
Chapter 11

Least Squares, Pseudo-Inverses, PCA
& SVD

11.1 Least Squares Problems and Pseudo-Inverses

The method of least squares is a way of “solving” an
overdetermined system of linear equations

Ax = b,

i.e., a system in which A is a rectangular m × n-matrix
with more equations than unknowns (when m > n).

Historically, the method of least square was used byGauss
and Legendre to solve problems in astronomy and geodesy.
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The method was first published by Legendre in 1805 in a
paper on methods for determining the orbits of comets.

However, Gauss had already used the method of least
squares as early as 1801 to determine the orbit of the
asteroid Céres, and he published a paper about it in 1810
after the discovery of the asteroid Pallas. Incidentally,
it is in that same paper that Gaussian elimination using
pivots is introduced.

The reason why more equations than unknowns arise in
such problems is that repeated measurements are taken
to minimize errors.

This produces an overdetermined and often inconsistent
system of linear equations.

For example, Gauss solved a system of eleven equations
in six unknowns to determine the orbit of the asteroid
Pallas.
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As a concrete illustration, suppose that we observe the
motion of a small object, assimilated to a point, in the
plane.

From our observations, we suspect that this point moves
along a straight line, say of equation y = dx + c.

Suppose that we observed the moving point at three dif-
ferent locations (x1, y1), (x2, y2), and (x3, y3).

Then, we should have

c + dx1 = y1,

c + dx2 = y2,

c + dx3 = y3.

If there were no errors in our measurements, these equa-
tions would be compatible, and c and d would be deter-
mined by only two of the equations.
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However, in the presence of errors, the system may be
inconsistent. Yet, we would like to find c and d!

The idea of the method of least squares is to determine
(c, d) so that it minimizes the sum of the squares of
the errors , namely

(c + dx1 − y1)
2 + (c + dx2 − y2)

2 + (c + dx3 − y3)
2.

In general, for an overdetermined m× n system Ax = b,
what Gauss and Legendre discovered is that there are
solutions x minimizing

‖Ax− b‖2

and that these solutions are given by the square n × n
system

A$Ax = A$b.
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Furthermore, when the columns of A are linearly inde-
pendent , it turns out that A$A is invertible, and so x is
unique and given by

x = (A$A)−1A$b.

Note that A$A is a symmetric matrix, one of the nice fea-
tures of the so-called normal equations of a least squares
problem. For instance, the normal equations for the above
problem are

(
3 x1 + x2 + x3

x1 + x2 + x3 x21 + x22 + x23

)(
c
d

)

=

(
y1 + y2 + y3

x1y1 + x2y2 + x3y3

)
.

In fact, given any real m × n-matrix A, there is al-
ways a unique x+ of minimum norm that minimizes
‖Ax− b‖2, even when the columns of A are linearly
dependent .

How do we prove this, and how do we find x+?
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Theorem 11.1.1 Every linear system Ax = b, where
A is an m× n-matrix, has a unique least-squares so-
lution x+ of smallest norm.

Proof . Geometry offers a nice proof of the existence and
uniqueness of x+.

Indeed, we can interpret b as a point in the Euclidean
(affine) space Rm, and the image subspace of A (also
called the column space of A) as a subspace U of Rm

(passing through the origin).

Then, we claim that x minimizes ‖Ax− b‖2 iff Ax is the
orthogonal projection p of b onto the subspace U , which
is equivalent to pb = b− Ax being orthogonal to U .

First of all, if U⊥ is the vector space orthogonal to U , the
affine space b+U⊥ intersects U in a unique point p (this
follows from Lemma 2.9.3).
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Next, for any point y ∈ U , the vectors py and bp are
orthogonal, which implies that

‖by‖2 = ‖bp‖2 + ‖py‖2 .

Thus, p is indeed the unique point in U that minimizes
the distance from b to any point in U .

To show that there is a unique x+ of minimum norm
minimizing ‖Ax− b‖2, we use the fact that

Rn = KerA⊕ (KerA)⊥.

