermitian
spaces E and F of the same finite dimension n, a function
f : E → F is a unitary transformation, or a linear
isometry iff it is linear and

‖f (u)‖ = ‖u‖ ,

for all u ∈ E.



358 CHAPTER 8. BASICS OF HERMITIAN GEOMETRY

Lemma 5.3.2 can be salvaged by strengthening condition
(2).

Lemma 8.3.2 Given any two nontrivial Hermitian
space E and F of the same finite dimension n, for
every function f : E → F , the following properties are
equivalent:

(1) f is a linear map and ‖f (u)‖ = ‖u‖, for all u ∈ E;

(2) ‖f (v) − f (u)‖ = ‖v − u‖ and f (iu) = if (u), for
all u, v ∈ E;

(3) f (u) · f (v) = u · v, for all u, v ∈ E.

Furthermore, such a map is bijective.

Observe that from f (iu) = if (u), for u = 0, we get
f (0) = if (0), which implies that f (0) = 0.
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Remarks : (i) In the Euclidean case, we proved that the
assumption

(2’) ‖f (v) − f (u)‖ = ‖v − u‖, for all u, v ∈ E, and
f (0) = 0;

implies (3). For this, we used the polarization identity

2u · v = ‖u‖2 + ‖v‖2 − ‖u − v‖2 .

In the Hermitian case, the polarization identity involves
the complex number i.

In fact, the implication (2’) implies (3) is false in the
Hermitian case! Conjugation z �→ z satifies (2’) since

|z2 − z1| = |z2 − z1| = |z2 − z1|,
and yet, it is not linear!
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(ii) If we modify (2) by changing the second condition by
now requiring that there is some τ ∈ E such that

f (τ + iu) = f (τ ) + i(f (τ + u) − f (τ ))

for all u ∈ E, then the function g: E → E defined such
that

g(u) = f (τ + u) − f (τ )

satisfies the old conditions of (2), and the implications
(2) → (3) and (3) → (1) prove that g is linear, and thus
that f is affine.

In view of the first remark, some condition involving i is
needed on f , in addition to the fact that f is distance-
preserving.

We are now going to take a closer look at the isometries
f : E → E of a Hermitian space of finite dimension.
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8.4 The Unitary Group, Unitary Matrices

In this section, as a mirror image of our treatment of
the isometries of a Euclidean space, we explore some of
the fundamental properties of the unitary group and of
unitary matrices.

The Cartan-Dieudonné theorem can be generalized (The-
orem 8.4.8), but this requires allowing new types of hy-
perplane reflections that we call Hermitian reflections.

After doing so, every isometry in U(n) can always be
written as a composition of at most n Hermitian reflec-
tions (for n ≥ 2).

Better yet, every rotation in SU(n) can be expressed as
the composition of at most 2n− 2 (standard) hyperplane
reflections!

This implies that every unitary transformation in U(n)
is the composition of at most 2n − 1 isometries, with at
most one Hermitian reflection, the other isometries being
(standard) hyperplane reflections.
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The crucial Lemma 7.1.3 is false as is, and needs to be
amended.

The QR-decomposition of arbitrary complex matrices in
terms of Householder matrices can also be generalized,
using a trick.

Definition 8.4.1 Given a complex m × n matrix A,
the transpose A� of A is the n×m matrix A� = (a�i, j)
defined such that

a�i, j = aj, i

and the conjugate A of A is the m×n matrix A = (bi, j)
defined such that

bi, j = ai, j

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The adjoint A∗ of A
is the matrix defined such that

A∗ = (A�) = (A)�.
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Lemma 8.4.2 Let E be any Hermitian space of finite
dimension n, and let f : E → E be any linear map.
The following properties hold:

(1) The linear map f : E → E is an isometry iff

f ◦ f ∗ = f ∗ ◦ f = id.

(2) For every orthonormal basis (e1, . . . , en) of E, if
the matrix of f is A, then the matrix of f ∗ is the
adjoint A∗ of A, and f is an isometry iff A satisfies
the idendities

A A∗ = A∗A = In,

where In denotes the identity matrix of order n, iff
the columns of A form an orthonormal basis of E,
iff the rows of A form an orthonormal basis of E.

