
Chapter 12

Embedding an Affine Space in a
Vector Space

12.1 Embedding an Affine Space as a Hyperplane in a

Vector Space: the “Hat Construction”

Assume that we consider the real affine space E of dimen-

sion 3, and that we have some affine frame (a0, (
−→v1 ,−→v2 ,−→v2 )).

With respect to this affine frame, every point x ∈ E is
represented by its coordinates (x1, x2, x3), where

a = a0 + x1
−→v1 + x2

−→v2 + x3
−→v3 .

A vector −→u ∈ −→
E is also represented by its coordinates

(u1, u2, u3) over the basis (−→v1 ,−→v2 ,−→v2 ).
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One way to distinguish between points and vectors is
to add a fourth coordinate, and to agree that points are
represented by (row) vectors (x1, x2, x3, 1) whose fourth
coordinate is 1, and that vectors are represented by (row)
vectors (v1, v2, v3, 0) whose fourth coordinate is 0.

This “programming trick” works actually very well. Of
course, we are opening the door for strange elements such
as (x1, x2, x3, 5), where the fourth coordinate is neither 1
nor 0.
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The question is, can we make sense of such elements
and of such a construction?

The answer is “yes”. We will present a construction in

which an affine space (E,
−→
E ) is embedded in a vector

space Ê, in which
−→
E is embedded as a hyperplane pass-

ing through the origin, and E itself is embedded as an
affine hyperplane, defined as ω−1(1), for some linear form

ω: Ê → R.

The vector space Ê has the universal property that for

any vector space
−→
F and any affine map f : E → −→

F ,

there is a unique linear map f̂ : Ê → −→
F extending

f : E → −→
F .
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Some Simple Geometric Transformations

Given an affine space (E,
−→
E ), every −→u ∈ −→

E induces a
mapping tu: E → E, called a translation, and defined

such that tu(a) = a + −→u , for every a ∈ E.

Clearly, the set of translations is a vector space isomorphic

to
−→
E .

Given any point a and any scalar λ ∈ R, we define
the mapping Ha,λ: E → E, called dilatation (or central
magnification, or homothety) of center a and ratio λ,
and defined such that

Ha,λ(x) = a + λ−→ax,

for every x ∈ E.

Ha,λ(a) = a, and when λ �= 0 and x �= a, Ha,λ(x) is on
the line defined by a and x, and is obtained by “scaling”−→ax by λ. The effect is a uniform dilatation (or contrac-
tion, if λ < 1).
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When λ = 0, Ha,0(x) = a for all x ∈ E, and Ha,0 is the
constant affine map sending every point to a.

If we assume λ �= 1, note that Ha,λ is never the identity,
and since a is a fixed-point, Ha,λ is never a translation.

We now consider the set Ê of geometric transformations
from E to E, consisting of the union of the (disjoint) sets
of translations and dilatations of ratio λ �= 1.

We would like to give this set the structure of a vector

space, in such a way that both E and
−→
E can be natu-

rally embedded into Ê.

In fact, it will turn out that barycenters show up quite
naturally too!
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In order to “add” two dilatations Ha1,λ1 and Ha2,λ2, it
turns out that it is more convenient to consider dilatations
of the form Ha,1−λ, where λ �= 0.

To see this, let us see the effect of such a dilatation on a
point x ∈ E: we have

Ha,1−λ(x) = a + (1 − λ)−→ax = a + −→ax − λ−→ax = x + λ−→xa.

For simplicity of notation, let us denote Ha,1−λ as 〈a, λ〉.
Then, we have

〈a, λ〉(x) = x + λ−→xa.
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Lemma 12.1.1 The set Ê consisting of the disjoint
union of the translations and the dilatations Ha,1−λ =
〈a, λ〉, λ ∈ R, λ �= 0, is a vector space under the fol-
lowing operations of addition and multiplication by a
scalar:

〈a1, λ1〉 +̂ 〈a2, λ2〉 = λ1
−−→a2a1,

if λ1 + λ2 = 0;

〈a1, λ1〉 +̂ 〈a2, λ2〉 = 〈 λ1

λ1 + λ2
a1 +

λ2

λ1 + λ2
a2, λ1 + λ2〉,

if λ1 + λ2 �= 0;