Indeed, every x ∈ Rn can be written uniquely as
x = u+v, where u ∈ KerA and v ∈ (KerA)⊥, and since
u and v are orthogonal,

‖x‖2 = ‖u‖2 + ‖v‖2 .
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Furthermore, since u ∈ KerA, we have Au = 0, and
thus Ax = p iff Av = p, which shows that the solutions
of Ax = p for which x has minimum norm must belong
to (KerA)⊥.

However, the restriction of A to (KerA)⊥ is injective.

This shows that there is a unique x of minimum norm
minimizing ‖Ax− b‖2, and that it must belong to (KerA)⊥.

The proof also shows that x minimizes ‖Ax− b‖2 iff
pb = b−Ax is orthogonal to U , which can be expressed
by saying that b − Ax is orthogonal to every column of
A. However, this is equivalent to

A$(b− Ax) = 0, i.e. A$Ax = A$b.
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Finally, it turns out that the minimum norm least squares
solution x+ can be found in terms of the pseudo-inverse
A+ of A, which is itself obtained from the SVD of A.

If A = V DU$, with

D = diag(λ1, . . . , λr, 0, . . . , 0),

where D is an m× n matrix and λi > 0, letting

D+ = diag(1/λ1, . . . , 1/λr, 0, . . . , 0),

an n×m matrix, the pseudo-inverse of A is defined as

A+ = UD+V $.

Actually, it seems that A+ depends on the specific choice
of U and V in an SVD (U,D, V ) for A, but the next
lemma shows that this is not so.
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Theorem 11.1.2 The least-squares solution of small-
est norm of the linear system Ax = b, where A is an
m× n-matrix, is given by

x+ = A+b = UD+V $b.

Proof . First, assume that A is a (rectangular) diagonal
matrix D, as above. Then, since x minimizes ‖Dx− b‖2
iff Dx is the projection of b onto the image subspace F
of D, it is fairly obvious that x+ = D+b.

Otherwise, we can write

A = V DU$,

where U and V are orthogonal. However, since V is an
isometry,

‖Ax− b‖ =
∥∥V DU$x− b

∥∥ =
∥∥DU$x− V $b

∥∥ .
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Letting y = U$x, we have ‖x‖ = ‖y‖ since U is an isom-
etry, and since U is surjective, ‖Ax− b‖ is minimized iff∥∥Dy − V $b

∥∥ is minimized, and we showed that the least
solution is

y+ = D+V $b.

Since y = U$x, with ‖x‖ = ‖y‖, we get

x+ = UD+V $b = A+b.

Thus, the pseudo-inverse provides the optimal solution to
the least-squares problem.
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By Lemma 11.1.2 and Theorem 11.1.1, A+b is uniquely
defined by every b, and thus, A+ depends only on A.

The following properties due to Penrose characterize the
pseudo-inverse of a matrix, and give another justification
of the uniqueness of A:

Lemma 11.1.3 Given any m × n-matrix A (real or
complex), the pseudo-inverse A+ of A is the unique
n×m-matrix satisfying the following properties:

AA+A = A,

A+AA+ = A+,

(AA+)$ = AA+,

(A+A)$ = A+A.
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If A is an m× n-matrix of rank n (and so, m ≥ n), it is
immediately shown that the QR-decomposition in terms
of Householder transformations applies as follows:

There are n m × m-matrices H1, . . . , Hn, Householder
matrices or the identity, and an upper triangular m× n-
matrix R or rank n, such that

A = H1 · · ·HnR.

Then, because each Hi is an isometry,

‖Ax− b‖ = ‖Rx−Hn · · ·H1b‖ ,

and the least-square problem Ax = b is equivalent to the
system

Rx = Hn · · ·H1b.
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Now, the system

Rx = Hn · · ·H1b

is of the form
(

R1

0m−n

)
x =

(
c
d

)
,

where R1 is an invertible n×n-matrix (since A has rank
n), c ∈ Rn, and d ∈ Rm−n, and the least square solution
of smallest norm is

x+ = R−1
1 c.