Lemma 5.4.1 also motivates the following definition.
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Definition 8.4.3 A complex n× n matrix is a unitary
matrix iff

A A∗ = A∗A = In.

Remarks : The conditions A A∗ = In, A∗A = In, and
A−1 = A∗, are equivalent.

Given any two orthonormal bases (u1, . . . , un) and
(v1, . . . , vn), if P is the change of basis matrix from
(u1, . . . , un) to (v1, . . . , vn), it is easy to show that the
matrix P is unitary.

The proof of lemma 8.3.2 (3) also shows that if f is an
isometry, then the image of an orthonormal basis
(u1, . . . , un) is an orthonormal basis.

If f is unitary and A is its matrix with respect to any
orthonormal basis, we have |D(A)| = 1.
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Definition 8.4.4 Given a Hermitian space E of dimen-
sion n, the set of isometries f : E → E forms a subgroup
of GL(E, C) denoted as U(E), or U(n) when E = C

n,
called the unitary group (of E). For every isometry,
f , we have |D(f )| = 1, where D(f ) denotes the deter-
minant of f . The isometries such that D(f ) = 1 are
called rotations, or proper isometries, or proper uni-
tary transformations , and they form a subgroup of the
special linear group SL(E, C) (and of U(E)), denoted
as SU(E), or SU(n) when E = C

n, called the spe-
cial unitary group (of E). The isometries such that
D(f ) 
= 1 are called improper isometries, or improper
unitary transformations, or flip transformations .

The Gram–Schmidt orthonormalization procedure imme-
diately yields the QR-decomposition for matrices.
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Lemma 8.4.5 Given any n×n complex matrix A, if
A is invertible then there is a unitary matrix Q and
an upper triangular matrix R with positive diagonal
entries such that A = QR.

The proof is absolutely the same as in the real case!

In order to generalize the Cartan-Dieudonné theorem and
the QR-decomposition in terms of Householder transfor-
mations, we need to introduce new kinds of hyperplane
reflections.

This is not really surprising, since in the Hermitian case,
there are improper isometries whose determinant can be
any unit complex number.

Hyperplane reflections are generalized as follows.
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Definition 8.4.6 Let E be a Hermitian space of finite
dimension. For any hyperplane H , for any nonnull vector
w orthogonal to H , so that E = H ⊕G, where G = Cw,
a Hermitian reflection about H of angle θ is a linear
map of the form ρH, θ: E → E, defined such that

ρH, θ(u) = pH(u) + eiθpG(u),

for any unit complex number eiθ 
= 1 (i.e. θ 
= k2π).

Since u = pH(u) + pG(u), the Hermitian reflection ρH, θ

is also expressed as

ρH, θ(u) = u + (eiθ − 1)pG(u),

or as

ρH, θ(u) = u + (eiθ − 1)
(u · w)

‖w‖2 w.

Note that the case of a standard hyperplane reflection is
obtained when eiθ = −1, i.e., θ = π.
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We leave as an easy exercise to check that ρH, θ is indeed
an isometry, and that the inverse of ρH, θ is ρH,−θ.

If we pick an orthonormal basis (e1, . . . , en) such that
(e1, . . . , en−1) is an orthonormal basis of H , the matrix
of ρH, θ is

(
In−1 0

0 eiθ

)

We now come to the main surprise. Given any two dis-
tinct vectors u and v such that ‖u‖ = ‖v‖, there isn’t
always a hyperplane reflection mapping u to v, but this
can be done using two Hermitian reflections!
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Lemma 8.4.7 Let E be any nontrivial Hermitian space.

(1) For any two vectors u, v ∈ E such that u 
= v and
‖u‖ = ‖v‖, if u · v = eiθ|u · v|, then the (usual)
reflection s about the hyperplane orthogonal to the
vector v − e−iθu is such that s(u) = eiθv.

(2) For any nonnull vector v ∈ E, for any unit com-
plex number eiθ 
= 1, there is a Hermitian reflection
ρθ such that

ρθ(v) = eiθv.

As a consequence, for u and v as in (1), we have
ρ−θ ◦ s(u) = v.
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Remarks : (1) If we use the vector v + e−iθu instead of
v − e−iθu, we get s(u) = −eiθv.

