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Chapter 1

Introduction: Questions, Motivations,
Problems

Some problems:

1. Find the intersection of a plane and a line in R
3.

2. Given two triangles, T1 = (a1, b1, c1) and
T2 = (a2, b2, c2), in the plane R

2, find a simple (e.g.
linear, affine?) map sending T1 to T2.

When is such a map unique?

3. Same problem as above but for two triangles T1 and
T2 in R

3 (in 3D space).

4. Given two tetrahedra, T1 = (a1, b1, c1, d1) and
T2 = (a2, b2, c2, d2), in R

3, find a simple (e.g. linear,
affine?) map sending T1 to T2.

When is such a map unique?
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5. More generally, what are “linear gismos” (in R
n)?

6. Can we figure out when two linear gismos intersect?

How “big” is their intersection?

What’s the difference between points and vectors?

What’s the difference between linear subspaces and affine
subspaces?

What’s the difference between linear maps and affine
maps?
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Linear Gismos

The definition of linear gismos should involve some notion
of linear combination. Here are some variants:

1. linear combinations : λ1v1 + · · · + λkvk,
the vi’s are vectors in R

n and the λi ∈ R are
unrestricted .

span(v1, . . . , vk) = {λ1v1 + · · · + λkvk | λi ∈ R}
is a linear subspace of R

n.

2. positive combinations : λ1v1 + · · · + λkvk,
the vi’s are vectors in R

n and the λi ∈ R are
nonnegative, λi ≥ 0.

cone(v1, . . . , vk) = {λ1v1+· · ·+λkvk | λi ∈ R, λi ≥ 0}
is a polyhedral cone in R

n.

3. affine combinations : λ1v1 + · · · + λkvk,
the vi’s are vectors in R

n and the λi ∈ R

add up to 1: λ1 + · · · + λk = 1.

aff(v1, . . . , vk) =

{λ1v1 + · · · + λkvk | λi ∈ R,
∑

i

λi = 1}

is an affine subspace of R
n.
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4. convex combinations : λ1v1 + · · · + λkvk,
the vi’s are vectors in R

n and the λi ∈ R are
nonnegative and add up to 1: λi ≥ 0 and
λ1 + · · · + λk = 1.

conv(v1, . . . , vk) =

{λ1v1 + · · · + λkvk | λi ∈ R, λi ≥ 0,
∑

i

λi = 1}

is the convex hull of {v1, . . . , vk}; it is a convex poly-
tope in R

n.

What if we mix positive and convex combinations?

Sets of the form

conv(v1, . . . , vp) + cone(w1, . . . , wq)

are called polyhedra
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Figure 1.1: Affine subspace H, polyhedral cone C(P ) and convex polytope P

In Figure 1.1, the linear subspace spanned by the 5 vectors
whose tips are indicated by red dots is R

n;

The polyhedral cone spanned by these vectors is C(P );

The affine subspace spanned by these vectors is the hy-
perplane H ;

The convex hull of these vectors is the polytope P shown
in green (including its boundary).

The Conification Trick :

Polyhedra are intersections of polyhedral cones with
hyperplanes .
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Polyhedra are also “cut out” by hyperplanes.

An (affine) hyperplane, H , is the set points,
(x1, . . . , xn) ∈ R

n, satisfying an equation

a1x1 + · · · + anxn + b = 0

with ai �= 0 for some i.

A hyperplane defines two (closed) half spaces

H+ = {(x1, . . . , xn) ∈ R
n | a1x1 + · · · + anxn + b ≥ 0}

and

H− = {(x1, . . . , xn) ∈ R
n | a1x1 + · · · + anxn + b ≤ 0}.

A major theorem of convex geometry states that a subset
of R

n is a polyhedron (a V-polyhedron) iff it is the inter-
section of a finite number of half-spaces (anH-polyhedron).

Such a subset is a polytope (a V-polytope) iff it bounded
and the intersection of a finite number of half-spaces (an
H-polytope).
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Figure 1.2: Example of a polytope (a dodecahedron)

As we can see in Figure 1.2, a polytope has faces , edges
and vertices .

Do these things always exist (in higher dimensions)?

How do we find them?

Vertices (and extreme points) are important because a
continuous and convex function achieves its maxima (and
minima) at extreme points.

What’s the difference between vertices and extreme points?
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Polyhedra in Combinatorial Optimization Problems

Consider the 0-1 Knapsack Problem:

Given a set of n objects, each with a value, pj, and a list
of m “weights”, W1j, . . . , Wmj, choose a subset of these
objects to obtain a collection whose total value is as large
as possible and so that the total weights are less than
some given limits.

The above can be formalized as

maximize

n∑
j=1

pjxj

subject to

n∑
j=1

Wijxj ≤ ci, 1 ≤ i ≤ m,

xj ∈ {0, 1}, 1 ≤ j ≤ n,

where the ci’s are maximum capacities (weights, dimen-
sion, etc.).

This problem is hard to solve (in fact, NP-hard!)
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We can try solving an easier problem by relaxing the
0-1-constraint to

0 ≤ xj ≤ 1.

We obtain a fractional packing problem, which can be
stated in matrix form as follows:

maximize p�x

subject to Ax ≤ c

x ≥ 0,

where x denotes (x1, . . . , xn) as a column vector, simi-

larly for p, A =

(
W
I

)
(an (m + n) × n matrix) and c

is the column vector corresponding to

(c1, . . . , cm, 1, . . . , 1︸ ︷︷ ︸
n

).

The above is a linear program (for short, LP).

Observe that the constaints define the intersection of some
half-spaces, namely, a polyhedron.

Thus, it would be useful to understand better the struc-
ture of polyhedra and how to maximize (or minimize)
functions on them, especially convex functions.
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Solving Inconsistent Linear Systems

How does one solve an “inconsistent” linear system

Ax = b,

e.g., when there are more equations than variables?

Such problems often arise when trying to fit some data.
For example, we may have a set of 3D data points,

{p1, . . . , pn},
and we observe that these points are coplanar. We would
like to find a plane that “best fits” our data points. If the
equation of such a plane is

ax + by + cz + d = 0,

we would like this equation to be satisfied for all the pi’s,
which leads to a system of n equations in 4 unknowns,
with pi = (xi, yi, zi);

ax1 + by1 + cz1 + d = 0
... ...

axn + byn + czn + d = 0.
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However, if n is larger than 4, such a system generally
has no solution besides the trivial solution a = b = c =
d = 0.

Fortunately, every n × m-matrix A can be written as

A = V DU�

where U and V are orthogonal and D is a rectangular di-
agonal matrix with non-negative entries (singular value
decomposition, or SVD).

The SVD can be used solve an “inconsistent” linear sys-
tem

Ax = b.

We solve the least squares problem:
Minimize ‖Ax − b‖.

It can be shown that there is a vector x of smallest
norm minimizing ‖Ax − b‖. It is given by the (Penrose)
pseudo-inverse of A (itself given by the SVD).

For our plane fitting problem, we minimize
n∑

i=1

(axi + byi + czi + d)2.
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Actually, take a closer look at this solution of the plane
fitting problem. We will need to revisit this issue later.

All this suggests studying some basic of
Affine Geometry, Euclidean Geometry and Con-
vex Geometry.