Since R1 is a triangular matrix, it is very easy to invert
R1.
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Among the many applications of SVD, a very useful one
is data compression , notably for images. In order to
make precise the notion of closeness of matrices, we review
briefly norms and matrix norms .

Definition 11.1.4 Given a real or complex vector space,
E, a norm on E is a function, ‖ ‖ :E → R, with the fol-
lowing properties:

(a) ‖u‖ ≥ 0 and ‖u‖ = 0 iff u = 0, for all u ∈ E.

(b) ‖αu‖ = |α| ‖u‖, for all u ∈ E and all α ∈ R (resp.
α ∈ C).

(c) ‖u + v‖ ≤ ‖u‖ + ‖v‖ (triangle inequality)

A vector space E together with a norm ‖ ‖ is called a
normed vector space.

A familiar example of a norm on Rn (resp. Cn) is the lp
norm

‖u‖p =
(

n∑

i=1

|ui|p
)1

p

,

where p ≥ 1.
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When p = 1, we have

‖u‖1 =
n∑

i=1

|ui|,

when p = 2, we have the Euclidean norm

‖u‖2 =

√√√√
n∑

i=1

|ui|2,

and when p = ∞, we have

‖u‖∞ = max
1≤i≤n

|ui|.

Now, let E and and F be two normed vector spaces (we
will use the same notation, ‖ ‖, for the norms on E and
F ). If A:E → F is a linear map, we say that A is
bounded iff there is some constant, c ≥ 0, so that

‖Au‖ ≤ c ‖u‖ ,

for all u ∈ E.
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It is well known that a linear map is continuous iff it
is bounded . Also, if E is finite dimensional, then a linear
map is always bounded. The norms on E and F induce
a norm on bounded linear maps as follows:

Definition 11.1.5 Given two normed vector spaces, E
and F , for any linear map, A:E → F , we define ‖A‖ by

‖A‖ = sup
u ,=0

‖Au‖
‖u‖ = sup

‖u‖=1
‖Au‖ .

Proposition 11.1.6 Given two normed vector spaces,
E and F , the quantity ‖A‖ is a norm on bounded lin-
ear maps, A:E → F . Furthermore,
‖Au‖ ≤ ‖A‖ ‖u‖.

The norm, ‖A‖, on (bounded) linear maps defined as
above is called an operator norm or induced norm or
subordinate norm .
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From Proposition 11.1.6, we deduce that if A:E → F
and B:F → G are bounded linear maps, where E, F,G
are normed vector spaces, then

‖BA‖ ≤ ‖A‖ ‖B‖ .

Let us now consider m× n matrices. A matrix norm is
simply a norm on Rmn (or Cmn). Some authors require
a matrix norm to satisfy ‖AB‖ ≤ ‖A‖ ‖B‖, whenever
AB makes sense.

We immediately have the subordinate matrix norms in-
duced by the lp norms, but there are also useful matrix
norms that are not subordinate norms.

For example, we have the Frobenius norm (also known
as Schur norm or Hilbert norm !) defined so that, if
A = (ai j) is an m× n matrix, then

‖A‖F =

√∑

ij

|ai j|2.

We leave the following useful proposition as an exercise:
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Proposition 11.1.7 Let A be an m×n matrix (over
R or C) and let σ1 ≥ σ2 ≥ · · · ≥ σp be its singular
values (where p = min(m,n)). Then, the following
properties hold:

1. ‖Au‖ ≤ ‖A‖ ‖u‖, where ‖A‖ is a subordinate norm
and ‖Au‖2 ≤ ‖A‖F ‖u‖2, where ‖A‖F is the Frobe-
nius norm.

2. ‖AB‖ ≤ ‖A‖ ‖B‖, for a subordinate norm or the
Frobenius norm.

3. ‖UAV ‖ = ‖A‖, if U and V are orthogonal (or
unitary) and ‖ ‖ is the Frobenius norm or the sub-
ordinate norm ‖ ‖2.

4. ‖A‖∞ = maxi
∑

j |ai j|.
5. ‖A‖1 = maxj

∑
i |ai j|.

