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2.6 Affine Groups

We now take a quick look at the bijective affine maps.

Given an affine space E, the set of affine bijections
f : E → E is clearly a group, called the affine group of
E, and denoted by GA(E).

Recall that the group of bijective linear maps of the vector

space
−→
E is denoted by GL(

−→
E ). Then, the map f �→ −→

f

defines a group homomorphism L: GA(E) → GL(
−→
E ).

The kernel of this map is the set of translations on E.

The subset of all linear maps of the form λ id−→
E

, where

λ ∈ R−{0}, is a subgroup of GL(
−→
E ), and is denoted as

R
∗id−→

E
.
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The subgroup DIL(E) = L−1(R∗id−→
E

) of GA(E) is par-
ticularly interesting. It turns out that it is the disjoint
union of the translations and of the dilatations of ratio
λ �= 1.

The elements of DIL(E) are called affine dilatations (or
dilations).

Given any point a ∈ E, and any scalar λ ∈ R, a dilata-
tion (or central dilatation, or magnification, or ho-
mothety) of center a and ratio λ, is a map Ha,λ defined
such that

Ha,λ(x) = a + λax,

for every x ∈ E.

Observe that Ha,λ(a) = a, and when λ �= 0 and x �= a,
Ha,λ(x) is on the line defined by a and x, and is obtained
by “scaling” ax by λ. When λ = 1, Ha,1 is the identity.
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Note that
−−→
Ha,λ = λ id−→

E
. When λ �= 0, it is clear that

Ha,λ is an affine bijection.

It is immediately verified that

Ha,λ ◦ Ha,µ = Ha,λµ.

We have the following useful result.

Lemma 2.6.1 Given any affine space E, for any affine

bijection f ∈ GA(E), if
−→
f = λ id−→

E
, for some λ ∈ R

∗

with λ �= 1, then there is a unique point c ∈ E such
that f = Hc,λ.

Clearly, if
−→
f = id−→

E
, the affine map f is a translation.

Thus, the group of affine dilatations DIL(E) is the dis-
joint union of the translations and of the dilatations of
ratio λ �= 0, 1. Affine dilatations can be given a purely
geometric characterization.
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2.7 Affine Geometry, a Glimpse

In this section, we state and prove three fundamental
results of affine geometry.

Roughly speaking, affine geometry is the study of prop-
erties invariant under affine bijections . We now prove
one of the oldest and most basic results of affine geometry,
the Theorem of Thalés .

Lemma 2.7.1 Given any affine space E, if H1, H2, H3

are any three distinct parallel hyperplanes, and A and
B are any two lines not parallel to Hi, letting
ai = Hi∩A and bi = Hi∩B, then the following ratios
are equal:

a1a3

a1a2
=

b1b3

b1b2
= ρ.

Conversely, for any point d on the line A, if a1d
a1a2

= ρ,
then d = a3.

The diagram below illustrates the theorem of Thalés.



2.7. AFFINE GEOMETRY, A GLIMPSE 79

��

��

��

��

��

��

a3

a2

a1

b3

b2

b1

A B

H3

H2

H1

Figure 2.14: The theorem of Thalés
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Lemma 2.7.2 Given any affine space E, given any
two distinct points a, b ∈ E, for any affine dilatation
f different from the identity, if a′ = f (a), D = 〈a, b〉
is the line passing through a and b, and D′ is the line
parallel to D and passing through a′, the following are
equivalent:

(i) b′ = f (b);

(ii) If f is a translation, then b′ is the intersection of
D′ with the line parallel to 〈a, a′〉 passing through
b;

If f is a dilatation of center c, then b′ = D′ ∩ 〈c, b〉.
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Figure 2.15: Affine Dilatations
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The first case is the parallelogram law, and the second
case follows easily from Thalés’ theorem.

We are now ready to prove two classical results of affine
geometry, Pappus’ Theorem and Desargues’ Theorem.
Actually, these results are theorem of projective geome-
try, and we are stating affine versions of these important
results. There are stronger versions which are best proved
using projective geometry.

There is a converse to Pappus’ theorem, which yields a
fancier version of Pappus’ theorem, but it is easier to
prove it using projective geometry.
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Lemma 2.7.3 Given any affine plane E, given any
two distinct lines D and D′, for any distinct points
a, b, c on D, and a′, b′, c′ on D′, if a, b, c, a′, b′, c′ are
distinct from the intersection of D and D′ (if D and
D′ intersect) and if the lines 〈a, b′〉 and 〈a′, b〉 are par-
allel, and the lines 〈b, c′〉 and 〈b′, c〉 are parallel, then
the lines 〈a, c′〉 and 〈a′, c〉 are parallel.
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Figure 2.16: Pappus’ theorem (affine version)

We now prove an affine version of Desargues’ theorem.
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Lemma 2.7.4 Given any affine space E, given any
two triangles (a, b, c) and (a′, b′, c′), where a, b, c, a′, b′, c′

are all distinct, if 〈a, b〉 and 〈a′, b′〉 are parallel and
〈b, c〉 and 〈b′, c′〉 are parallel, then 〈a, c〉 and 〈a′, c′〉
are parallel iff the lines 〈a, a′〉, 〈b, b′〉, and 〈c, c′〉, are
either parallel or concurrent (i.e., intersect in a com-
mon point).