〈a, λ〉 +̂ −→u = 〈a + λ−1−→u , λ〉;
−→u +̂ −→v = −→u + −→v ;

µ · 〈a, λ〉 = 〈a, λµ〉,
if µ �= 0, and

0 · 〈a, λ〉 =
−→
0 ,

λ · −→u = λ−→u .
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Furthermore, the map ω: Ê → R defined such that

ω(〈a, λ〉) = λ,

ω(−→u ) = 0,

is a linear form, ω−1(0) is a hyperplane isomorphic

to
−→
E under the injective linear map i:

−→
E → Ê such

that i(−→u ) = tu (the translation associated with −→u ),
and ω−1(1) is an affine hyperplane isomorphic to E

with direction i(
−→
E ), under the injective affine map

j: E → Ê, where j(a) = 〈a, 1〉, for every a ∈ E.

Finally, for every a ∈ E, we have

Ê = i(
−→
E ) ⊕ Rj(a).

The following diagram illustrates the embedding of the
affine space E into the vector space Ê, when E is an
affine plane.
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��

�

�

Ω

〈a, 1〉 = a

〈a, λ〉

i(
−→
E ) = ω−1(0)

j(E) = ω−1(1)

−→u

Figure 12.1: Embedding an affine space E into a vector space Ê

Note that Ê is isomorphic to
−→
E ∪ (E×R

∗) (where R
∗ =

R − {0}). Other authors, such as Ramshaw, use the

notation E∗ for Ê.
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Ramshaw calls the linear form ω: Ê → R a weight (or

flavor), and he says that an element z ∈ Ê such that
ω(z) = λ is λ-heavy (or has flavor λ) ([?]).

The elements of j(E) are 1-heavy and are called points ,

and the elements of i(
−→
E ) are 0-heavy and are called vec-

tors .

In general, the λ-heavy elements all belong to the hyper-

plane ω−1(λ) parallel to i(
−→
E ).

Thus, intuitively, we can thing of Ê as a stack of parallel
hyperplanes, one for each λ, a little bit like an infinite
stack of very thin pancakes!
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There are two privileged pancakes: one corresponding to

E, for λ = 1, and one corresponding to
−→
E , for λ = 0.

From now on, we will identify j(E) and E, and i(
−→
E ) and

−→
E .

We will also write λa instead of 〈a, λ〉, which we will call
a weighted point , and write 1a just as a.

When we want to be more precise, we may also write
〈a, 1〉 as a (as Ramshaw does).
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In particular, when we consider the homogenized version
Â of the affine space A associated with the base field R

considered as an affine space, we write λ for 〈λ, 1〉, when

viewing λ as a point in both A and Â, and simply λ,
when viewing λ as a vector in R and in Â.

The elements of Â are called Bézier sites , by Ramshaw.

Then, in view of the fact that

〈a + −→u , 1〉 = 〈a, 1〉 +̂ −→u ,

and since we are identifying a +−→u with 〈a +−→u , 1〉 (un-
der the injection j), in the simplified notation, the above

reads as a + −→u = a +̂ −→u .

Thus, we go one step further, and denote a+̂−→u as a+−→u .

From lemma 12.1.1, for every a ∈ E, every element of Ê

can be written uniquely as −→u +̂ λa.

We also denote
λa +̂ (−µ)b

as
λa −̂ µb.
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Given any family (ai)i∈I of points in E, and any family
(λi)i∈I of scalars in R, with finite support, it is easily
shown by induction on the size of the support of (λi)i∈I

that,

(1) If
∑

i∈I λi = 0, then∑
i∈I

〈ai, λi〉 =
∑
i∈I

λiai,

where ∑
i∈I

λiai =
∑
i∈I

λi
−→
bai

for any b ∈ E, which, by lemma 2.2.1, is a vector inde-
pendent of b, or

(2) If
∑

i∈I λi �= 0, then∑
i∈I

〈ai, λi〉 = 〈
∑
i∈I

λi∑
i∈I λi

ai,
∑
i∈I

λi〉.

Thus, we see how barycenters reenter the scene quite
naturally, and that in Ê, we can make sense of

∑
i∈I〈ai, λi〉,

regardless of the value of
∑

i∈I λi.
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When
∑

i∈I λi = 1, the element
∑

i∈I〈ai, λi〉 belongs to
the hyperplane ω−1(1), and thus, it is a point.

