
Chapter 7

The Cartan–Dieudonné Theorem

7.1 Orthogonal Reflections

Orthogonal symmetries are a very important example of
isometries. First let us review the definition of a (linear)
projection.

Given a vector space E, let F and G be subspaces of E
that form a direct sum E = F ⊕G.

Since every u ∈ E can be written uniquely as
u = v + w, where v ∈ F and w ∈ G, we can define the
two projections pF :E → F and pG:E → G, such that

pF (u) = v and pG(u) = w.
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It is immediately verified that pG and pF are linear maps,
and that p2

F = pF , p2
G = pG, pF ◦ pG = pG ◦ pF = 0, and

pF + pG = id.

Definition 7.1.1 Given a vector space E, for any two
subspaces F and G that form a direct sum E = F ⊕G,
the symmetry with respect to F and parallel to G, or
reflection about F is the linear map s:E → E, defined
such that

s(u) = 2pF (u) − u,

for every u ∈ E.

Because pF + pG = id, note that we also have

s(u) = pF (u) − pG(u)

and
s(u) = u− 2pG(u),

s2 = id, s is the identity on F , and s = −id on G.
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We now assume that E is a Euclidean space of finite
dimension.

Definition 7.1.2 Let E be a Euclidean space of finite
dimension n. For any two subspaces F and G, if F and
G form a direct sum E = F ⊕ G and F and G are
orthogonal, i.e. F = G⊥, the orthogonal symmetry with
respect to F and parallel to G, or orthogonal reflection
about F is the linear map s:E → E, defined such that

s(u) = 2pF (u) − u,

for every u ∈ E.

When F is a hyperplane, we call s an hyperplane symme-
try with respect to F or reflection about F , and when
G is a plane, we call s a flip about F .

It is easy to show that s is an isometry.
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Figure 7.1: A reflection about a hyperplane F

Using lemma 5.2.7, it is possible to find an orthonormal
basis (e1, . . . , en) of E consisting of an orthonormal basis
of F and an orthonormal basis of G.

Assume that F has dimension p, so that G has dimension
n− p.

With respect to the orthonormal basis (e1, . . . , en), the
symmetry s has a matrix of the form

(
Ip 0
0 −In−p

)
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Thus, det(s) = (−1)n−p, and s is a rotation iff n − p is
even.

In particular, when F is a hyperplane H , we have
p = n − 1, and n − p = 1, so that s is an improper
orthogonal transformation.

When F = {0}, we have s = −id, which is called the
symmetry with respect to the origin. The symmetry
with respect to the origin is a rotation iff n is even, and
an improper orthogonal transformation iff n is odd.

When n is odd, we observe that every improper orthogo-
nal transformation is the composition of a rotation with
the symmetry with respect to the origin.
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When G is a plane, p = n− 2, and det(s) = (−1)2 = 1,
so that a flip about F is a rotation.

In particular, when n = 3, F is a line, and a flip about
the line F is indeed a rotation of measure π.

When F = H is a hyperplane, we can give an explicit for-
mula for s(u) in terms of any nonnull vector w orthogonal
to H .

We get

s(u) = u− 2
(u · w)

‖w‖2 w.

Such reflections are represented by matrices called House-
holder matrices , and they play an important role in nu-
merical matrix analysis. Householder matrices are sym-
metric and orthogonal.
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Over an orthonormal basis (e1, . . . , en), a hyperplane re-
flection about a hyperplane H orthogonal to a nonnull
vector w is represented by the matrix

H = In − 2
WW�

‖W‖2 = In − 2
WW�

W�W
,

where W is the column vector of the coordinates of w.

Since

pG(u) =
(u · w)

‖w‖2 w,

the matrix representing pG is

WW�

W�W
,

and since pH + pG = id, the matrix representing pH is

In − WW�

W�W
.
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The following fact is the key to the proof that every isom-
etry can be decomposed as a product of reflections.

