
Chapter 5

Basics of Euclidean Geometry

5.1 Inner Products, Euclidean Spaces

In Affine geometry, it is possible to deal with ratios of
vectors and barycenters of points, but there is no way to
express the notion of length of a line segment or to talk
about orthogonality of vectors.

A Euclidean structure will allow us to deal with metric
notions such as orthogonality and length (or distance).

We begin by defining inner products and Euclidean Spaces.
The Cauchy-Schwarz inequality and the Minkovski in-
equality are shown.
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We define othogonality of vectors and of subspaces, oth-
ogonal families, and orthonormal families. We offer a
glimpse at Fourier series in terms of the orthogonal fam-
ilies (sin px)p≥1 ∪ (cos qx)q≥0 and (eikx)k∈Z.

We prove that every finite dimensional Euclidean space
has orthonormal bases.

The first proof uses duality, and the second one the Gram-
Schmidt procedure. The QR-decomposition of matrices
is shown as an application.

Linear isometries (also called orthogonal transformations)
are defined and studied briefly.

First, we define a Euclidean structure on a vector space,
and then, on an affine space.
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Definition 5.1.1 A real vector space E is a Euclidean
space iff it is equipped with a symmetric bilinear form
ϕ: E × E → R which is also positive definite , which
means that

ϕ(u, u) > 0, for every u �= 0.

More explicitly, ϕ: E × E → R satisfies the following
axioms:

ϕ(u1 + u2, v) = ϕ(u1, v) + ϕ(u2, v),

ϕ(u, v1 + v2) = ϕ(u, v1) + ϕ(u, v2),

ϕ(λu, v) = λϕ(u, v),

ϕ(u, λv) = λϕ(u, v),

ϕ(u, v) = ϕ(v, u),

u �= 0 implies that ϕ(u, u) > 0.

The real number ϕ(u, v) is also called the inner product
(or scalar product) of u and v.
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We also define the quadratic form associated with ϕ as
the function Φ: E → R+ such that

Φ(u) = ϕ(u, u),

for all u ∈ E.

Since ϕ is bilinear, we have ϕ(0, 0) = 0, and since it is
positive definite, we have the stronger fact that

ϕ(u, u) = 0 iff u = 0,

that is Φ(u) = 0 iff u = 0.

Given an inner product ϕ: E ×E → R on a vector space
E, we also denote ϕ(u, v) by

u · v, or 〈u, v〉, or (u|v),

and
√

Φ(u) by ‖u‖.



5.1. INNER PRODUCTS, EUCLIDEAN SPACES 153

Example 1. The standard example of a Euclidean space
is R

n, under the inner product · defined such that

(x1, . . . , xn) · (y1, . . . , yn) = x1y1 + x2y2 + · · · + xnyn.

Example 2. Let E be a vector space of dimension 2, and
let (e1, e2) be a basis of E.

If a > 0 and b2 − ac < 0, the bilinear form defined such
that

ϕ(x1e1+y1e2, x2e1+y2e2) = ax1x2+b(x1y2+x2y1)+cy1y2

yields a Euclidean structure on E.

In this case,

Φ(xe1 + ye2) = ax2 + 2bxy + cy2.



154 CHAPTER 5. BASICS OF EUCLIDEAN GEOMETRY

Example 3. Let C[a, b] denote the set of continuous func-
tions f : [a, b] → R. It is easily checked that C[a, b] is a
vector space of infinite dimension.

Given any two functions f, g ∈ C[a, b], let

〈f, g〉 =

∫ b

a

f (t)g(t)dt.

We leave as an easy exercise that 〈−,−〉 is indeed an
inner product on C[a, b].

When [a, b] = [−π, π] (or [a, b] = [0, 2π], this makes
basically no difference), one should compute

〈sin px, sin qx〉, 〈sin px, cos qx〉,
and 〈cos px, cos qx〉,

for all natural numbers p, q ≥ 1. The outcome of these
calculations is what makes Fourier analysis possible!
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Let us observe that ϕ can be recovered from Φ. Indeed,
by bilinearity and symmetry, we have

Φ(u + v) = ϕ(u + v, u + v)

= ϕ(u, u + v) + ϕ(v, u + v)

= ϕ(u, u) + 2ϕ(u, v) + ϕ(v, v)

= Φ(u) + 2ϕ(u, v) + Φ(v).