When
∑

i∈I λi = 0, the linear combination of points∑
i∈I λiai is a vector, and when I = {1, . . . , n}, we allow

ourselves to write

λ1a1 +̂ · · · +̂ λnan,

where some of the occurrences of +̂ can be replaced by
−̂ , as

λ1a1 + · · · + λnan,

where the occurrences of −̂ (if any) are replaced by −.

In fact, we have the following slightly more general prop-
erty, which is left as an exercise.
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Lemma 12.1.2 Given any affine space (E,
−→
E ), for

any family (ai)i∈I of points in E, for any family (λi)i∈I

of scalars in R, with finite support, and any family

(−→vj )j∈J of vectors in
−→
E also with finite support, and

with I ∩ J = ∅, the following properties hold:

(1) If
∑

i∈I λi = 0, then∑
i∈I

〈ai, λi〉 +̂
∑
j∈J

−→vj =
∑
i∈I

λiai +
∑
j∈J

−→vj ,

where ∑
i∈I

λiai =
∑
i∈I

λi
−→
bai

for any b ∈ E, which, by lemma 2.2.1, is a vector
independent of b, or

(2) If
∑

i∈I λi �= 0, then∑
i∈I

〈ai, λi〉 +̂
∑
j∈J

−→vj

= 〈
∑
i∈I

λi∑
i∈I λi

ai +
∑
j∈J

−→vj∑
i∈I λi

,
∑
i∈I

λi〉.
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The above formulae show that we have some kind of
extended barycentric calculus .

Operations on weighted points and vectors were intro-
duced by H. Grassmann, in his book published in 1844!
This calculus is helpful in dealing with rational curves.

There is also a nice relationship between affine frames in

(E,
−→
E ) and bases of Ê, stated in the following lemma.

Lemma 12.1.3 Given any affine space (E,
−→
E ), for

any affine frame (a0, (
−−→a0a1, . . . ,

−−→a0am)) for E, the fam-

ily (−−→a0a1, . . . ,
−−→a0am, a0) is a basis for Ê, and for any

affine frame (a0, . . . , am) for E, the family (a0, . . . , am)

is a basis for Ê.

Furthermore, given any element 〈x, λ〉 ∈ Ê, if

x = a0 + x1
−−→a0a1 + · · · + xm

−−→a0am

over the affine frame (a0, (
−−→a0a1, . . . ,

−−→a0am)) in E, then
the coordinates of 〈x, λ〉 over the basis

(−−→a0a1, . . . ,
−−→a0am, a0)

in Ê, are
(λx1, . . . , λxm, λ).
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For any vector −→v ∈ −→
E , if

−→v = v1
−−→a0a1 + · · · + vm

−−→a0am

over the basis
(−−→a0a1, . . . ,

−−→a0am)

in
−→
E , then over the basis

(−−→a0a1, . . . ,
−−→a0am, a0)

in Ê, the coordinates of −→v are

(v1, . . . , vm, 0).
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For any element 〈a, λ〉, where λ �= 0, if the barycentric
coordinates of a w.r.t. the affine basis (a0, . . . , am) in
E are (λ0, . . . , λm) with λ0 + · · · + λm = 1, then the

coordinates of 〈a, λ〉 w.r.t. the basis (a0, . . . , am) in Ê
are

(λλ0, . . . , λλm).

If a vector −→v ∈ −→
E is expressed as

−→v = v1
−−→a0a1 + · · · + vm

−−→a0am

= −(v1 + · · · + vm)a0 + v1a1 + · · · + vmam,

with respect to the affine basis (a0, . . . , am) in E, then

its coordinates w.r.t. the basis (a0, . . . , am) in Ê are

(−(v1 + · · · + vm), v1, . . . , vm).
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The following diagram shows the basis (−−→a0a1,
−−→a0a2, a0)

corresponding to the affine frame (a0, a1, a2) in E.

��

��

�

�

��

��

Ω

〈a, 1〉 = a

〈a, λ〉

−−→a0a1

−−→a0a2

a0

a1

a2

−→u

E

Figure 12.2: The basis (−−→a0a1,
−−→a0a2, a0) in Ê

If (x1, . . . , xm) are the coordinates of x w.r.t. to the affine
frame (a0, (

−−→a0a1, . . . ,
−−→a0am)) in E, then, (x1, . . . , xm, 1)

are the coordinates of x in Ê, i.e., the last coordinate is

1, and if −→u has coordinates (u1, . . . , um) with respect to

the basis (−−→a0a1, . . . ,
−−→a0am) in

−→
E , then −→u has coordinates

(u1, . . . , um, 0) in Ê, i.e., the last coordinate is 0.