Lemma 7.1.3 Let E be any nontrivial Euclidean space.
For any two vectors u, v ∈ E, if ‖u‖ = ‖v‖, then there
is an hyperplane H such that the reflection s about H
maps u to v, and if u �= v, then this reflection is
unique.
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7.2 The Cartan–Dieudonné Theorem for Linear Isome-

tries

The fact that the group O(n) of linear isometries is gen-
erated by the reflections is a special case of a theorem
known as the Cartan–Dieudonné theorem.

Elie Cartan proved a version of this theorem early in the
twentieth century. A proof can be found in his book on
spinors [?], which appeared in 1937 (Chapter I, Section
10, pages 10–12).

Cartan’s version applies to nondegenerate quadratic forms
over R or C. The theorem was generalized to quadratic
forms over arbitrary fields by Dieudonné [?].

One should also consult Emil Artin’s book [?], which con-
tains an in-depth study of the orthogonal group and an-
other proof of the Cartan–Dieudonné theorem.

First, let us recall the notions of eigenvalues and eigen-
vectors.
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Recall that given any linear map f :E → E, a vector
u ∈ E is called an eigenvector, or proper vector, or
characteristic vector of f iff there is some λ ∈ K such
that

f (u) = λu.

In this case, we say that u ∈ E is an eigenvector asso-
ciated with λ.

A scalar λ ∈ K is called an eigenvalue, or proper value,
or characteristic value of f iff there is some nonnull
vector u �= 0 in E such that

f (u) = λu,

or equivalently if Ker (f − λid) �= {0}.

Given any scalar λ ∈ K, the set of all eigenvectors asso-
ciated with λ is the subspace Ker (f − λid), also denoted
as Eλ(f ) or E(λ, f ), called the eigenspace associated
with λ, or proper subspace associated with λ.
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Theorem 7.2.1 (Cartan-Dieudonné) Let E be a Eu-
clidean space of dimension n ≥ 1. Every isometry
f ∈ O(E) which is not the identity is the composition
of at most n reflections. For n ≥ 2, the identity is the
composition of any reflection with itself.

Remarks .

(1) The proof of theorem 7.2.1 shows more than stated.

If 1 is an eigenvalue of f , for any eigenvector w associated
with 1 (i.e., f (w) = w, w �= 0), then f is the composition
of k ≤ n− 1 reflections about hyperplanes Fi, such that
Fi = Hi ⊕ L, where L is the line Rw, and the Hi are
subspaces of dimension n− 2 all orthogonal to L.

If 1 is not an eigenvalue of f , then f is the composition
of k ≤ n reflections about hyperplanes H,F1, . . . , Fk−1,
such that Fi = Hi⊕ L, where L is a line intersecting H ,
and theHi are subspaces of dimension n−2 all orthogonal
to L.
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Figure 7.2: An Isometry f as a composition of reflections, when 1 is an eigenvalue of f
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Figure 7.3: An Isometry f as a composition of reflections, when 1 is not an eigenvalue of f
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(2) It is natural to ask what is the minimal number of
hyperplane reflections needed to obtain an isometry f .

This has to do with the dimension of the eigenspace
Ker (f − id) associated with the eigenvalue 1.

We will prove later that every isometry is the composition
of k hyperplane reflections, where

k = n− dim(Ker (f − id)),

and that this number is minimal (where n = dim(E)).

When n = 2, a reflection is a reflection about a line, and
theorem 7.2.1 shows that every isometry in O(2) is either
a reflection about a line or a rotation, and that every
rotation is the product of two reflections about some lines.
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In general, since det(s) = −1 for a reflection s, when
n ≥ 3 is odd, every rotation is the product of an even
number ≤ n− 1 of reflections, and when n is even, every
improper orthogonal transformation is the product of an
odd number ≤ n− 1 of reflections.

In particular, for n = 3, every rotation is the product of
two reflections about planes.

If E is a Euclidean space of finite dimension and
f :E → E is an isometry, if λ is any eigenvalue of f and
u is an eigenvector associated with λ, then

‖f (u)‖ = ‖λu‖ = |λ| ‖u‖ = ‖u‖ ,
which implies |λ| = 1, since u �= 0.