Thus, we have

ϕ(u, v) =
1

2
[Φ(u + v) − Φ(u) − Φ(v)].

We also say that ϕ is the polar form of Φ.

One of the very important properties of an inner product
ϕ is that the map u 	→√

Φ(u) is a norm.
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Lemma 5.1.2 Let E be a Euclidean space with inner
product ϕ and quadratic form Φ. For all u, v ∈ E, we
have the Cauchy-Schwarz inequality:

ϕ(u, v)2 ≤ Φ(u)Φ(v),

the equality holding iff u and v are linearly dependent.

We also have the Minkovski inequality:√
Φ(u + v) ≤

√
Φ(u) +

√
Φ(v),

the equality holding iff u and v are linearly dependent,
where in addition if u �= 0 and v �= 0, then u = λv for
some λ > 0.
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Sketch of proof . Define the function T : R → R, such
that

T (λ) = Φ(u + λv),

for all λ ∈ R. Using bilinearity and symmetry, we can
show that

Φ(u + λv) = Φ(u) + 2λϕ(u, v) + λ2Φ(v).

Since ϕ is positive definite, we have T (λ) ≥ 0 for all
λ ∈ R.

If Φ(v) = 0, then v = 0, and we also have ϕ(u, v) = 0.
In this case, the Cauchy-Schwarz inequality is trivial,
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If Φ(v) > 0, then

λ2Φ(v) + 2λϕ(u, v) + Φ(u) = 0

can’t have distinct roots, which means that its discrimi-
nant

∆ = 4(ϕ(u, v)2 − Φ(u)Φ(v))

is zero or negative, which is precisely the Cauchy-Schwarz
inequality.

The Minkovski inequality can then be shown.
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Let us review the definition of a normed vector space.

Definition 5.1.3 Let E be a vector space over a field
K, where K is either the field R of reals, or the field
C of complex numbers. A norm on E is a function
‖ ‖ : E → R+, assigning a nonnegative real number ‖u‖
to any vector u ∈ E, and satisfying the following condi-
tions for all x, y, z ∈ E:

(N1) ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0. (positivity)

(N2) ‖λx‖ = |λ| ‖x‖ . (scaling)

(N3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ . (triangle inequality)

A vector space E together with a norm ‖ ‖ is called a
normed vector space.

From (N3), we easily get

| ‖x‖ − ‖y‖ | ≤ ‖x − y‖ .
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The Minkovski inequality√
Φ(u + v) ≤

√
Φ(u) +

√
Φ(v)

shows that the map u 	→ √
Φ(u) satisfies the triangle

inequality , condition (N3) of definition 5.1.3, and since ϕ
is bilinear and positive definite, it also satisfies conditions
(N1) and (N2) of definition 5.1.3, and thus, it is a norm
on E.

The norm induced by ϕ is called the Euclidean norm
induced by ϕ.



5.1. INNER PRODUCTS, EUCLIDEAN SPACES 161

Note that the Cauchy-Schwarz inequality can be written
as

|u · v| ≤ ‖u‖ ‖v‖ ,

and the Minkovski inequality as

‖u + v‖ ≤ ‖u‖ + ‖v‖ .

u v

u + v

Figure 5.1: The triangle inequality

We now define orthogonality.
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5.2 Orthogonality

Definition 5.2.1 Given a Euclidean space E, any two
vectors u, v ∈ E are orthogonal, or perpendicular iff
u · v = 0. Given a family (ui)i∈I of vectors in E, we say
that (ui)i∈I is orthogonal iff ui · uj = 0 for all i, j ∈ I ,
where i �= j. We say that the family (ui)i∈I is orthonor-
mal iff ui · uj = 0 for all i, j ∈ I , where i �= j, and
‖ui‖ = ui · ui = 1, for all i ∈ I . For any subset F of E,
the set

F⊥ = {v ∈ E | u · v = 0, for all u ∈ F},
of all vectors orthogonal to all vectors in F , is called the
orthogonal complement of F .

Since inner products are positive definite, observe that for
any vector u ∈ E, we have

u · v = 0 for all v ∈ E iff u = 0.

