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7.4 Affine Isometries (Rigid Motions)

Definition 7.4.1 Given any two nontrivial Euclidean
affine spaces E and F' of the same finite dimension n, a
function f: F — F'is an affine isometry (or rigid map)
iff it is an affine map and

If(2)f(b)[| = [lab]|,

for all a,b € E. When E = F', an affine isometry
f:E— E is also called a rigid motion.

Thus, an affine isometry is an affine map that preserves
the distance. This is a rather strong requirement.

In fact, we will show that for any function f: £ — F', the
assumption that

If(2)f(b) = [[ab]

for all a,b € E. forces f to be an affine map.
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Remark: Sometimes, an affine isometry is defined as a
bijective afhine isometry. When E and F' are of finite
dimension, the definitions are equivalent.

Lemma 7.4.2 Given any two nontrivial Fuclidean
affine spaces I and F of the same finite dimension

n, an affine map f: E — F 1s an affine isometry iff
. . . H H H . .
its associated linear map f: E — F' is an isometry.

An affine isometry is a bijection.

H
Let us now consider affine isometries f: ' — E. If f isa
rotation, we call f a proper (or direct) affine isometry,

H
and if f is a an improper linear isometry, we call f a an
improper (or skew) affine isometry.

[t is easily shown that the set of affine isometries

f: E — FE forms a group denoted as Is(E) (or Mo(F)),

H
and those for which f is arotation is a subgroup denoted

as SE(F).
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The translations are the affine isometries f for which
— —

f =id, the identity map on F .

The following lemma is the counterpart of lemma 5.3.2
for isometries between Euclidean vector spaces:

Lemma 7.4.3 Given any two nontrivial Fuclidean
affine spaces £ and F' of the same finite dimension n,
for every function f: E — F', the following properties
are equivalent:

(1) f is an affine map and ||f(a)f(b)| = ||ab||, for all
a,be FE.

(2) ||[f(a)f(b)| = ||abl|, for all a,b € E.

In order to understand the structure of affine isometries,
it is important to investigate the fixed points of an affine
map.
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7.5 Fixed Points of Affine Maps

Recall that E(1, 7) denotes the eigenspace of the linear

H
map f associated with the scalar 1, that is, the subspace

o — —
consisting of all vectors u € F such that f (u) = w.

— —

Clearly, Ker ( f —1id) = E(1, f).
Given some origin ) € E, since

fla) = f(Q+Qa) = (U + [ (Qa),

we get
Qf(a) — Qa = Qf(Q) + f (Qa) — Qa.

Using this, we show the following lemma which holds for
arbitrary affine spaces of finite dimension and for arbi-
trary affine maps.
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Lemma 7.5.1 Let E be any affine space of finite di-
mension. For every affine map f: E — E, let
Fiz(f)={a € E| f(a) = a} be the set of fired points
of f. The following properties hold.

(1) If f has some fixed point a, so that Fix(f) # 0,
then Fix(f) is an affine subspace of E such that

—

Fiz(f)=a+ E(1, f)=a+Ker( f —id),

H
where E(1, f ) is the eigenspace of the linear map

H .
f for the eigenvalue 1.

(2) The affine map [ has a unique fixed point iff

EQ, F)=Ker(f —id) = {0}.

Remark: The fact that E has finite dimension is only
used to prove (2), and (1) holds in general.
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If an isometry f leaves some point fixed, we can take
such a point ) as the origin, and then f(€2) = € and

we can view f as a rotation or an improper orthogonal
H
transformation, depending on the nature of f .

Note that it is quite possible that Fiz(f) = 0. For ex-
ample, nontrivial translations have no fixed points.

A more interesting example is provided the composition
of a plane reflection about a line composed with a a non-
trivial translation parallel to this line.

Otherwise, we will see in lemma 7.6.2 that every affine
isometry is the (commutative) composition of a transla-
tion with an isometry that always has a fixed point.
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7.6 Affine Isometries and Fixed Points

H
Given any two affine subspaces F, G of E such that F

— —
and G are orthogonal subspaces of E such that
—

— —
E = F & G, for any point €2 € F', we define
q b — 5), such that

g(a) = pz(Q2a).
Note that ¢(a) is independent of the choice of €2 € F.