500 CHAPTER 12. EMBEDDING AN AFFINE SPACE IN A VECTOR SPACE

The following diagram shows the affine frame (a0, a1, a2)

in E viewed as a basis in Ê.

��

�

�

�� ��

��

Ω

〈a, 1〉 = a

〈a, λ〉

a1 a2

a0

−→u

E

Figure 12.3: The basis (a0, a1, a2) in Ê
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Now that we have defined Ê and investigated the rela-
tionship between affine frames in E and bases in Ê, we
can give one more construction of a vector space F from

E and
−→
E , that will allow us to “visualize” in a much more

intuitive fashion the structure of Ê and of its operations
+̂ and ·.

Definition 12.1.4 Given any affine space (E,
−→
E ), we

define the vector space F as the direct sum
−→
E ⊕ R,

where R denotes the field R considered as a vector space

(over itself). Denoting the unit vector in R as
−→
1 , since

F =
−→
E ⊕ R, every vector −→v ∈ F can be written as

−→v = −→u + λ
−→
1 , for some unique −→u ∈ −→

E , and some
unique λ ∈ R. Then, for any choice of an origin Ω1 in E,
we define the map Ω̂: Ê → F , as follows:

Ω̂(θ) =

{
λ(
−→
1 +

−→
Ω1a) if θ = 〈a, λ〉, a ∈ E, λ �= 0;

−→u if θ = −→u , −→u ∈ −→
E .
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The idea is that, once again, viewing F as an affine space
under its canonical structure, E is embedded in F as

the hyperplane H =
−→
1 +

−→
E , with direction

−→
E , the

hyperplane
−→
E in F .

Then, every point a ∈ E is in bijection with the point

A =
−→
1 +

−→
Ω1a, in the hyperplane H .

Denoting the origin
−→
0 of the canonical affine space F as

Ω, the map Ω̂ maps a point 〈a, λ〉 ∈ E to a point in F , as

follows: Ω̂(〈a, λ〉) is the point on the line passing through

both the origin Ω of F and the point A =
−→
1 +

−→
Ω1a in

the hyperplane H =
−→
1 +

−→
E , such that

Ω̂(〈a, λ〉) = λ
−→
ΩA = λ(

−→
1 +

−→
Ω1a).

The following lemma shows that Ω̂ is an isomorphism of
vector spaces.
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Lemma 12.1.5 Given any affine space (E,
−→
E ), for

any choice Ω1 of an origin in E, the map Ω̂: Ê → F is
a linear isomorphism between Ê and the vector space
F of definition 12.1.4. The inverse of Ω̂ is given by

Ω̂−1(−→u + λ
−→
1 ) =

{
〈Ω1 + λ−1−→u , λ〉) if λ �= 0;
−→u if λ = 0.

The following diagram illustrates the embedding of the
affine space E into the vector space F , when E is an
affine plane.
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��

�

�

Ω

A =
−→
1 +

−→
Ω1a

λ
−→
ΩA

−→
E

H =
−→
1 +

−→
E

−→u

Figure 12.4: Embedding an affine space E into a vector space F

We now consider the universal property of Ê. Other au-
thors, such as Ramshaw, use the notation f∗ for f̂ .

First, we define rigorously the notion of homogenization
of an affine space.
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Definition 12.1.6 Given any affine space (E,
−→
E ), an

homogenization (or linearization) of (E,
−→
E ), is a triple

〈E , j, ω〉, where E is a vector space, j: E → E is an in-
jective affine map with associated injective linear map

i:
−→
E → E , ω: E → R is a linear form, such that ω−1(0) =

i(
−→
E ), ω−1(1) = j(E), and for every vector space

−→
F and

every affine map f : E → −→
F , there is a unique linear

map f̂ : E → −→
F extending f , i.e. f = f̂ ◦ j, as in the

following diagram:

E
j

��

f ���
��

��
��

E
f̂

��−→
F

Thus, j(E) = ω−1(1) is an affine hyperplane with direc-

tion i(
−→
E ) = ω−1(0).
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Lemma 12.1.7 Given any affine space (E,
−→
E ) and

any vector space
−→
F , for any affine map f : E → −→

F ,

there is a unique linear map f̂ : Ê → −→
F extending f ,

such that

f̂ (−→u +̂ λa) = λf (a) +
−→
f (−→u ),

for all a ∈ E, all −→u ∈ −→
E , and all λ ∈ R, where

−→
f is

the linear map associated with f . In particular, when
λ �= 0, we have

f̂ (−→u +̂ λa) = λf (a + λ−1−→u ).

Lemma 12.1.7 shows that 〈Ê, j, ω〉, is an homogenization

of (E,
−→
E ). As a corollary, we obtain the following lemma.
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Lemma 12.1.8 Given two affine spaces E and F and
an affine map f : E → F , there is a unique linear map
f̂ : Ê → F̂ extending f , as in the diagram below,

E
f

��

j
��

F
j

��

Ê
f̂

�� F̂

such that

f̂ (−→u +̂ λa) =
−→
f (−→u ) +̂ λf (a),

for all a ∈ E, all −→u ∈ −→
E , and all λ ∈ R, where

−→
f is

the linear map associated with f . In particular, when
λ �= 0, we have

f̂ (−→u +̂ λa) = λf (a + λ−1−→u ).

From a practical point of view, lemma 12.1.8 shows us
how to homogenize an affine map to turn it into a linear
map between the two homogenized spaces.
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Assume that E and F are of finite dimension, and that

(a0, (
−→u1 , . . . ,

−→un)) is an affine basis of E, with origin a0,

and (b0, (
−→v1 , . . . ,−→vm)) is an affine basis of F , with origin

b0.

Then, with respect to the two bases (−→u1 , . . . ,
−→un, a0) in

Ê and (−→v1 , . . . ,−→vm, b0) in F̂ , a linear map h: Ê → F̂ is
given by an (m + 1) × (n + 1) matrice A.

If this linear map h is equal to the homogenized version
f̂ of an affine map f , since

f̂ (−→u +̂ λa) =
−→
f (−→u ) +̂ λf (a),

since over the basis (−→u1 , . . . ,
−→un, a0) in Ê, points are rep-

resented by vectors whose last coordinate is 1, and vectors
are represented by vectors whose last coordinate is 0, the
last row of the matrix A = M(f̂ ) with respect to the
given bases is

(0, 0, . . . , 0, 1),
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with m occurrences of 0, the last column contains the
coordinates

(µ1, . . . , µm, 1)

of f (a0) with respect to the basis (−→v1 , . . . ,−→vm, b0),
the submatrix of A obtained by deleting the last row and

the last column is the matrix of the linear map
−→
f with

respect to the bases (−→u1 , . . . ,
−→un) and (−→v1 , . . . ,−→vm), and

since
f (a0 + −→u ) = f̂ (−→u +̂ a0),

given any x ∈ E and y ∈ F , with coordinates
(x1, . . . , xn, 1) and (y1, . . . , ym, 1),
for X = (x1, . . . , xn, 1)� and Y = (y1, . . . , ym, 1)�, we
have

y = f (x) iff Y = AX.
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For example, consider the following affine map
f : A2 → A

2 defined as follows:

y1 = ax1 + bx2 + µ1,

y2 = cx1 + dx2 + µ2.

The matrix of f̂ is  a b µ1
c d µ2
0 0 1


and we have y1

y2

1

 =

 a b µ1
c d µ2
0 0 1

 x1

x2

1


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In Ê, we have y1

y2

y3

 =

 a b µ1
c d µ2
0 0 1

 x1

x2

x3


which means that the homogeneous map f̂ is is obtained
from f by “adding the variable of homogeneity x3”:

y1 = ax1 + bx2 + µ1x3,

y2 = cx1 + dx2 + µ2x3,

y3 = x3.