It is immediately verified that the orthogonal complement
F⊥ of F is a subspace of E.
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Example 4. Going back to example 3, and to the inner
product

〈f, g〉 =

∫ π

−π

f (t)g(t)dt

on the vector space C[−π, π], it is easily checked that

〈sin px, sin qx〉 =

{
π if p = q, p, q ≥ 1,
0 if p �= q, p, q ≥ 1

〈cos px, cos qx〉 =

{
π if p = q, p, q ≥ 1,
0 if p �= q, p, q ≥ 0

and
〈sin px, cos qx〉 = 0,

for all p ≥ 1 and q ≥ 0, and of course,
〈1, 1〉 =

∫ π

−π dx = 2π.

As a consequence, the family (sin px)p≥1 ∪ (cos qx)q≥0 is
orthogonal.

It is not orthonormal, but becomes so if we divide every
trigonometric function by

√
π, and 1 by

√
2π.



164 CHAPTER 5. BASICS OF EUCLIDEAN GEOMETRY

Remark : Observe that if we allow complex valued func-
tions, we obtain simpler proofs. For example, it is imme-
diately checked that∫ π

−π

eikxdx =

{
2π if k = 0;
0 if k �= 0,

because the derivative of eikx is ikeikx.

� However, beware that something strange is going on!

Indeed, unless k = 0, we have

〈eikx, eikx〉 = 0,

since

〈eikx, eikx〉 =

∫ π

−π

(eikx)2dx =

∫ π

−π

ei2kxdx = 0.

The inner product 〈eikx, eikx〉 should be strictly positive.
What went wrong?
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The problem is that we are using the wrong inner product.
When we use complex-valued functions, we must use the
Hermitian inner product

〈f, g〉 =

∫ π

−π

f (x)g(x)dx,

where g(x) is the conjugate of g(x).

The Hermitian inner product is not symmetric. Instead,

〈g, f〉 = 〈f, g〉.

(Recall that if z = a+ib, where a, b ∈ R, then z = a−ib.
Also eiθ = cos θ + i sin θ).

With the Hermitian inner product, everthing works out
beautifully! In particular, the family (eikx)k∈Z is orthog-
onal.
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Lemma 5.2.2 Given a Euclidean space E, for any
family (ui)i∈I of nonnull vectors in E, if (ui)i∈I is or-
thogonal, then it is linearly independent.

Lemma 5.2.3 Given a Euclidean space E, any two
vectors u, v ∈ E are orthogonal iff

‖u + v‖2 = ‖u‖2 + ‖v‖2 .

One of the most useful features of orthonormal bases is
that they afford a very simple method for computing
the coordinates of a vector over any basis vector .

Indeed, assume that (e1, . . . , em) is an orthonormal basis.
For any vector

x = x1e1 + · · · + xmem,

if we compute the inner product x · ei, we get
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x · ei = x1e1 · ei + · · · + xiei · ei + · · · + xmem · ei = xi,

since

ei · ej =

{
1 if i = j,
0 if i �= j,

is the property characterizing an orthonormal family.

Thus,
xi = x · ei,

which means that xiei = (x·ei)ei is the orthogonal projec-
tion of x onto the subspace generated by the basis vector
ei.

If the basis is orthogonal but not necessarily orthonormal,
then

xi =
x · ei

ei · ei
=

x · ei

‖ei‖2 .

All this is true even for an infinite orthonormal (or or-
thogonal) basis (ei)i∈I .
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� However, remember that every vector x is expressed as
a linear combination

x =
∑
i∈I

xiei

where the family of scalars (xi)i∈I has finite support,
which means that xi = 0 for all i ∈ I − J , where J is a
finite set.

Thus, even though the family (sin px)p≥1 ∪ (cos qx)q≥0

is orthogonal (it is not orthonormal, but becomes one if
we divide every trigonometric function by

√
π, and 1 by√

2π; we won’t because it looks messy!), the fact that a
function f ∈ C0[−π, π] can be written as a Fourier series
as

f (x) = a0 +

∞∑
k=1

(ak cos kx + bk sin kx)

does not mean that (sin px)p≥1 ∪ (cos qx)q≥0 is a basis
of this vector space of functions, because in general, the
families (ak) and (bk) do not have finite support!
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In order for this infinite linear combination to make sense,
it is necessary to prove that the partial sums

a0 +

n∑
k=1

(ak cos kx + bk sin kx)

of the series converge to a limit when n goes to infinity.

This requires a topology on the space.

Still, a small miracle happens. If f ∈ C[−π, π] can indeed
be expressed as a Fourier series

f (x) = a0 +

∞∑
k=1

(ak cos kx + bk sin kx),

the coefficients a0 and ak, bk, k ≥ 1, can be computed
by projecting f over the basis functions, i.e. by taking
inner products with the basis functions in (sin px)p≥1 ∪
(cos qx)q≥0.