Then, the map g: E — E such that g(a) = a — 2q(a), or
equivalently

ag(a) = —2q(a) = —2p>(Qa)
does not depend on the choice of €2 € F.
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H
If we identify E to E by choosing any origin €2 in F', we
note that g is identified with the symmetry with respect

— —
to I and parallel to G .

Thus, the map ¢ is an affine isometry, and it is called the
orthogonal symmetry about F'.

Since
g(a) =2+ Qa — 2p—(Qa)
for all {2 € F" and for all a € E, we note that the linear

map ¢ associated with ¢ is the (linear) symmetry about

the subspace 7 (the direction of F')

The following amusing lemma shows the extra power af-
forded by affine orthogonal symmetries: Translations are
subsumed!
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Lemma 7.6.1 Given any affine space E, if - E — E
and g: E — E are orthogonal symmetries about paral-
lel affine subspaces Fy and Fy, then go f is a transla-
tion defined by the vector 2ab, where ab is any vector

perpendicular to the common direction ? of F1 and
Fy such that ||ab|| is the distance between Fy and F,
with a € F1 and b € Fy. Conversely, every translation
by a vector T s obtained as the composition of two
orthogonal symmetries about parallel affine subspaces
Fy and F5 whose common direction s orthogonal to
T = ab, for some a € F; and some b € Fy such that
the distance betwen F| and Fy is ||abl| /2.
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The following result is a generalization of Chasles’ theo-
rem about the rigid motions in R?.

Lemma 7.6.2 Let E be a Euclidean affine space of
finite dimension n. For every affine isometry
f:E — FE, there is a unique isometry g. £ — E and

H
a unique translation t =t., with f (1) =171 (i.e.,

T € Ker (7) —id) ), such that the set

Fiz(g) ={ac E | gla) = aj

of fixed points of g 1s a nonempty affine subspace of
E of direction

— — —

G —Ker(f —id) = E(1, ),
and such that
f=tog and tog=got.

Furthermore, we have the following additional prop-
erties:
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(a) f =g and 7 = 0 iff f has some fized point, i.e.,
(b) If f has no fixed points, i.e., Fix(f) = (), then
dim(Ker (f —id)) > 1.

The proof rests on the following two key facts:

(1) If we can find some x € F such that xf(x) = 7

H
belongs to Ker ( f —id), we get the existence of g
and 7.

(2) E = Ker (7 —id)pIm (7 —id), and Ker (7 —id)

and Im (7 —id) are orthogonal. This implies the
uniqueness of g and 7.
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Figure 7.5: Rigid motion as f =t o g, where ¢ has some fixed point x

Remarks. (1) Note that Ker (7 —id) = {0} iff 7 = 0,
iff Fliz(g) consists of a single element, which is the unique
fixed point of f.

However, even if f is not a translation, f may not have
any fixed points.

(2) The fact that E has finite dimension is only used to
prove (b).
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(3) Tt is easily checked that Fiz(g) consists of the set of
points z such that ||xf(x)|| is minimal.

In the afline Euclidean plane, it is easy to see that the
affine isometries are classified as follows.

An isometry f which has a fixed point is a rotation if it
is a direct isometry, else a reflection about a line.

If f has no fixed point, then either it is a nontrivial trans-
lation or the composition of a reflection about a line with
a nontrivial translation parallel to this line.
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In an affine space of dimension 3, it is easy to see that
the affine isometries are classified as follows.

A proper isometry with a fixed point is a rotation around

a line D (its set of fixed points), as illustrated in figure
7.6.

Figure 7.6: 3D proper rigid motion with line D of fixed points (rotation)

An improper isometry with a fixed point is either a re-
flection about a plane H (the set of fixed points), or the
composition of a rotation followed by a reflection about
a plane H orthogonal to the axis of rotation D, as illus-
trated in figures 7.7 and 7.8. In the second case, there is
a single fixed point O = D N H.
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Figure 7.7: 3D improper rigid motion with a plane H of fixed points (reflection)
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Figure 7.8: 3D improper rigid motion with a unique fixed point



304 CHAPTER 7. THE CARTAN-DIEUDONNE THEOREM

There are three types of isometries with no fixed point.
The first kind is a nontrivial translation. The second kind
is the composition of a rotation followed by a nontrivial
translation parallel to the axis of rotation D. Such a rigid
motion is proper, and is called a screw motion. A screw
motion is illustrated in figure 7.9.