We now show how to homogenize multiaffine maps.
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Lemma 12.1.9 Given any affine space E and any

vector space
−→
F , for any m-affine map f : Em → −→

F ,

there is a unique m-linear map f̂ : (Ê)m → −→
F extend-

ing f , such that, if

f (a1 + −→v1 , . . . , am + −→vm) = f (a1, . . . , am) +∑
S⊆{1,...,m}, k=card(S)

S={i1,...,ik}, k≥1

fS(−→vi1 , . . . ,
−→vik),

for all a1 . . . , am ∈ E, and all −→v1 , . . . ,−→vm ∈ −→
E , where

the fS are uniquely determined multilinear maps (by
lemma ??), then

f̂ (−→v1 +̂ λ1a1, . . . ,
−→vm +̂ λmam)

= λ1 · · ·λmf (a1, . . . , am) +∑
S⊆{1,...,m}, k=card(S)

S={i1,...,ik}, k≥1

(
∏

j∈{1,...,m}
j /∈S

λj) fS(−→vi1 , . . . ,
−→vik),

for all a1 . . . , am ∈ E, all −→v1 , . . . ,−→vm ∈ −→
E , and all

λ1, . . . , λm ∈ R. Furthermore, for λi �= 0, 1 ≤ i ≤ m,
we have

f̂ (−→v1 +̂ λ1a1, . . . ,
−→vm +̂ λmam) =

λ1 · · ·λmf (a1 + λ−1
1
−→v1 , . . . , am + λ−1

m
−→vm).
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12.2 Differentiating Affine Polynomial Functions Us-

ing Their Homogenized Polar Forms, Osculating

Flats

Let δ =
−→
1 , the unit (vector) in R. When dealing with

derivatives, it is also more convenient to denote the vector−→
ab as b − a.

For any a ∈ A, the derivative DF (a) is the limit,

lim
t→0, t�=0

F (a + tδ) − F (a)

t
,

if it exists.

However, since F̂ agrees with F on A, we have

F (a + tδ) − F (a) = F̂ (a + tδ) − F̂ (a),

and thus, we need to see what is the limit of

F̂ (a + tδ) − F̂ (a)

t
,

when t → 0, t �= 0, with t ∈ R.
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� Recall that since F : A → E , where E is an affine space,

the derivative DF (a) of F at a is a vector in
−→E , and

not a point in E .

However, the structure of Ê takes care of this, since
F̂ (a + tδ) − F̂ (a) is indeed a vector (remember our con-
vention that − is an abbreviation for −̂ ).

Since
F̂ (a + tδ) = f̂ (a + tδ, . . . , a + tδ︸ ︷︷ ︸

m

),

where f̂ is the homogenized version of the polar form f
of F , and F̂ is the homogenized version of F , since

F̂ (a + tδ)− F̂ (a) = f̂ (a + tδ, . . . , a + tδ︸ ︷︷ ︸
m

)− f̂ (a, . . . , a︸ ︷︷ ︸
m

),

by multilinearity and symmetry, we have

F̂ (a + tδ) − F̂ (a) =

m t f̂ (a, . . . , a︸ ︷︷ ︸
m−1

, δ) +

k=m∑
k=2

(
m
k

)
tk f̂ (a, . . . , a︸ ︷︷ ︸

m−k

, δ, . . . , δ︸ ︷︷ ︸
k

),

and thus,

lim
t→0, t�=0

F̂ (a + tδ) − F̂ (a)

t
= mf̂ (a, . . . , a︸ ︷︷ ︸

m−1

, δ).
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However, since F̂ extends F on A, we have
DF (a) = DF̂ (a), and thus, we showed that

DF (a) = mf̂ (a, . . . , a︸ ︷︷ ︸
m−1

, δ).

This shows that the derivative of F at a ∈ A can be
computed by evaluating the homogenized version f̂ of
the polar form f of F , by replacing just one occurrence
of a in f̂ (a, . . . , a) by δ.
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More generally, we have the following useful lemma.

Lemma 12.2.1 Given an affine polynomial function
F : A → E of polar degree m, where E is a normed
affine space, the k-th derivative DkF (a) can be com-

puted from the homogenized polar form f̂ of F as fol-
lows, where 1 ≤ k ≤ m:

DkF (a) = m(m−1) · · · (m−k+1) f̂ (a, . . . , a︸ ︷︷ ︸
m−k

, δ, . . . , δ︸ ︷︷ ︸
k

).