170 CHAPTER 5. BASICS OF EUCLIDEAN GEOMETRY

Indeed, for all k ≥ 1, we have

a0 =
〈f, 1〉
‖1‖2 ,

and

ak =
〈f, cos kx〉
‖cos kx‖2 , bk =

〈f, sin kx〉
‖sin kx‖2 ,

that is

a0 =
1

2π

∫ π

−π

f (x)dx,

and

ak =
1

π

∫ π

−π

f (x) cos kx dx, bk =
1

π

∫ π

−π

f (x) sin kx dx.
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If we allow f to be complex-valued and use the family
(eikx)k∈Z, which is is indeed orthogonal w.r.t. the Hermi-
tian inner product

〈f, g〉 =

∫ π

−π

f (x)g(x)dx,

we consider functions f ∈ C[−π, π] that can be expressed
as the sum of a series

f (x) =
∑
k∈Z

cke
ikx.

Note that the index k is allowed to be a negative integer.
Then, the formula giving the ck is very nice:

ck =
〈f, eikx〉
‖eikx‖2 ,

that is

ck =
1

2π

∫ π

−π

f (x)e−ikxdx.



172 CHAPTER 5. BASICS OF EUCLIDEAN GEOMETRY

Note the presence of the negative sign in e−ikx, which is
due to the fact that the inner product is Hermitian.

Of course, the real case can be recovered from the complex
case. If f is a real-valued function, then we must have

ak = ck + c−k and bk = i(ck − c−k).

Also note that

1

2π

∫ π

−π

f (x)e−ikxdx

is not only defined for all discrete values k ∈ Z, but for
all k ∈ R, and that if f is continuous over R, the integral
makes sense.
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This suggests defining

f̂ (k) =

∫ ∞

−∞
f (x)e−ikxdx,

called the Fourier transform of f . It analyses the func-
tion f in the “frequency domain” in terms of its spectrum
of harmonics.

Amazingly, there is an inverse Fourier transform (change
e−ikx to e+ikx and divide by the scale factor 2π) which
reconstructs f (under certain assumptions on f ).
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A very important property of Euclidean spaces of finite
dimension is that the inner product induces a canoni-
cal bijection (i.e., independent of the choice of bases)
between the vector space E and its dual E∗.

Given a Euclidean space E, for any vector u ∈ E, let
ϕu: E → R be the map defined such that

ϕu(v) = u · v,

for all v ∈ E.

Since the inner product is bilinear, the map ϕu is a linear
form in E∗.
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Thus, we have a map �: E → E∗, defined such that

�(u) = ϕu.

Lemma 5.2.4 Given a Euclidean space E, the map
�: E → E∗, defined such that

�(u) = ϕu,

is linear and injective. When E is also of finite di-
mension, the map �: E → E∗ is a canonical isomor-
phism.

The inverse of the isomorphism �: E → E∗ is denoted by
�: E∗ → E.
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As a consequence of lemma 5.2.4, if E is a Euclidean space
of finite dimension, every linear form f ∈ E∗ corresponds
to a unique u ∈ E, such that

f (v) = u · v,

for every v ∈ E.

In particular, if f is not the null form, the kernel of f ,
which is a hyperplane H , is precisely the set of vectors
that are orthogonal to u.

Lemma 5.2.4 allows us to define the adjoint of a linear
map on a Euclidean space.
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Let E be a Euclidean space of finite dimension n, and let
f : E → E be a linear map.

For every u ∈ E, the map

v 	→ u · f (v)

is clearly a linear form in E∗, and by lemma 5.2.4, there
is a unique vector in E denoted as f ∗(u), such that

f ∗(u) · v = u · f (v),

for every v ∈ E.

Lemma 5.2.5 Given a Euclidean space E of finite
dimension, for every linear map f : E → E, there is a
unique linear map f ∗: E → E, such that

f ∗(u) · v = u · f (v),

for all u, v ∈ E. The map f ∗ is called the adjoint of
f (w.r.t. to the inner product).
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Linear maps f : E → E such that f = f ∗ are called
self-adjoint maps.

They play a very important role because they have real
eigenvalues and because orthonormal bases arise from
their eigenvectors.

Furthermore, many physical problems lead to self-adjoint
linear maps (in the form of symmetric matrices).