6. ‖A‖2 = σ1 =
√
λmax(A∗A), where λmax(A∗A) is the

largest eigenvalue of A∗A.

7. ‖A‖F =
√∑p

i=1 σ
2
i , where p = min(m,n).

8. ‖A‖2 ≤ ‖A‖F ≤ √
p ‖A‖2.

In (4), (5), (6), (8), the matrix norms are the sub-
ordinate norms induced by the corresponding norms
(‖ ‖∞, ‖ ‖1 and ‖ ‖2) on Rm and Rn.
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Having all this, given an m × n matrix of rank r, we
would like to find a best approximation of A by a matrix
B of rank k ≤ r (actually, k < r), so that ‖A− B‖2 (or
‖A−B‖F ) is minimized.

Proposition 11.1.8 Let A be an m × n matrix of
rank r and let V DU$ = A be an SVD for A. Write
ui for the columns of U , vi for the columns of V and
σ1 ≥ σ2 ≥ · · · ≥ σp for the singular values of A (p =
min(m,n)). Then, a matrix of rank k < r closest to
A (in the ‖ ‖2 norm) is given by

Ak =
k∑

i=1

σiviu
$
i = V diag(σ1, . . . , σk)U

$

and ‖A− Ak‖2 = σk+1.

Note that Ak can be stored using (m+n)k entries, as op-
posed tomn entries. When k << m, this is a substantial
gain.
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A nice example of the use of Proposition 11.1.8 in im-
age compression is given in Demmel (Applied Numerical
Linear Algebra), Chapter 3, Section 3.2.3, page 113-115;
see the Matlab demo.

An interesting topic that we have not addressed is the
actual computation of an SVD. This is a very interesting
but tricky subject.

Most methods reduce the computation of an SVD to the
diagonalization of a well chosen symmetric matrix (which
is not A$A!). Interested readers should read Section 5.4
of Demmel’s excellent book, which contains an overview
of most known methods and an extensive list of references.
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11.2 Principal Components Analysis (PCA)

Suppose we have a set of data consisting of n points
X1, . . . , Xn, with each Xi ∈ Rd viewed as a row vec-
tor .

Think of the Xi’s as persons, and if Xi = (xi 1, . . . , xi d),
each xi j is the value of some feature of that person. For
example, the Xi’s could be mathematicians, d = 2, and
the first component, xi 1, of Xi could be the year that Xi

was born and the second component, xi 2, the length of
the beard of Xi in centimetre. Here is a small data set:

Name year length
Carl Friedrich Gauss 1777 0
Camille Jordan 1838 12
Adrien-Marie Legendre 1752 0
Bernhard Riemann 1826 15
David Hilbert 1862 2
Henri Poincaré 1854 5
Emmy Noether 1882 0
Karl Weierstrass 1815 0
Eugenio Beltrami 1835 2
Hermann Schwarz 1843 20
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We usually form the n × d matrix, X , whose ith row is
Xi, with 1 ≤ i ≤ n. Then, the jth column is denoted Cj

(1 ≤ j ≤ d). (It is sometimes called a feature vector , but
this terminology is far from being universally accepted. In
fact, many people in computer vision call the data points,
Xi, feature vectors!)

The purpose of principal components analysis , for short,
PCA, is to identify patterns in data and understand the
variance-covariance structure of the data. This is useful
for

1. Data reduction: Often much of the variability of the
data can be accounted for by a smaller number of
principal components .

2. Interpretation: PCA can show relationships that were
not previously suspected.
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Given a vector (a sample of measurements)
x = (x1, . . . , xn) ∈ Rn, recall that the mean (or
average), x, of x is

x =

∑n
i=1 xi
n

.

We let x− x denote the centered data point

(x1 − x, . . . , xn − x).

In order to measure the spread of the xi’s around the
mean, we define the sample variance (for short,
variance), var(x) (or s2), of the sample x, by

var(x) =

∑n
i=1(xi − x)2

n− 1
.