(2) Certain authors, such as Kincaid and Cheney [?] and
Ciarlet [?], use the vector u + eiθv instead of our vector
v + e−iθu. The effect of this choice is that they also get
s(u) = −eiθv.

(3) If v = ‖u‖ e1, where e1 is a basis vector, u · e1 = a1,
where a1 is just the coefficient of u over the basis vector
e1.

Then, since u · e1 = eiθ|a1|, the choice of the plus sign in
the vector ‖u‖ e1+e−iθu has the effect that the coefficient
of this vector over e1 is ‖u‖ + |a1|, and no cancellations
takes place, which is preferable for numerical stability (we
need to divide by the square norm of this vector).

The last part of Lemma 8.4.7 shows that the Cartan-
Dieudonné is salvaged.
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Actually, because we are over the complex field, a linear
map always have (complex) eigenvalues, and we can get
a slightly improved result.

Theorem 8.4.8 Let E be a Hermitian space of di-
mension n ≥ 1. Every isometry f ∈ U(E) is the
composition f = ρn ◦ ρn−1 ◦ · · · ◦ ρ1 of n isometries ρj,
where each ρj is either the identity or a Hermitian
reflection (possibly a standard hyperplane reflection).
When n ≥ 2, the identity is the composition of any
hyperplane reflection with itself.

Proof . We prove by induction on n that there is an
orthonormal basis of eigenvectors (u1, . . . , un) of f such
that

f (uj) = eiθjuj,

where eiθj is an eigenvalue associated with uj, for all j,
1 ≤ j ≤ n.
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Remarks . (1) Any isometry f ∈ U(n) can be express as
f = ρθ ◦ g, where g ∈ SU(n) is a rotation, and ρθ is a
Hermitian reflection.

As a consequence, there is a bijection between S1×SU(n)
and U(n), where S1 is the unit circle (which corresponds
to the group of complex numbers eiθ of unit length). In
fact, it is a homeomorphism.

(2) We abandoned the style of proof used in theorem 7.2.1,
because in the Hermitian case, eigenvalues and eigenvec-
tors always exist, and the proof is simpler that way (in
the real case, an isometry may not have any real eigen-
values!).

The sacrifice is that the theorem yields no information
on the number of hyperplane reflections. We shall rectify
this situation shortly.
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We will now reveal the beautiful trick (found in Mneimné
and Testard [?]) that allows us to prove that every ro-
tation in SU(n) is the composition of at most 2n − 2
(standard) hyperplane reflections.

For what follows, it is more convenient to denote the
Hermitian reflection ρH,θ about a hyperplane H as ρu, θ,
where u is any vector orthogonal to H , and to denote
a standard reflection about the hyperplane H as hu (it
is trivial that these do not depend on the choice of u in
H⊥).

Then, given any two distinct orthogonal vectors u, v such
that ‖u‖ = ‖v‖, consider the composition
ρv,−θ ◦ ρu, θ.

The trick is that this composition can be expressed as
two standard hyperplane reflections !
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Lemma 8.4.9 Let E be a nontrivial Hermitian space.
For any two distinct orthogonal vectors u, v such that
‖u‖ = ‖v‖, we have

ρv,−θ ◦ ρu, θ = hv−u ◦ hv− e−iθu

= hu+v ◦ hu+eiθv.

Lemma 8.4.10 Let E be a nontrivial Hermitian space,
and let (u1, . . . , un) be some orthonormal basis for E.
For any θ1, . . . , θn such that θ1 + · · · + θn = 0, if
f ∈ U(n) is the isometry defined such that

f (uj) = eiθjuj,

for all j, 1 ≤ j ≤ n, then f is a rotation (f ∈ SU(n)),
and

f = ρun, θn ◦ · · · ◦ ρu1, θ1

= ρun,−(θ1+···+θn−1) ◦ ρun−1, θ1+···+θn−1 ◦ · · · ◦ ρu2,−θ1 ◦ ρu1, θ1

= hun−un−1 ◦ h
un− e−i(θ1+···+θn−1)un−1

◦ · · · ◦ hu2−u1 ◦ hu2− e−iθ1u1

= hun−1+un ◦ h
un−1+ ei(θ1+···+θn−1)un

◦ · · · ◦ hu1+u2 ◦ hu1+ eiθ1u2
.