Linear maps such that f−1 = f ∗, or equivalently

f ∗ ◦ f = f ◦ f ∗ = id,

also play an important role. They are isometries . Rota-
tions are special kinds of isometries.
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Another important class of linear maps are the linear
maps satisfying the property

f ∗ ◦ f = f ◦ f ∗,

called normal linear maps .

We will see later on that normal maps can always be
diagonalized over orthonormal bases of eigenvectors, but
this will require using a Hermitian inner product (over
C).

Given two Euclidean spaces E and F , where the inner
product on E is denoted as 〈−,−〉1 and the inner product
on F is denoted as 〈−,−〉2, given any linear map
f : E → F , it is immediately verified that the proof of
lemma 5.2.5 can be adapted to show that there is a unique
linear map f ∗: F → E such that

〈f (u), v〉2 = 〈u, f ∗(v)〉1

for all u ∈ E and all v ∈ F . The linear map f ∗ is also
called the adjoint of f .
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Remark : Given any basis for E and any basis for F , it is
possible to characterize the matrix of the adjoint f ∗ of f
in terms of the matrix of f , and the symmetric matrices
defining the inner products. We will do so with respect
to orthonormal bases.

We can also use lemma 5.2.4 to show that any Euclidean
space of finite dimension has an orthonormal basis.

Lemma 5.2.6 Given any nontrivial Euclidean space
E of finite dimension n ≥ 1, there is an orthonormal
basis (u1, . . . , un) for E.

There is a more constructive way of proving lemma 5.2.6,
using a procedure known as the Gram–Schmidt orthonor-
malization procedure.

Among other things, the Gram–Schmidt orthonormal-
ization procedure yields the so-called QR-decomposition
for matrices , an important tool in numerical methods.
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Lemma 5.2.7 Given any nontrivial Euclidean space
E of dimension n ≥ 1, from any basis (e1, . . . , en) for
E, we can construct an orthonormal basis (u1, . . . , un)
for E, with the property that for every k, 1 ≤ k ≤ n,
the families (e1, . . . , ek) and (u1, . . . , uk) generate the
same subspace.

Proof . We proceed by induction on n. For n = 1, let

u1 =
e1

‖e1‖.

For n ≥ 2, we define the vectors uk and u′
k as follows.

u′
1 = e1, u1 =

u′
1

‖u′
1‖

,

and for the inductive step

u′
k+1 = ek+1 −

k∑
i=1

(ek+1 · ui) ui, uk+1 =
u′

k+1∥∥u′
k+1

∥∥.
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We need to show that u′
k+1 is nonzero, and we conclude

by induction.

e1
e2

e3

u1

(e2 · u1)u1

(e3 · u1)u1

(e3 · u2)u2u2 u′
2

u3

u′
3

Figure 5.2: The Gram-Schmidt orthonormalization procedure
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Remarks :

(1) Note that u′
k+1 is obtained by subtracting from ek+1

the projection of ek+1 itself onto the orthonormal vectors
u1, . . . , uk that have already been computed. Then, we
normalize u′

k+1.

The QR-decomposition can now be obtained very easily.
We will do this in section 5.4.

(2) We could compute u′
k+1 using the formula

u′
k+1 = ek+1 −

k∑
i=1

(
ek+1 · u′

i

‖u′
i‖2

)
u′

i,

and normalize the vectors u′
k at the end.

This time, we are subtracting from ek+1 the projection of
ek+1 itself onto the orthogonal vectors u′

1, . . . , u
′
k.

This might be preferable when writing a computer pro-
gram.
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(3) The proof of lemma 5.2.7 also works for a countably
infinite basis for E, producing a countably infinite or-
thonormal basis.

Example 5. If we consider polynomials and the inner
product

〈f, g〉 =

∫ 1

−1

f (t)g(t)dt,

applying the Gram–Schmidt orthonormalization proce-
dure to the polynomials

1, x, x2, . . . , xn, . . . ,

which form a basis of the polynomials in one variable with
real coefficients, we get a family of orthonormal polyno-
mials Qn(x) related to the Legendre polynomials .

The Legendre polynomials Pn(x) have many nice proper-
ties. They are orthogonal, but their norm is not always
1. The Legendre polynomials Pn(x) can be defined as
follows:
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If we let fn be the function

fn(x) = (x2 − 1)n,

we define Pn(x) as follows:

P0(x) = 1, and Pn(x) =
1

2nn!
f (n)

n (x),

where f
(n)
n is the nth derivative of fn.