There is a reason for using n− 1 instead of n. The above
definition makes var(x) an unbiased estimator of the vari-
ance of the random variable being sampled. However, we
don’t need to worry about this.

Curious readers will find an explanation in Charles Ep-
stein’s book, Introduction to the Mathematics of Med-
ical Imaging , Chapter 14, Section 14.5, pages 556-558,
or in any decent statistics book.
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Given two vectors x = (x1, . . . , xn) and
y = (y1, . . . , yn), the sample covariance (for short,
covariance) of x and y is given by

cov(x, y) =

∑n
i=1(xi − x)(yi − y)

n− 1
.

The covariance of x and y measures how x and y vary
from the mean with respect to each other . Obviously,
cov(x, y) = cov(y, x) and cov(x, x) = var(x).

Note that

cov(x, y) =
(x− x)$(y − y)

n− 1
.

We say that x and y are uncorrelated iff cov(x, y) = 0.



462 CHAPTER 11. LEAST SQUARES, PSEUDO-INVERSES, PCA

Finally, given an n × d matrix, X , of n points, Xi, for
PCA to be meaningful, it will be necessary to translate
the origin to the centroid (or center of gravity), µ, of
the Xi’s, defined by

µ =
1

n
(X1 + · · · +Xn).

Observe that if µ = (µ1, . . . , µd), then µj is the mean of
the vector Cj (the j-th column of X).

We let X − µ denote the matrix whose ith row is the
centered data point Xi − µ (1 ≤ i ≤ n).

Then, the sample covariance matrix (for short,
covariance matrix ) of X is the d× d symmetric matrix

Σ =
1

n− 1
(X − µ)$(X − µ) = (cov(Ci, Cj)).

Remark: The factor 1
n−1 is irrelevant for our purposes

and can be ignored.



11.2. PRINCIPAL COMPONENTS ANALYSIS (PCA) 463

Here is the matrix X − µ in the case of our bearded
mathematicians: Since

µ1 = 1828.4, µ2 = 5.6,

we get

Name year length
Carl Friedrich Gauss -51.4 -5.6
Camille Jordan 9.6 6.4
Adrien-Marie Legendre -76.4 -5.6
Bernhard Riemann -2.4 9.4
David Hilbert 33.6 -3.6
Henri Poincaré 25.6 -0.6
Emmy Noether 53.6 -5.6
Karl Weierstrass 13.4 -5.6
Eugenio Beltrami 6.6 -3.6
Hermann Schwarz 14.6 14.4
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We can think of the vector, Cj, as representing the
features of X in the direction ej (the j canonical basis
vector in Rd, namely ej = (0, . . . , 1, . . . 0), with a 1 in
the jth position).

If v ∈ Rd is a unit vector, we wish to consider the projec-
tion of the data points X1, . . . , Xn onto the line spanned
by v.

Recall from Euclidean geometry that if x ∈ Rd is any
vector and v ∈ Rd is a unit vector, the projection of x
onto the line spanned by v is

〈x, v〉v.

Thus, w.r.t. the basis, v, the projection of x has coordi-
nate 〈x, v〉. If x is represented by a row vector and v by
a column vector, then

〈x, v〉 = xv.
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Therefore, the vector, Y ∈ Rn, consisting of the coor-
dinates of the projections of X1, . . . , Xn onto the line
spanned by v is given by Y = Xv and this is the linear
combination

Xv = v1C1 + · · · + vdCd

of the columns of X (with v = (v1, . . . , vd)).

Observe that the centered point Y − Y is given by

Y − Y = v1(C1 − µ1) + · · · + vd(Cd − µd) = (X − µ)v

and if Y = Xv and Z = Xw, then

cov(Y, Z) =
((X − µ)v)$(X − µ)w

n− 1

= v$
1

n− 1
(X − µ)$(X − µ)w

= v$Σw.

where Σ is the covariance matrix of X .



466 CHAPTER 11. LEAST SQUARES, PSEUDO-INVERSES, PCA

Since Y − Y has zero mean, we have

var(Y ) = var(Y − Y ) = v$
1

n− 1
(X − µ)$(X − µ)v.