Figure 7.9: 3D proper rigid motion with no fixed point (screw motion)

The third kind is the composition of a reflection about
a plane followed by a nontrivial translation by a vector
parallel to the direction of the plane of the reflection, as
illustrated in figure 7.10. It is an improper isometry.
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a a—+T

Figure 7.10: 3D improper rigid motion with no fixed points

The Cartan-Dieudonné also holds for affine isometries,
with a small twist due to translations.
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7.7 The Cartan—Dieudonné Theorem for Affine Isome-
tries

Theorem 7.7.1 (Cartan—Dieudonné) Let E be an affine
Fuclidean space of dimension n > 1. Every isometry
f € Is(E) which has a fized point and is not the iden-
tity 1s the composition of at most n reflections. Every
isometry f € Is(E) which has no fized point is the
composition of at most n + 2 reflections. Forn > 2,
the identity s the composition of any reflection with

itself.

When n > 3, we can also characterize the affine isome-
tries in SE(n) in terms of flips.

Remarkably, not only we can do without translations, but
we can even bound the number of flips by n.
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Theorem 7.7.2 Let E be a Euclidean affine space of
dimension n > 3. Fvery rigid motion f € SE(E) is
the composition of an even number of flips

f = fopo---0 f1, where 2k < n.

Remark. It is easy to prove that if f is a screw motion
in SE(3), if D is its axis, 0 is its angle of rotation, and 7
is the translation along the direction of D, then f is the
composition of two flips about lines D; and D5 orthogonal
to D, at a distance ||7]| /2, and making an angle 6/2.

There is one more topic that we would like to cover since
it is often useful in practice, the concept of cross-product
of vectors, also called vector-product. But first, we need
to discuss the question of orientation of bases.
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7.8 Orientations of a Euclidean Space, Angles

In order to deal with the notion of orientation correctly,
it is important to assume that every family (ug, ..., u,)
of vectors is ordered (by the natural ordering on

1,2,...,n}).

We will assume that all families (uq, ..., u,) of vectors,
in particular, bases and orthonormal bases are ordered.

Let E be a vector space of finite dimension n over R, and
let (uq,...,u,) and (vy,...,v,) be any two bases for FE.

Recall that the change of basis matrix from (uq, ..., u,)
to (v1,...,v,) is the matrix P whose columns are the
coordinates of the vectors v; over the basis (u1, ..., u,).

[t is immediately verified that the set of alternating n-

linear forms on E is a vector space that we denote as
A(F) (see Lang [?]).
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[t is easy to show that A(FE) has dimension 1.

We now define an equivalence relation on A(E) — {0}
(where we let 0 denote the null alternating n-linear form):

@ and 1 are equivalent ift ¥ = Ay for some A > 0.

[t is immediately verified that the above relation is an
equivalence relation. Furthermore, it has exactly two
equivalence classes O; and Os.

The first way of defining an orientation of E is to pick
one of these two equivalence classes, say O (O € {Oq, O5}).

Given such a choice of a class O, we say that a basis
(w1, ..., w,) has positive orientation iff
e(wy, ..., wy,) >0

for any alternating n-linear form ¢ € O.
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Note that this makes sense, since for any other ¢ € O,
w = Ay for some A > 0.

According to the previous definition, two bases (uy, . . . , uy)
and (v1, . .., v,) have the same orientation iff p(uq, . .., uy,)
and ¢(vq, ..., v,) have the same sign for all

p € AME) —{0}.

From

o(v1,...,0,) = det(P)o(ug, ..., uy,),
we must have det(P) > 0.

Conversely, if det(P) > 0, the same argument shows that
(w1, ...,u,) and (vy,...,v,) have the same orientation.

This leads us to an equivalent and slightly less contorted
definition of the notion of orientation. We define a rela-
tion between bases of E as follows:
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Two bases (uq,...,u,) and (vy,...,v,) are related iff
det(P) > 0, where P is the change of basis matrix from

(Ugy .-y Up) tO (V1. .., V).

Since det(PQ) = det(P) det(Q), and since change of ba-
sis matrices are invertible, the relation just defined is in-
deed an equivalence relation, and it has two equivalence
classes.

Furthermore, from the discussion above, any nonnull al-
ternating n-linear form ¢ will have the same sign on any

two equivalent bases.