They can also be defined inductively as follows:

P0(x) = 1,

P1(x) = x,

Pn+1(x) =
2n + 1

n + 1
xPn(x) − n

n + 1
Pn−1(x).

It turns out that the polynomials Qn are related to the
Legendre polynomials Pn as follows:

Qn(x) =
2n(n!)2

(2n)!
Pn(x).
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As a consequence of lemma 5.2.6 (or lemma 5.2.7), given
any Euclidean space of finite dimension n, if (e1, . . . , en)
is an orthonormal basis for E, then for any two vectors
u = u1e1 + · · · + unen and v = v1e1 + · · · + vnen, the
inner product u · v is expressed as

u ·v = (u1e1 + · · ·+unen) · (v1e1 + · · ·+vnen) =

n∑
i=1

uivi,

and the norm ‖u‖ as

‖u‖ = ‖u1e1 + · · · + unen‖ =

√√√√ n∑
i=1

u2
i .

We can also prove the following lemma regarding orthog-
onal spaces.

Lemma 5.2.8 Given any nontrivial Euclidean space
E of finite dimension n ≥ 1, for any subspace F of
dimension k, the orthogonal complement F⊥ of F has
dimension n− k, and E = F ⊕ F⊥. Furthermore, we
have F⊥⊥ = F .
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Definition 5.2.9 An affine space (E,
−→
E ) is a Euclidean

affine space iff its underlying vector space
−→
E is a Eu-

clidean vector space. Given any two points a, b ∈ E,
we define the distance between a and b, or length of
the segment (a, b), as ‖ab‖, the Euclidean norm of ab.
Given any two pairs of points (a, b) and (c, d), we define
their inner product as ab · cd. We say that (a, b) and
(c, d) are orthogonal, or perpendicular iff ab · cd = 0.
We say that two affine subspaces F1 and F2 of E are

orthogonal iff their directions
−→
F1 and

−→
F2 are orthogonal.

Note that a Euclidean affine space is a normed affine
space, in the sense of definition 5.2.10 below.

Definition 5.2.10 Given an affine space (E,
−→
E ), where

the space of translations
−→
E is a vector space over R or

C, we say that (E,
−→
E ) is a normed affine space iff

−→
E

is a normed vector space with norm ‖ ‖.
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We denote as E
m the Euclidean affine space obtained from

the affine space A
m by defining on the vector space R

m

the standard inner product

(x1, . . . , xm) · (y1, . . . , ym) = x1y1 + · · · + xmym.

The corresponding Euclidean norm is

‖(x1, . . . , xm)‖ =
√

x2
1 + · · · + x2

m.

We now consider linear maps between Euclidean spaces
that preserve the Euclidean norm. These transformations
sometimes called rigid motions play an important role
in geometry.
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5.3 Linear Isometries (Orthogonal Transformations)

In this section, we consider linear maps between Eu-
clidean spaces that preserve the Euclidean norm.

Definition 5.3.1 Given any two nontrivial Euclidean
spaces E and F of the same finite dimension n, a function
f : E → F is an orthogonal transformation, or a linear
isometry iff it is linear and

‖f (u)‖ = ‖u‖ ,

for all u ∈ E.

Thus, a linear isometry is a linear map that preserves the
norm.
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Remarks : (1) A linear isometry is often defined as a linear
map such that

‖f (v) − f (u)‖ = ‖v − u‖ ,

for all u, v ∈ E. Since the map f is linear, the two defi-
nitions are equivalent. The second definition just focuses
on preserving the distance between vectors.

(2) Sometimes, a linear map satisfying the condition of
definition 5.3.1 is called a metric map, and a linear isom-
etry is defined as a bijective metric map.

Also, an isometry (without the word linear) is sometimes
defined as a function f : E → F (not necessarily linear)
such that

‖f (v) − f (u)‖ = ‖v − u‖ ,

for all u, v ∈ E, i.e., as a function that preserves the
distance.
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This requirement turns out to be very strong. Indeed, the
next lemma shows that all these definitions are equivalent
when E and F are of finite dimension, and for functions
such that f (0) = 0.