The above suggests that we should move the origin to the
centroid, µ, of the Xi’s and consider the matrix X − µ
of the centered data points Xi − µ.

From now on, beware that we denote the columns of
X − µ by C1, . . . , Cd and that Y denotes the centered
point Y = (X − µ)v =

∑d
j=1 vjCj, where v is a unit

vector.

Basic idea of PCA: The principal components of X
are uncorrelated projections, Y , of the data points X1,
. . ., Xn onto some directions v (where the v’s are unit
vectors) such that var(Y ) is maximal.

Thus, we have the definition:
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Definition 11.2.1 Given an n × d matrix X of data
points X1, . . . , Xn, if µ is the centroid of the Xi’s, then a
first principal component of X (first PC) is a centered
point, Y1 = (X − µ)v1, projection of X1, . . . , Xn onto
a direction v1 so that var(Y1) is maximized, where v1 is
a unit vector (Recall that Y1 = (X − µ)v1 is a linear
combination of the Cj’s, the columns of X − µ).

More generally, if Y1, . . . , Yk are k principal components
of X along some unit vectors v1, . . . , vk, where 1 ≤ k <
d, a (k + 1)th principal components of X ((k + 1)th
PC), is a centered point, Yk+1 = (X−µ)vk+1, projection
of X1, . . . , Xn onto some direction vk+1 so that var(Yk+1)
is maximized, subject to cov(Yh, Yk+1) = 0 for all h with
1 ≤ h ≤ k, and where vk+1 is a unit vector (Recall that
Yh = (X−µ)vh is a linear combination of the Cj’s). The
vh are called principal directions .

The following lemma is the key to the main result about
PCA:



468 CHAPTER 11. LEAST SQUARES, PSEUDO-INVERSES, PCA

Lemma 11.2.2 If A is a symmetric d×d matrix with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd and if (u1, . . . , ud) is
any orthonormal basis of eigenvectors of A where ui
is a unit eigenvector associated with λi, then

max
x ,=0

x$Ax

x$x
= λ1

(with the maximum attained for x = u1) and

max
x ,=0,x∈{u1,...,uk}⊥

x$Ax

x$x
= λk+1

(with the maximum attained for x = uk+1), where 1 ≤
k ≤ d− 1.

The quantity
x$Ax

x$x
is known as the Rayleigh-Ritz ratio.

We then have the following fundamental result showing
how the SVD of X yields the PC’s :
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Theorem 11.2.3 (SVD yields PCA) Let X be an n×
d matrix of data points, X1, . . . , Xn, and let µ be the
centroid of the Xi’s. If X − µ = V DU$ is an SVD
decomposition of X − µ and if the main diagonal of
D consists of the singular values σ1 ≥ σ2 ≥ · · · ≥ σd,
then the centered points Y1, . . . , Yd where

Yk = (X − µ)uk = kth column of V D

and uk is the kth column of U , are d principal com-
ponents of X. Furthermore,

var(Yk) =
σ2
k

n− 1

and cov(Yh, Yk) = 0, whenever h ,= k and 1 ≤ k, h ≤ d.

The d columns u1, . . . , ud of U are usually called the prin-
cipal directions of X − µ (and X).

We note that, not only cov(Yh, Yk) = 0 whenever h ,= k,
but the directions u1, . . . , ud along which the data are
projected are pairwise orthogonal.
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We know from our study of SVD that σ2
1, . . . , σ

2
d are the

eigenvalues of the symmetric, positive semi-definite ma-
trix (X−µ)$(X−µ) and that u1, . . . , ud are correspond-
ing eigenvectors.

Numerically, it is preferable to use SVD on X −µ rather
than to compute explicitly (X − µ)$(X − µ) and then
diagonalize it.

Indeed, the explicit computation of A$A from a matrix
A can be numerically quite unstable and good SVD algo-
rithms avoid computing A$A explicitly.