We finally get our improved version of the
Cartan-Dieudonné theorem.
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Theorem 8.4.11 Let E be a Hermitian space of di-
mension n ≥ 1. Every rotation f ∈ SU(E) different
from the identity is the composition of at most 2n− 2
hyperplane reflections. Every isometry f ∈ U(E) dif-
ferent from the identity is the composition of at most
2n − 1 isometries, all hyperplane reflections, except
for possibly one Hermitian reflection. When n ≥ 2,
the identity is the composition of any reflection with
itself.

As a corollary of Theorem 8.4.11, the following interesting
result can be shown (this is not hard, do it!).

First, recall that a linear map f : E → E is self-adjoint
(or Hermitian) iff f = f ∗.

Then, the subgroup of U(n) generated by the Hermitian
isometries is equal to the group

SU(n)± = {f ∈ U(n) | det(f ) = ±1}.

Equivalently, SU(n)± is equal to the subgroup of U(n)
generated by the hyperplane reflections.
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This problem had been left open by Dieudonné in [?].
Evidently, it was settled since the publication of the third
edition of the book [?].

Inspection of the proof of Lemma 7.2.4 reveals that this
lemma also holds for Hermitian spaces.

Thus, when n ≥ 3, the composition of any two hyper-
plane reflections is equal to the composition of two flips.

Theorem 8.4.12 Let E be a Hermitan space of di-
mension n ≥ 3. Every rotation f ∈ SU(E) is the
composition of an even number of flips f = f2k◦· · ·◦f1,
where k ≤ n − 1. Furthermore, if u 
= 0 is invariant
under f (i.e. u ∈ Ker (f − id)), we can pick the last
flip f2k such that u ∈ F⊥

2k, where F2k is the subspace
of dimension n − 2 determining f2k.

We now show that the QR-decomposition in terms of
(complex) Householder matrices holds for complex ma-
trices.
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We need the version of Lemma 8.4.7 and a trick at the end
of the argument, but the proof is basically unchanged.

Lemma 8.4.13 Let E be a nontrivial Hermitian space
of dimension n. Given any orthonormal basis
(e1, . . . , en), for any n-tuple of vectors (v1, . . . , vn), there
is a sequence of n isometries h1, . . . , hn, such that
hi is a hyperplane reflection or the identity, and if
(r1, . . . , rn) are the vectors given by

rj = hn ◦ · · · ◦ h2 ◦ h1(vj),

then every rj is a linear combination of the vectors
(e1, . . . , ej), (1 ≤ j ≤ n). Equivalently, the matrix
R whose columns are the components of the rj over
the basis (e1, . . . , en) is an upper triangular matrix.
Furthermore, if we allow one more isometry hn+1 of
the form

hn+1 = ρen, ϕn ◦ · · · ◦ ρe1,ϕ1

after h1, . . . , hn, we can ensure that the diagonal en-
tries of R are nonnegative.
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Remark : For numerical stability, it may be preferable to
use wk+1 = rk+1,k+1 ek+1 + e−iθk+1u′′

k+1 instead of wk+1 =
rk+1,k+1 ek+1 − e−iθk+1u′′

k+1. The effect of that choice
is that the diagonal entries in R will be of the form
−eiθjrj, j = ei(θj+π)rj, j.

Of course, we can make these entries nonegative by ap-
plying

hn+1 = ρen, π−θn ◦ · · · ◦ ρe1,π−θ1

after hn.

As in the Euclidean case, Lemma 8.4.13 immediately im-
plies the QR-decomposition for arbitrary complex n×n-
matrices, where Q is now unitary (see Kincaid and Ch-
eney [?], or Ciarlet [?]).
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Lemma 8.4.14 For every complex n × n-matrix A,
there is a sequence H1, . . . , Hn of matrices, where each
Hi is either a Householder matrix or the identity, and
an upper triangular matrix R, such that

R = Hn · · ·H2H1A.

As a corollary, there is a pair of matrices Q, R, where
Q is unitary and R is upper triangular, such that A =
QR (a QR-decomposition of A). Furthermore, R can
be chosen so that its diagonal entries are nonnegative.

As in the Euclidean case, the QR-decomposition has ap-
plications to least squares problems. It is also possible to
convert any complex matrix to bidiagonal form.
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