The above discussion motivates the following definition.
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Definition 7.8.1 Given any vector space E of finite
dimension over R, we define an orientation of E as
the choice of one of the two equivalence classes of the
equivalence relation on the set of bases defined such that

(u1,...,u,) and (vq,...,v,) have the same orientation
iff det(P) > 0, where P is the change of basis matrix
from (uq,...,u,) to (v,...,v,). A basis in the chosen

class is said to have positive orientation, or to be posi-

tive. An orientation of a Fuclidean affine space E is
H
an orientation of its underlying vector space E

In practice, to give an orientation, one simply picks a
fixed basis considered as having positive orientation. The
orientation of every other basis is determined by the sign
of the determinant of the change of basis matrix.
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Having the notation of orientation at hand, we wish to
go back briefly to the concept of (oriented) angle.

Let E/ be a Euclidean space of dimension n = 2, and
assume a given orientation. In any given positive or-
thonormal basis for E. every rotation r is represented
by a matrix

cosf) —sind
R_(sin9 0089)

Actually, we claim that the matrix R representing the
rotation 7 is the same in all orthonormal positive bases.

This is because the change of basis matrix from one pos-
itive orthonormal basis to another positive orthonormal
basis is a rotation represented by some matrix of the form
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and that we have

pr= (SmCY) o)

and after calculations, we find that PRP~! is the rotation
matrix associated with ¢ + 6 — ¢ = 6.

We can choose 6 € |0, 27|, and we call 6 the measure of
the angle of rotation of r (and R). If the orientation is
changed, the measure changes to 2m — 6.

We now let E' be a Euclidean space of dimension n = 2,
but we do not assume any orientation.

[t is easy to see that given any two unit vectors uq, us € E
(unit means that ||ui|| = |lug|| = 1), there is a unique
rotation r such that

r(uy) = us.
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It is also possible to define an equivalence relation of
pairs of unit vectors, such that

<U1,U2> = <U3,U4>
iff there is some rotation r such that r(u;) = ug and

r(ug) = uy.

Then, the equivalence class of (uq,us) can be taken as
the definition of the (oriented) angle of (uy, us), which is
denoted as uus.

Furthermore, it can be shown that there is a rotation
mapping the pair (ui, us) to the pair (us, uy), iff there is

a rotation mapping the pair (u1,u3) to the pair (us, uy)
(all vectors being unit vectors).

N

Figure 7.11: Defining Angles
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As a consequence of all this, since for any pair (uy, ug) of
unit vectors, there is a unique rotation r» mapping u; to
uy, the angle uuy of (uy,us) corresponds bijectively to
the rotation r, and there is a bijection between the set of
angles of pairs of unit vectors and the set of rotations in
the plane.

As a matter of fact, the set of angles forms an abelian
groups isomorphic to the (abelian) group of rotations in
the plane.

Thus, even though we can consider angles as oriented,
note that the notion of orientation s not necessary to
define angles.

However, to define the measure of an angle, the notion
of orientation is needed.
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If we now assume that an orientation of F (still a Fu-
clidean plane) is given, the unique rotation r associated

/\

with an angle uju9 corresponds to a unique matrix
cosf) —sinf
R_<Sin9 0089)'

The number 6 is defined up to 2km (with k € Z) and is
called a measure of the angle ujus.

There is a unique 6 € |0, 27| which is a measure of the

angle ujus.

It is also immediately seen that
cosf = uq - us.

In fact, since cos @ = cos(2m —0) = cos(—0), the quantity
cos 6 does not depend on the orientation.
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Now still considering a Euclidean plane, given any pair
(u1,uz) of nonnull vectors, we define their angle as the
angle of the unit vectors HZ—N and HZ—ZHJ and if F is oriented,
we define the measure 6 of this angle as the measure of
the angle of these unit vectors.

Note that
Uy - U2

] [z
and this independently of the orientation.

cos =

Finally if E is a Euclidean space of dimension n > 2, we
define the angle of a pair (uy,us) of nonnull vectors as
the angle of this pair in the Euclidean plane spanned by
(u1, ug) if they are linearly independent, or any Euclidean
plane containing uy if their are collinear.
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If £/ is an affine Euclidean space of dimension n > 2, for
any two pairs (a1, by) and (ag, by) of points in E, where
a1 # by and ay # by, we define the angle of the pair
({a1, b1), (as, bo)) as the angle of the pair (a;bq, asbs).