In general, as an SVD of X is not unique, the principal
directions u1, . . . , ud are not unique. This can happen
when a data set has some rotational symmetries and, in
such a case, PCA is not a very good method for analyzing
the data set.
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A problem very close to PCA (and based on least squares)
is to best approximate a data set of n points X1, . . . , Xn,
with Xi ∈ Rd, by a p-dimensional affine subspace, A,
of Rd, with 1 ≤ p ≤ d − 1 (the terminology rank d − p
is also used).

First, consider p = d − 1. Then A = A1 is an affine
hyperplane (in Rd) and it is given by an equation of the
form

a1x1 + · · · + adxd + c = 0.

By best approximation , we mean that (a1, . . . , ad, c) solves
the homogeneous linear system




x1 1 · · · x1 d 1
... ... ... ...

xn 1 · · · xnd 1









a1
...
ad
c



 =





0
...
0
0





in the least squares sense, subject to the condition that
a = (a1, . . . , ad) is a unit vector , that is, a$a = 1, where
Xi = (xi 1, · · · , xi d).
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First, if we form the symmetric matrix



x1 1 · · · x1 d 1
... ... ... ...

xn 1 · · · xnd 1




$


x1 1 · · · x1 d 1
... ... ... ...

xn 1 · · · xnd 1





involved in the normal equations, we see that the bottom
row (and last column) of that matrix is

nµ1 · · · nµd n,

where nµj =
∑n

i=1 xi j is n times the mean of the column
Cj of X .

Therefore, if (a1, . . . , ad, c) is a least squares solution, i.e.,
a solution of the normal equations, we must have

nµ1a1 + · · · + nµdad + nc = 0,

i.e.,
a1µ1 + · · · + adµd + c = 0,

which means that the hyperplane A1 must pass through
the centroid, µ, of the data points X1, . . . , Xn.
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Then, we can rewrite the original system w.r.t. the cen-
tered data, Xi− µ, and we find that the variable c drops
out and we get the system

(X − µ)a = 0,

where a = (a1, . . . , ad).

Thus, we are looking for a unit vector, a, solving
(X−µ)a = 0 in the least squares sense, i.e., some a such
that a$a = 1 minimizing

a$(X − µ)$(X − µ)a.

Compute some SVD, V DU$, of X − µ where the main
diagonal of D consists of the singular values
σ1 ≥ σ2 ≥ · · · ≥ σd of X − µ arranged in descending
order . Then

a$(X − µ)$(X − µ)a = a$UD2U$a,

where D2 = diag(σ2
1, . . . , σ

2
d) is a diagonal matrix, so

pick a to be the last column in U (corresponding to the
smallest eigenvalue, σ2

d, of (X − µ)$(X − µ)).

This is a solution to our best fit problem.
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Therefore, if Ud−1 is the linear hyperplane defined by a,
i.e.,

Ud−1 = {u ∈ Rd | 〈u, a〉 = 0},
where a is the last column in U for some SVD, V DU$,
of X − µ, we showed that the affine hyperplane,
A1 = µ + Ud−1, is a best approximation of the data set
X1, . . . , Xn in the least squares sense.

Is is easy to show that this hyperplane, A1 = µ + Ud−1,
minimizes the sum of the square distances of each Xi to
its orthogonal projection onto A1.

Also, since Ud−1 is the orthogonal complement of a, the
last column of U , we see that Ud−1 is spanned by the first
d−1 columns of U , i.e., the first d−1 principal directions
of X − µ!
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All this can be generalized to a best (d−k)-dimensional
affine subspace, Ak, approximating X1, . . . , Xn in the
least squares sense (1 ≤ k ≤ d− 1).

Such an affine subspace, Ak, is cut out by k independent
hyperplanes, Hi, (with 1 ≤ i ≤ k), each given by some
equation

ai 1x1 + · · · + ai dxd + ci = 0.