Thus, the real eigenvalues of an isometry are either +1 or
−1.
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When n is odd, we can say more about improper isome-
tries. This is because they admit −1 as an eigenvalue.
When n is odd, an improper isometry is the composi-
tion of a reflection about a hyperplane H with a rotation
consisting of reflections about hyperplanes F1, . . . , Fk−1

containing a line, L, orthogonal to H .

Lemma 7.2.2 Let E be a Euclidean space of finite
dimension n, and let f :E → E be an isometry. For
any subspace F of E, if f (F ) = F , then f (F⊥) ⊆ F⊥

and E = F ⊕ F⊥.
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Lemma 7.2.2 is the starting point of the proof that every
orthogonal matrix can be diagonalized over the field of
complex numbers.

Indeed, if λ is any eigenvalue of f , then
f (Eλ(f )) = Eλ(f ), and thus the orthogonal Eλ(f )⊥ is
closed under f , and

E = Eλ(f ) ⊕ Eλ(f )⊥.

The problem over R is that there may not be any real
eigenvalues.
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However, when n is odd, the following lemma shows that
every rotation admits 1 as an eigenvalue (and similarly,
when n is even, every improper orthogonal transforma-
tion admits 1 as an eigenvalue).

Lemma 7.2.3 Let E be a Euclidean space.

(1) If E has odd dimension n = 2m + 1, then ev-
ery rotation f admits 1 as an eigenvalue and the
eigenspace F of all eigenvectors left invariant un-
der f has an odd dimension 2p + 1. Furthermore,
there is an orthonormal basis of E, in which f is
represented by a matrix of the form(

R2(m−p) 0
0 I2p+1

)

where R2(m−p) is a rotation matrix that does not
have 1 as an eigenvalue.
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(2) If E has even dimension n = 2m, then every im-
proper orthogonal transformation f admits 1 as an
eigenvalue and the eigenspace F of all eigenvectors
left invariant under f has an odd dimension 2p+1.
Furthermore, there is an orthonormal basis of E,
in which f is represented by a matrix of the form(

S2(m−p)−1 0
0 I2p+1

)

where S2(m−p)−1 is an improper orthogonal matrix
that does not have 1 as an eigenvalue.

An example showing that lemma 7.2.3 fails for n even is
the following rotation matrix (when n = 2):

R =

(
cos θ − sin θ
sin θ cos θ

)

The above matrix does not have real eigenvalues if
θ �= kπ.
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It is easily shown that for n = 2, with respect to any
chosen orthonormal basis (e1, e2), every rotation is rep-
resented by a matrix of form

R =

(
cos θ − sin θ
sin θ cos θ

)

where θ ∈ [0, 2π[, and that every improper orthogonal
transformation is represented by a matrix of the form

S =

(
cos θ sin θ
sin θ − cos θ

)

In the first case, we call θ ∈ [0, 2π[ the measure of the an-
gle of rotation of R w.r.t. the orthonormal basis (e1, e2).

In the second case, we have a reflection about a line, and
it is easy to determine what this line is. It is also easy
to see that S is the composition of a reflection about the
x-axis with a rotation (of matrix R).
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� We refrained from calling θ “the angle of rotation”,
because there are some subtleties involved in defining

rigorously the notion of angle of two vectors (or two lines).

For example, note that with respect to the “opposite ba-
sis” (e2, e1), the measure θ must be changed to 2π − θ
(or −θ if we consider the quotient set R/2π of the real
numbers modulo 2π).

We will come back to this point after having defined the
notion of orientation (see Section 7.8).

It is easily shown that the group SO(2) of rotations in
the plane is abelian.
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We can perform the following calculation, using some el-
ementary trigonometry:

(
cosϕ sinϕ
sinϕ − cosϕ

)(
cosψ sinψ
sinψ − cosψ

)

=

(
cos(ϕ + ψ) sin(ϕ + ψ)
sin(ϕ + ψ) − cos(ϕ + ψ)

)
.

The above also shows that the inverse of a rotation matrix

R =

(
cos θ − sin θ
sin θ cos θ

)

is obtained by changing θ to −θ (or 2π − θ).