As for the issue of measure of an angle when n > 3, all

we can do is to define the measure of the angle ujuy as
either 6 or 2 — 6, where 0 € [0, 27].

In particular, when n = 3, one should note that it is not
enough to give a line D through the origin (the axis of
rotation) and an angle 6 to specify a rotation!

The problem is that depending on the orientation of the
plane H (through the origin) orthogonal to D, we get
two different rotations: one of angle 8, the other of angle
2m — 6.
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Thus, to specify a rotation, we also need to give an ori-
entation of the plane orthogonal to the axis of rotation.

This can be done by specifying an orientation of the axis
of rotation by some unit vector w, and chosing the basis
(e1, e2,w) (Where (e1, e3) is a basis of H) such that it has
positive orientation w.r.t. the chosen orientation of F£.

We now return to alternating multilinear forms on a Eu-
clidean space.

When F is a Euclidean space, we have an interesting situ-
ation regarding the value of determinants over orthornor-
mal bases described by the following lemma.

Given any basis B = (u1, ..., u,) for E/, for any sequence
(w1, . .., wy) of n vectors, we denote as detg(wy, . . ., wy,)
the determinant of the matrix whose columns are the co-
ordinates of the w; over the basis B = (u1, ..., uy).
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Lemma 7.8.2 Let E be a FEuclidean space of finite di-
mension n, and assume that an orientation of E has
been chosen. For any sequence (wq, ..., w,) of n vec-
tors, for any two orthonormal bases By = (uq, ..., uy,)
and By = (v1,...,v,) of positive orientation, we have

detp, (wy, ..., w,) = detp,(wy, ..., wy,).

By lemma 7.8.2, the determinant detp(wy, .. ., w,) is in-
dependent of the base B, provided that B is orthonormal
and of positive orientation.



322 CHAPTER 7. THE CARTAN-DIEUDONNE THEOREM

7.9 Volume Forms, Cross-Products

Definition 7.9.1 Given any Euclidean space E of finite
dimension n over R and any orientation of F/, for any se-
quence (wy, ..., wy) of n vectors in F, the common value
Ag(wi, ..., w,) of the determinant det g(wy, . . ., wy) over
all positive orthonormal bases B of E is called the mized
product (or volume form) of (wy, ..., w,).

The mixed product Ag(ws, ..., w,) will also be denoted
as (wy, ..., w,), even though the notation is overloaded.

e The mixed product Ag(wy, . .., w,) changes sign when
the orientation changes.

e The mixed product Ag(wn,...,w,) is a scalar, and
definition 7.9.1 really defines an alternating multilin-
ear form from E" to R.

o \p(wi,...,wy,) = 0iff (wy,...,w,)is linearly depen-
dent.
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e A basis (uq, ..., u,) is positive or negative iff
Ag(ug, ..., u,) is positive or negative.
o \p(wr,...,w,) is invariant under every isometry f

such that det(f) = 1.

The terminology volume form is justified by the fact that
Ag(wi, ..., w,) is indeed the volume of some geometric
object.

Indeed, viewing E' as an affine space, the parallelotope
defined by (w1, ..., w,) is the set of points

w4+ A, [0S N <1, 1<i<nb.

Then, it can be shown (see Berger [?], Section 9.12) that
the volume of the parallelotope defined by (wq, ..., w,)
is indeed Ag(wy, ..., w,).
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H
If (F, F)isaEuclidean affine space of dimension n, given
any n+ 1 affinely independent points (ay, . . . , a,), the set

{apg+ Magay + -+ Maga, |0 <\, <1, 1 <i<n},

is called the parallelotope spanned by (ag, . .., a,).

Then, the volume of the parallelotope spanned by

(CL(), c. ,an) 1S )\?(aoal, c.e ,aoan).
[t can also be shown that the volume vol(ay, ..., a,) of
the n-simplex (ag, . .., a,) is

vol(ag, ..., a,) = m)\?(aoal, ...,80ay).
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Now, given a sequence (wy, . .., w,_1) of n — 1 vectors in
E. the map

T — Ap(wy, ..., w,_1,)
is a linear form.
Thus, by lemma 5.2.4, there is a unique vector u € E

such that
Ap(wy, ..., Wy_1,T) =Uu-x

forall z € F.