Lemma 5.3.2 Given any two nontrivial Euclidean
spaces E and F of the same finite dimension n, for
every function f : E → F , the following properties are
equivalent:

(1) f is a linear map and ‖f (u)‖ = ‖u‖, for all u ∈ E;

(2) ‖f (v) − f (u)‖ = ‖v − u‖, for all u, v ∈ E, and
f (0) = 0;

(3) f (u) · f (v) = u · v, for all u, v ∈ E.

Furthermore, such a map is bijective.
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For (2), we shall prove a slightly stronger result. We prove
that if

‖f (v) − f (u)‖ = ‖v − u‖
for all u, v ∈ E, for any vector τ ∈ E, the function
g: E → F defined such that

g(u) = f (τ + u) − f (τ )

for all u ∈ E is a linear map such that g(0) = 0 and (3)
holds.

Remarks : (i) The dimension assumption is only needed
to prove that (3) implies (1) when f is not known to be
linear, and to prove that f is surjective, but the proof
shows that (1) implies that f is injective.
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(ii) In (2), when f does not satisfy the condition f (0) = 0,
the proof shows that f is an affine map.

Indeed, taking any vector τ as an origin, the map g is
linear, and

f (τ + u) = f (τ ) + g(u)

for all u ∈ E, proving that f is affine with associated
linear map g.

(iii) The implication that (3) implies (1) holds if we also
assume that f is surjective, even if E has infinite dimen-
sion.

In view of lemma 5.3.2, we will drop the word “linear” in
“linear isometry”, unless we wish to emphasize that we
are dealing with a map between vector spaces.

We are now going to take a closer look at the isometries
f : E → E of a Euclidean space of finite dimension.
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5.4 The Orthogonal Group, Orthogonal Matrices

In this section, we explore some of the fundamental prop-
erties of the orthogonal group and of orthogonal matrices.

As an immediate corollary of the Gram–Schmidt orthonor-
malization procedure, we obtain the QR-decomposition
for invertible matrices.
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Lemma 5.4.1 Let E be any Euclidean space of finite
dimension n, and let f : E → E be any linear map.
The following properties hold:

(1) The linear map f : E → E is an isometry iff

f ◦ f ∗ = f ∗ ◦ f = id.

(2) For every orthonormal basis (e1, . . . , en) of E, if
the matrix of f is A, then the matrix of f ∗ is the
transpose A� of A, and f is an isometry iff A
satisfies the identities

A A� = A�A = In,

where In denotes the identity matrix of order n, iff
the columns of A form an orthonormal basis of E,
iff the rows of A form an orthonormal basis of E.

Lemma 5.4.1 shows that the inverse of an isometry f is
its adjoint f ∗. Lemma 5.4.1 also motivates the following
definition:
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Definition 5.4.2 A real n×n matrix is an orthogonal
matrix iff

AA� = A�A = In.

Remarks : It is easy to show that the conditions
A A� = In, A�A = In, and A−1 = A�, are equivalent.

Given any two orthonormal bases (u1, . . . , un) and
(v1, . . . , vn), if P is the change of basis matrix from
(u1, . . . , un) to (v1, . . . , vn) since the columns of P are
the coordinates of the vectors vj with respect to the basis
(u1, . . . , un), and since (v1, . . . , vn) is orthonormal, the
columns of P are orthonormal, and by lemma 5.4.1 (2),
the matrix P is orthogonal.

The proof of lemma 5.3.2 (3) also shows that if f is an
isometry, then the image of an orthonormal basis
(u1, . . . , un) is an orthonormal basis.
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Recall that the determinant det(f ) of an endomorphism
f : E → E is independent of the choice of a basis in E.

Also, for every matrix A ∈ Mn(R), we have
det(A) = det(A�), and for any two n×n-matrices A and
B, we have det(AB) = det(A) det(B) (for all these basic
results, see Lang [?]).

Then, if f is an isometry, and A is its matrix with respect
to any orthonormal basis, A A� = A�A = In implies
that det(A)2 = 1, that is, either det(A) = 1, or
det(A) = −1.

It is also clear that the isometries of a Euclidean space
of dimension n form a group, and that the isometries of
determinant +1 form a subgroup.
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Definition 5.4.3 Given a Euclidean space E of dimen-
sion n, the set of isometries f : E → E forms a group
denoted as O(E), or O(n) when E = R

n, called the
orthogonal group (of E).