��

��

��

��

��

��

��

d

a

b

c

a′

b′

c′

Figure 2.17: Desargues’ theorem (affine version)

There is a fancier version of Desargues’ theorem, but it is
easier to prove it using projective geometry.
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Desargues’ theorem yields a geometric characterization of
the affine dilatations. An affine dilatation f on an affine
space E is a bijection that maps every line D to a line
f (D) parallel to D.
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2.8 Affine Hyperplanes

In section 2.3, we observed that the set L of solutions of
an equation

ax + by = c

is an affine subspace of A
2 of dimension 1, in fact a line

(provided that a and b are not both null).

It would be equally easy to show that the set P of solu-
tions of an equation

ax + by + cz = d

is an affine subspace of A
3 of dimension 2, in fact a plane

(provided that a, b, c are not all null).

More generally, the set H of solutions of an equation

α1x1 + · · · + αmxm = β

is an affine subspace of A
m, and if α1, . . . , αm are not all

null, it turns out that it is a subspace of dimension m−1
called a hyperplane.
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We can interpret the equation

α1x1 + · · · + αmxm = β

in terms of the map f : Rm → R defined such that

f (x1, . . . , xm) = α1x1 + · · · + αmxm − β

for all (x1, . . . , xm) ∈ R
m.

It is immediately verified that this map is affine, and the
set H of solutions of the equation

α1x1 + · · · + αmxm = β

is the null set, or kernel, of the affine map f : Am → R,
in the sense that

H = f−1(0) = {x ∈ A
m | f (x) = 0},

where x = (x1, . . . , xm).

Thus, it is interesting to consider affine forms , which are
just affine maps f : E → R from an affine space to R.
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Unlike linear forms f ∗, for which Ker f ∗ is never empty
(since it always contains the vector 0), it is possible that
f−1(0) = ∅, for an affine form f .

Recall the characterization of hyperplanes in terms of lin-
ear forms.

Given a vector space E over a field K, a linear map
f : E → K is called a linear form. The set of all lin-
ear forms f : E → K is a vector space called the dual
space of E, and denoted as E∗.

Hyperplanes are precisely the Kernels of nonnull linear
forms.
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Lemma 2.8.1 Let E be a vector space. The following
properties hold:

(a) Given any nonnull liner form f ∈ E∗, its kernel
H = Ker f is a hyperplane.

(b) For any hyperplane H in E, there is a (nonnull)
linear form f ∈ E∗ such that H = Ker f .

(c) Given any hyperplane H in E and any (nonnull)
linear form f ∈ E∗ such that H = Ker f , for every
linear form g ∈ E∗, H = Ker g iff g = λf for some
λ �= 0 in K.

Going back to an affine space E, given an affine map
f : E → R, we also denote f−1(0) as Ker f , and we call
it the kernel of f . Recall that an (affine) hyperplane is
an affine subspace of codimension 1.

Affine hyperplanes are precisely the Kernels of noncon-
stant affine forms.
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Lemma 2.8.2 Let E be an affine space. The follow-
ing properties hold:

(a) Given any nonconstant affine form f : E → R, its
kernel H = Ker f is a hyperplane.

(b) For any hyperplane H in E, there is a nonconstant
affine form f : E → R such that H = Ker f . For
any other affine form g: E → R such that
H = Ker g, there is some λ ∈ R such that g = λf
(with λ �= 0).

(c) Given any hyperplane H in E and any (noncon-
stant) affine form f : E → R such that H = Ker f ,
every hyperplane H ′ parallel to H is defined by a
nonconstant affine form g such that
g(a) = f (a) − β, for all a ∈ E, for some β ∈ R.
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2.9 Intersection of Affine Spaces

In this section, we take a closer look at the intersection
of affine subspaces.

First, we need a result of linear algebra.

Lemma 2.9.1 Given a vector space E and any two
subspaces M and N , we have the Grassmann relation:

dim(M) + dim(N) = dim(M + N) + dim (M ∩ N).

We now prove a simple lemma about the intersection of
affine subspaces.
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Lemma 2.9.2 Given any affine space E, for any two
nonempty affine subspaces M and N , the following
facts hold:

(1) M ∩ N �= ∅ iff ab ∈ −→
M +

−→
N for some a ∈ M and

some b ∈ N .

(2) M∩N consists of a single point iff ab ∈ −→
M+

−→
N for

some a ∈ M and some b ∈ N , and
−→
M ∩−→

N = {0}.
(3) If S is the least affine subspace containing M and

N , then
−→
S =

−→
M +

−→
N + Kab (the vector space

−→
E

is defined over the field K).

Remarks : (1) The proof of Lemma 2.9.2 shows that if

M ∩ N �= ∅ then ab ∈ −→
M +

−→
N for all a ∈ M and all

b ∈ N .

(2) Lemma 2.9.2 (2) implies that for any two nonempty

affine subspaces M and N , if
−→
E =

−→
M ⊕−→

N , then M ∩N
consists of a single point.
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Lemma 2.9.3 Given an affine space E and any two
nonempty affine subspaces M and N , if S is the least
affine subspace containing M and N , then the follow-
ing properties hold:

(1) If M ∩ N = ∅, then

dim(M) + dim(N) < dim(E) + dim(
−→
M +

−→
N ),

and

dim(S) = dim(M) + dim(N) + 1 − dim(
−→
M ∩ −→

N ).

(2) If M ∩ N �= ∅, then

dim(S) = dim(M) + dim(N) − dim(M ∩ N).