The vector u has some interesting properties which mo-
tivate the next definition.



326 CHAPTER 7. THE CARTAN-DIEUDONNE THEOREM

Definition 7.9.2 Given any Euclidean space E of finite
dimension n over R, for any orientation of £, for any

sequence (wy, . . ., w,_1) of n—1 vectors in F, the unique
vector wy X - -+ X w,_1 such that
Ap(Wi, .o Wy 1,T) =Wy X -+ X Wp_1- X

for all x € FE. is called the cross-product, or vector
product, of (wr, ..., w,_1).

The following properties hold.

e The cross-product wy X - - - X w,,_1 changes sign when
the orientation changes.

e The cross-product wy X - - - X w,,_1 is a vector, and def-
inition 7.9.2 really defines an alternating multilinear
map from E" ! to E.
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o w; X -+ X wy_1 = 0iff (wy,...,w,_1) is linearly
dependent. This is because,

wyp X - an_lzo
iff
)\E<w1,...,wn_1,£l?> =0

for all z € F, and thus, if (wy, ..., w,_1) was linearly
independent, we could find a vector x € E to com-
plete (wy, ..., w,_1) into a basis of F, and we would
have

Ap(wy, ..., wy_1, ) # 0.

e The cross-product wy X - -+ X w,_1 is orthogonal to
each of the wj.

o If (wy,...,w, 1) is linearly independent, then the se-
quence

(wl,...,wn_l,wl X oo X wn_1>

is a positive basis of F.
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We now show how to compute the coordinates of

Uy X -+ X u,_1 over an orthonormal basis.
Given an orthonormal basis (eq, . . ., e,), for any sequence
(ug,...,u,—1) of n —1 vectors in F, if

n
wj =) e
1=1

where 1 < 5 < n —1, for any x = x161 + - - + x,€n,
consider the determinant

uypr ... Ulp-1 L1
uz1 ... Uap-1 L2
Ap(ug, .o Uy, ) =1 . . .
Up1 -+ Upn—-1 Ln

Calling the underlying matrix above as A, we can expand
det(A) according to the last column, using the Laplace
formula (see Strang [?]), where A, ; is the (n—1) x (n—1)-
matrix obtained from A by deleting row ¢ and column 7,
and we get:
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uipr ... Ulpn-1 I1
uz1 ... Uap-1 IL2|
Up1 -+ Upn—1 Ln

(—1)" oy det(Ay,) + - -+ (=1)" "z, det( A, ).

Each (—1)""det(A;,) is called the cofactor of ;.

We note that det(A) is in fact the inner product

det(A) =
(=) tdet(Ar,)er + -+ (=1 det(Ann)e,) - 2.

Since the cross-product u; X --- X u,_1 is the unique
vector u such that

- = Ap(Uy, ..., Uy_1,),

for all x € E, the coordinates of the cross-product
Uy X -+ X u,_1 must be

(=1)""det(Ar,), ..., (=1)""det(A,,)),

the sequence of cofactors of the x; in the determinant

det(A).
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For example, when n = 3, the coordinates of the cross-
product u X v are given by the cofactors of x1, x9, x3, in
the determinant

up v I
Ug Vo T2
us Vs I3

or more explicitly, by

Uu (V) U (V) Uu (V)
(_1)3+1 2 ) )(_1)3+2 1 1 (—1 3+3 | U1 1
usz U3 usz U3 U V9

)

that is,

(uzv?) — U3V2, U3V — UIV3, U1V — U201).

It is also useful to observe that if we let U be the matrix

U= Uus 0 — Ul
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then the coordinates of the cross-product u x v are given

by
0 —Us U9 (o] U92UV3 — U3V9
Us 0 — U1 V9 = U3v1 — U10U3
—U9 U1 0 U3 U192 — UV

We finish our discussion of cross-products by mentioning
without proof a few more of their properties, in the case
n=.3J.

Firstly, the following so-called Lagrange identity holds:

2 2 2
(u-v)* +Jlux v]|* = [lul” [Jo]|".

If u and v are linearly independent, and if 6 (or 27 — 0)
is a measure of the angle wv, then
lu x|

| sin @] = .
|l o]
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