Incidently, note that in writing a rotation r as the product
of two reflections r = s2s1, the first reflection s1 can be
chosen arbitrarily, since s2

1 = id, r = (rs1)s1, and rs1 is
a reflection.
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For n = 3, the only two choices for p are p = 1, which
corresponds to the identity, or p = 0, in which case, f is
a rotation leaving a line invariant.

u

R(u)

θ/2

D

Figure 7.4: 3D rotation as the composition of two reflections

This line is called the axis of rotation. The rotation R
behaves like a two dimentional rotation around the axis
of rotation.
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The measure of the angle of rotation θ can be determined
through its cosine via the formula

cos θ = u ·R(u),

where u is any unit vector orthogonal to the direction of
the axis of rotation.

However, this does not determine θ ∈ [0, 2π[ uniquely,
since both θ and 2π − θ are possible candidates.

What is missing is an orientation of the plane (through
the origin) orthogonal to the axis of rotation. We will
come back to this point in Section 7.8.

In the orthonormal basis of the lemma, a rotation is rep-
resented by a matrix of the form

R =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1


 .
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Remark : For an arbitrary rotation matrix A, since

a1 1 + a2 2 + a3 3

(the trace of A) is the sum of the eigenvalues of A, and
since these eigenvalues are cos θ + i sin θ, cos θ − i sin θ,
and 1, for some θ ∈ [0, 2π[, we can compute cos θ from

1 + 2 cos θ = a1 1 + a2 2 + a3 3.

It is also possible to determine the axis of rotation (see
the problems).

An improper transformation is either a reflection about a
plane, or the product of three reflections, or equivalently
the product of a reflection about a plane with a rotation,
and a closer look at theorem 7.2.1 shows that the axis of
rotation is orthogonal to the plane of the reflection.



7.2. THE CARTAN–DIEUDONNÉ THEOREM FOR LINEAR ISOMETRIES 279

Thus, an improper transformation is represented by a
matrix of the form

S =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 −1


 .

When n ≥ 3, the group of rotations SO(n) is not only
generated by hyperplane reflections, but also by flips (about
subspaces of dimension n− 2).

We will also see in Section 7.4 that every proper affine
rigid motion can be expressed as the composition of at
most n flips, which is perhaps even more surprising!

The proof of these results uses the following key lemma.
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Lemma 7.2.4 Given any Euclidean space E of di-
mension n ≥ 3, for any two reflections h1 and h2

about some hyperplanes H1 and H2, there exist two
flips f1 and f2 such that h2 ◦ h1 = f2 ◦ f1.

Using lemma 7.2.4 and the Cartan-Dieudonné theorem,
we obtain the following characterization of rotations when
n ≥ 3.

Theorem 7.2.5 Let E be a Euclidean space of di-
mension n ≥ 3. Every rotation f ∈ SO(E) is the
composition of an even number of flips f = f2k◦· · ·◦f1,
where 2k ≤ n. Furthermore, if u �= 0 is invariant un-
der f (i.e. u ∈ Ker (f − id)), we can pick the last flip
f2k such that u ∈ F⊥

2k, where F2k is the subspace of
dimension n− 2 determining f2k.
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Remarks :

(1) It is easy to prove that if f is a rotation in SO(3), if
D is its axis and θ is its angle of rotation, then f is the
composition of two flips about linesD1 andD2 orthogonal
to D and making an angle θ/2.

(2) It is natural to ask what is the minimal number of
flips needed to obtain a rotation f (when n ≥ 3). As
for arbitrary isometries, we will prove later that every
rotation is the composition of k flips, where

k = n− dim(Ker (f − id)),

and that this number is minimal (where n = dim(E)).