For every isometry, f , we have det(f ) = ±1, where det(f )
denotes the determinant of f . The isometries such that
det(f ) = 1 are called rotations, or proper isometries,
or proper orthogonal transformations , and they form
a subgroup of the special linear group SL(E) (and of
O(E)), denoted as SO(E), or SO(n) when E = R

n,
called the special orthogonal group (of E).

The isometries such that det(f ) = −1 are called im-
proper isometries, or improper orthogonal transfor-
mations, or flip transformations .
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5.5 QR-Decomposition for Invertible Matrices

Now that we have the definition of an orthogonal matrix,
we can explain how the Gram–Schmidt orthonormaliza-
tion procedure immediately yields the QR-decomposition
for matrices.

Lemma 5.5.1 Given any n × n real matrix A, if A
is invertible then there is an orthogonal matrix Q and
an upper triangular matrix R with positive diagonal
entries such that A = QR.

Proof . We can view the columns of A as vectors A1, . . . , An

in E
n.

If A is invertible, then they are linearly independent, and
we can apply lemma 5.2.7 to produce an orthonormal
basis using the Gram–Schmidt orthonormalization pro-
cedure.
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Recall that we construct vectors Qk and Q′
k as follows:

Q′
1 = A1, Q1 =

Q′
1

‖Q′
1‖

,

and for the inductive step

Q′
k+1 = Ak+1 −

k∑
i=1

(Ak+1 ·Qi) Qi, Qk+1 =
Q′

k+1∥∥Q′
k+1

∥∥,
where 1 ≤ k ≤ n − 1.

If we express the vectors Ak in terms of the Qi and Q′
i,

we get a triangular system

A1 = ‖Q′
1‖Q1,

. . .

Aj = (Aj · Q1) Q1 + · · · + (Aj · Qi) Qi + · · · + (Aj · Qj−1) Qj−1 +
∥∥Q′

j

∥∥Qj,

. . .

An = (An · Q1) Q1 + · · · + (An · Qn−2) Qn−2 + (An · Qn−1) Qn−1 + ‖Q′
n‖Qn.
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Remarks : (1) Because the diagonal entries of R are pos-
itive, it can be shown that Q and R are unique.

(2) The QR-decomposition holds even when A is not in-
vertible. In this case, R has some zero on the diagonal.
However, a different proof is needed. We will give a nice
proof using Householder matrices (see also Strang [?]).

Example 6. Consider the matrix

A =

 0 0 5
0 4 1
1 1 1


We leave as an exercise to show that A = QR with

Q =

 0 0 1
0 1 0
1 0 0

 and R =

 1 1 1
0 4 1
0 0 5


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Another example of QR-decomposition is

A =

 1 1 2
0 0 1
1 0 0


where

Q =

 1/
√

2 1/
√

2 0
0 0 1

1/
√

2 −1/
√

2 0


and

R =

√
2 1/

√
2

√
2

0 1/
√

2
√

2
0 0 1


The QR-decomposition yields a rather efficient and nu-
merically stable method for solving systems of linear equa-
tions.
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Indeed, given a system Ax = b, where A is an n × n
invertible matrix, writing A = QR, since Q is orthogonal,
we get

Rx = Q�b,

and since R is upper triangular, we can solve it by Gaus-
sian elimination, by solving for the last variable xn first,
substituting its value into the system, then solving for
xn−1, etc.

The QR-decomposition is also very useful in solving least
squares problems (we will come back to this later on), and
for finding eigenvalues.

It can be easily adapted to the case where A is a rect-
angular m × n matrix with independent columns (thus,
n ≤ m).

In this case, Q is not quite orthogonal. It is an m × n
matrix whose columns are orthogonal, and R is an invert-
ible n × n upper diagonal matrix with positive diagonal
entries. For more on QR, see Strang [?].
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It should also be said that the Gram–Schmidt orthonor-
malization procedure that we have presented is not very
stable numerically, and instead, one should use the mod-
ified Gram–Schmidt method .

To compute Q′
k+1, instead of projecting Ak+1 onto

Q1, . . . , Qk in a single step, it is better to perform k pro-
jections.

We compute Q1
k+1, Q

2
k+1, . . . , Q

k
k+1 as follows:

Q1
k+1 = Ak+1 − (Ak+1 · Q1) Q1,

Qi+1
k+1 = Qi

k+1 − (Qi
k+1 · Qi+1) Qi+1,

where 1 ≤ i ≤ k − 1.

It is easily shown that Q′
k+1 = Qk

k+1. The reader is urged
to code this method.