Since coefficients of the form m(m − 1) · · · (m − k + 1)
occur a lot when taking derivatives, following Knuth, it is
useful to introduce the falling power notation. We define
the falling power mk, as

mk = m(m − 1) · · · (m − k + 1),

for 0 ≤ k ≤ m, with m0 = 1, and with the convention
that mk = 0 when k > m.

Using the falling power notation, the previous lemma
reads as

DkF (a) = mk f̂ (a, . . . , a︸ ︷︷ ︸
m−k

, δ, . . . , δ︸ ︷︷ ︸
k

).
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We also get the following explicit formula in terms of
control points.

Lemma 12.2.2 Given an affine polynomial function
F : A → E of polar degree m, where E is a normed
affine space, for any r, s ∈ A, with r �= s, the k-
th derivative DkF (r) can be computed from the polar
form f of F as follows, where 1 ≤ k ≤ m:

DkF (r) =
mk

(s − r)k

i=k∑
i=0

(
k
i

)
(−1)k−i f (r, . . . , r︸ ︷︷ ︸

m−i

, s, . . . , s︸ ︷︷ ︸
i

).

If F is specified by the sequence of m + 1 control points
bi = f (r m−i s i), 0 ≤ i ≤ m, the above lemma shows
that the k-th derivative DkF (r) of F at r, depends only
on the k + 1 control points b0, . . . , bk

In terms of the control points b0, . . . , bk, the formula of
lemma ?? reads as follows:

DkF (r) =
mk

(s − r)k

i=k∑
i=0

(
k
i

)
(−1)k−i bi.
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In particular, if b0 �= b1, then DF (r) is the velocity vector
of F at b0, and it is given by

DF (r) =
m

s − r

−−→
b0b1 =

m

s − r
(b1 − b0),

the last expression making sense in Ê .

In terms of the de Casteljau diagram

DF (t) =
m

s − r
(b1,m−1 − b0,m−1).

Similarly, the acceleration vector D2F (r) is given by

D2F (r) =
m(m − 1)

(s − r)2
(
−−→
b0b2 − 2

−−→
b0b1) =

m(m − 1)

(s − r)2
(b2 − 2b1 + b0),

the last expression making sense in Ê .

Later on when we deal with surfaces, it will be necessary
to generalize the above results to directional derivatives.
However, we have basically done all the work already.



12.2. DIFFERENTIATING AFFINE POLYNOMIAL FUNCTIONS 519

Let us assume that E and E are normed affine spaces,
and consider a map F : E → E .

Recall from definition ??, that if A is any open subset of

E, for any a ∈ A, for any −→u �= −→
0 in

−→
E , the directional

derivative of F at a w.r.t. the vector −→u , denoted as
DuF (a), is the limit, if it exists,

lim
t→0,t∈U,t�=0

F (a + t−→u ) − F (a)

t
,

where U = {t ∈ R | a + t−→u ∈ A}.

If F : E → E is a polynomial function of degree m, with
polar form the symmetric multiaffine map f : Em → E ,
then

F (a + t−→u ) − F (a) = F̂ (a + t−→u ) − F̂ (a),

where F̂ is the homogenized version of F , that is, the
polynomial map F̂ : Ê → Ê associated with the homoge-
nized version f : (Ê)m → Ê of the polar form f : Em → E
of F : E → E .
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Thus, DuF (a) exists iff the limit

lim
t→0, t�=0

F̂ (a + t−→u ) − F̂ (a)

t

exists, and in this case, this limit is DuF (a) = DuF̂ (a).
We get

DuF (a) = mf̂ (a, . . . , a︸ ︷︷ ︸
m−1

,−→u ).

By a simple, induction, we can prove the following lemma.

Lemma 12.2.3 Given an affine polynomial function
F : E → E of polar degree m, where E and E are

normed affine spaces, for any k nonzero vectors −→u1 ,

. . ., −→uk ∈ −→
E , where 1 ≤ k ≤ m, the k-th directional

derivative Du1 . . . Duk
F (a) can be computed from the

homogenized polar form f̂ of F as follows:

Du1 . . . Duk
F (a) = mk f̂ (a, . . . , a︸ ︷︷ ︸

m−k

,−→u1 , . . . ,
−→uk ).

If E has finite dimension,

DkF (a)(−→u1 , . . . ,
−→uk ) = mk f̂ (a, . . . , a︸ ︷︷ ︸

m−k

,−→u1 , . . . ,
−→uk ).