Hyperplane reflections can be used to obtain another proof
of the QR-decomposition.
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7.3 QR-Decomposition Using Householder Matrices

First, we state the result geometrically. When translated
in terms of Householder matrices, we obtain the fact ad-
vertised earlier that every matrix (not necessarily invert-
ible) has a QR-decomposition.
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Lemma 7.3.1 Let E be a nontrivial Euclidean space
of dimension n. Given any orthonormal basis
(e1, . . . , en), for any n-tuple of vectors (v1, . . . , vn), there
is a sequence of n isometries h1, . . . , hn, such that
hi is a hyperplane reflection or the identity, and if
(r1, . . . , rn) are the vectors given by

rj = hn ◦ · · · ◦ h2 ◦ h1(vj),

then every rj is a linear combination of the vectors
(e1, . . . , ej), (1 ≤ j ≤ n). Equivalently, the matrix
R whose columns are the components of the rj over
the basis (e1, . . . , en) is an upper triangular matrix.
Furthermore, the hi can be chosen so that the diagonal
entries of R are nonnegative.

Remarks . (1) Since every hi is a hyperplane reflection or
the identity,

ρ = hn ◦ · · · ◦ h2 ◦ h1

is an isometry.
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(2) If we allow negative diagonal entries in R, the last
isometry hn may be omitted.

(3) Instead of picking rk,k = ‖u′′k‖, which means that

wk = rk,k ek − u′′k,

where 1 ≤ k ≤ n, it might be preferable to pick
rk,k = −‖u′′k‖ if this makes ‖wk‖2 larger, in which case

wk = rk,k ek + u′′k.

Indeed, since the definition of hk involves division by
‖wk‖2, it is desirable to avoid division by very small num-
bers.

Lemma 7.3.1 immediately yields the QR-decomposition
in terms of Householder transformations.
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Lemma 7.3.2 For every real n × n-matrix A, there
is a sequence H1, . . . , Hn of matrices, where each Hi

is either a Householder matrix or the identity, and an
upper triangular matrix R, such that

R = Hn · · ·H2H1A.

As a corollary, there is a pair of matrices Q,R, where
Q is orthogonal and R is upper triangular, such that
A = QR (a QR-decomposition of A). Furthermore,
R can be chosen so that its diagonal entries are non-
negative.

Remarks . (1) Letting

Ak+1 = Hk · · ·H2H1A,

with A1 = A, 1 ≤ k ≤ n, the proof of lemma 7.3.1 can be
interpreted in terms of the computation of the sequence
of matrices A1, . . . , An+1 = R.
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The matrix Ak+1 has the shape

Ak+1 =




× × × uk+1
1 × × × ×

0 × ... ... ... ... ... ...
0 0 × uk+1

k × × × ×
0 0 0 uk+1

k+1 × × × ×
0 0 0 uk+1

k+2 × × × ×
... ... ... ... ... ... ... ...
0 0 0 uk+1

n−1 × × × ×
0 0 0 uk+1

n × × × ×




where the (k + 1)th column of the matrix is the vector

uk+1 = hk ◦ · · · ◦ h2 ◦ h1(vk+1),

and thus
u′k+1 = (uk+1

1 , . . . , uk+1
k ),

and
u′′k+1 = (uk+1

k+1, u
k+1
k+2, . . . , u

k+1
n ).

If the last n− k − 1 entries in column k + 1 are all zero,
there is nothing to do and we let Hk+1 = I .
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Otherwise, we kill these n− k− 1 entries by multiplying
Ak+1 on the left by the Householder matrix Hk+1 sending

(0, . . . , 0, uk+1
k+1, . . . , u

k+1
n ) to (0, . . . , 0, rk+1,k+1, 0, . . . , 0),

where
rk+1,k+1 =

∥∥(uk+1
k+1, . . . , u

k+1
n )

∥∥ .
(2) If we allow negative diagonal entries in R, the matrix
Hn may be omitted (Hn = I).

(3) If A is invertible and the diagonal entries of R are
positive, it can be shown that Q and R are unique.
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(4) The method allows the computation of the determi-
nant of A. We have

det(A) = (−1)mr1,1 · · · rn,n,
where m is the number of Householder matrices (not the
identity) among the Hi.

(5) The condition number of the matrix A is preserved
(see Strang [?]). This is very good for numerical stability.

We conclude our discussion of isometries with a brief dis-
cussion of affine isometries.