If we write ai = (ai 1, · · · , ai d), to say that the Hi are
independent means that a1, . . . , ak are linearly indepen-
dent. In fact, we may assume that a1, . . . , ak form an
orthonormal system .
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Then, finding a best (d− k)-dimensional affine subspace,
Ak, amounts to solving the homogeneous linear system




X 1 0 · · · 0 0 0
... ... ... . . . ... ... ...
0 0 0 · · · 0 X 1









a1
c1
...
ak
ck




=




0
...
0



 ,

in the least squares sense, subject to the conditions
a$i aj = δi j, for all i, j with 1 ≤ i, j ≤ k, where the
matrix of the system is a block diagonal matrix consisting
of k diagonal blocks (X, 1), where 1 denotes the column
vector (1, . . . , 1) ∈ Rn.

Again, it is easy to see that each hyperplane, Hi, must
pass through the centroid , µ, of X1, . . . , Xn, and by
switching to the centered data, Xi−µ, we get the system




X − µ 0 · · · 0

... ... . . . ...
0 0 · · · X − µ








a1
...
ak



 =




0
...
0



 ,

with a$i aj = δi j, for all i, j with 1 ≤ i, j ≤ k.
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If V DU$ = X − µ is an SVD decomposition, it is easy
to see that a least squares solution of this system is given
by the last k columns of U , assuming that the main
diagonal of D consists of the singular values
σ1 ≥ σ2 ≥ · · · ≥ σd of X − µ arranged in descending
order .

But now, the (d − k)-dimensional subspace, Ud−k, cut
out by the hyperplanes defined by a1, . . . , ak, is simply
the orthogonal complement of (a1, . . . , ak), which is the
subspace spanned by the first d− k columns of U !

So, the best (d− k)-dimensional affine subpsace, Ak, ap-
proximating X1, . . . , Xn in the least squares sense is

Ak = µ + Ud−k,

where Ud−k is the linear subspace spanned by the first
d − k principal directions of X − µ, i.e., the first d− k
columns of U .

Consequently, we get the following interesting interpreta-
tion of PCA (really, principal directions):
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Theorem 11.2.4 Let X be an n × d matrix of data
points, X1, . . . , Xn, and let µ be the centroid of the
Xi’s. If X − µ = V DU$ is an SVD decomposition of
X − µ and if the main diagonal of D consists of the
singular values σ1 ≥ σ2 ≥ · · · ≥ σd, then a best (d−k)-
dimensional affine approximation, Ak, of X1, . . . , Xn

in the least squares sense is given by

Ak = µ + Ud−k,

where Ud−k is the linear subspace spanned by the first
d−k columns of U , the first d−k principal directions
of X − µ (1 ≤ k ≤ d− 1).
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There are many applications of PCA to data compression,
dimension reduction, and pattern analysis.

The basic idea is that in many cases, given a data set
X1, . . . , Xn, with Xi ∈ Rd, only a “small” subset of
m < d of the features is needed to describe the data
set accurately.

If u1, . . . , ud, are the principal directions of X − µ, then
the first m projections of the data (the first m principal
components, i.e., the first m columns of V D) onto the
first m principal directions represent the data without
much loss of information.

Thus, instead of using the original data pointsX1, . . . , Xn,
with Xi ∈ Rd, we can use their projections onto the first
m principal directions, Y1, . . . , Ym, where Yi ∈ Rm and
m < d, obtaining a compressed version of the original
data set.
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For example, PCA is used in computer vision for face
recognition . Sirovitch and Kirby (1987) seem to be the
first to have the idea of using PCA to compress face im-
ages. They introduced the term eigenpicture to refer to
the principal directions, ui.

However, an explicit face recognition algorithm was only
given later by Turk and Pentland (1991). They renamed
eigenpictures as eigenfaces .

For details, see Chapter 22 (Section 22.3.2, page 508-511)
in Computer Vision, by Forsyth and Ponce, where you
will also find exact references to Turk and Pentland’s pa-
pers.

Another interesting application of PCA is to the recog-
nition of handwritten digits . Such an application is de-
scribed in Chapter 14 (Section 14.5.1, pages 485-490) of
The Elements of Statistical Learning , by Hastie, Tib-
shirani and Friedman.


