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3.3 The Lorentz Groups O(n, 1), SO(n, 1) and SO0(n, 1)

The Lorentz group provides another interesting example.
Moreover, the Lorentz group SO(3, 1) shows up in an
interesting way in computer vision.

Denote the p× p-identity matrix by Ip, for p, q,≥ 1, and
define

Ip,q =

(
Ip 0
0 −Iq

)
.

If n = p + q, the matrix Ip,q is associated with the non-
degenerate symmetric bilinear form

ϕp,q((x1, . . . , xn), (y1, . . . , yn)) =

p∑
i=1

xiyi −
n∑

j=p+1

xjyj

with associated quadratic form

Φp,q((x1, . . . , xn)) =

p∑
i=1

x2
i −

n∑
j=p+1

x2
j.
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In particular, when p = 1 and q = 3, we have the Lorentz
metric

x2
1 − x2

2 − x2
3 − x2

4.

In physics, x1 is interpreted as time and written t and
x2, x3, x4 as coordinates in R

3 and written x, y, z. Thus,
the Lozentz metric is usually written a

t2 − x2 − y2 − z2,

although it also appears as

x2 + y2 + z2 − t2,

which is equivalent but slightly less convenient for certain
purposes, as we will see later. The space R

4 with the
Lorentz metric is called Minkowski space. It plays an
important role in Einstein’s theory of special relativity.

The group O(p, q) is the set of all n × n-matrices

O(p, q) = {A ∈ GL(n, R) | A�Ip,qA = Ip,q}.
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This is the group of all invertible linear maps of R
n that

preserve the quadratic form, Φp,q, i.e., the group of isome-
tries of Φp,q.

Clearly, I2
p,q = I , so the condition A�Ip,qA = Ip,q is

equivalent to Ip,qA
�Ip,qA = I , which means that

A−1 = Ip,qA
�Ip,q.

Thus, AIp,qA
� = Ip,q also holds, which shows that O(p, q)

is closed under transposition (i.e., if A ∈ O(p, q), then
A� ∈ O(p, q)).

We have the subgroup

SO(p, q) = {A ∈ O(p, q) | det(A) = 1}
consisting of the isometries of (Rn, Φp,q) with determi-
nant +1. It is clear that SO(p, q) is also closed under
transposition.

The condition A�Ip,qA = Ip,q has an interpretation in
terms of the inner product ϕp,q and the columns (and
rows) of A.
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Indeed, if we denote the jth column of A by Aj, then

A�Ip,qA = (ϕp,q(Ai, Aj)),

so A ∈ O(p, q) iff the columns of A form an “orthonormal
basis” w.r.t. ϕp,q, i.e.,

ϕp,q(Ai, Aj) =

{
δij if 1 ≤ i, j ≤ p;
−δij if p + 1 ≤ i, j ≤ p + q.

The difference with the usual orthogonal matrices is that
ϕp,q(Ai, Ai) = −1, if p + 1 ≤ i ≤ p + q. As O(p, q)
is closed under transposition, the rows of A also form an
orthonormal basis w.r.t. ϕp,q.

It turns out that SO(p, q) has two connected components
and the component containing the identity is a subgroup
of SO(p, q) denoted SO0(p, q).

The group SO0(p, q) turns out to be homeomorphic to
SO(p) × SO(q) × R

pq, but this is not easy to prove.
(One way to prove it is to use results on pseudo-algebraic
subgroups of GL(n, C), see Knapp [?] or Gallier’s notes
on Clifford algebras (on the web)).
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We will now determine the polar decomposition and the
SVD decomposition of matrices in the Lorentz groups
O(n, 1) and SO(n, 1).

Write J = In,1 and, given any A ∈ O(n, 1), write

A =

(
B u
v� c

)
,

where B is an n× n matrix, u, v are (column) vectors in
R

n and c ∈ R.

We begin with the polar decomposition of matrices in the
Lorentz groups O(n, 1).

Proposition 3.3.1 Every matrix A ∈ O(n, 1) has a
polar decomposition of the form

A =

(
Q 0
0 1

)(√
I + vv� v

v� c

)

or

A =

(
Q 0
0 −1

) (√
I + vv� v

v� c

)
,

where Q ∈ O(n) and c =
√

‖v‖2 + 1.
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Thus, we see that O(n, 1) has four components corre-
sponding to the cases:

(1) Q ∈ O(n); det(Q) < 0; +1 as the lower right entry
of the orthogonal matrix;

(2) Q ∈ SO(n); −1 as the lower right entry of the or-
thogonal matrix;

(3) Q ∈ O(n); det(Q) < 0; −1 as the lower right entry
of the orthogonal matrix;

(4) Q ∈ SO(n); +1 as the lower right entry of the or-
thogonal matrix.

Observe that det(A) = −1 in cases (1) and (2) and that
det(A) = +1 in cases (3) and (4).
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Thus, (3) and (4) correspond to the group SO(n, 1), in
which case the polar decomposition is of the form

A =

(
Q 0
0 −1

) (√
I + vv� v

v� c

)
,

where Q ∈ O(n), with det(Q) = −1 and c =
√

‖v‖2 + 1
or

A =

(
Q 0
0 1

)(√
I + vv� v

v� c

)

where Q ∈ SO(n) and c =
√

‖v‖2 + 1.

The components in (1) and (2) are not groups. We will
show later that all four components are connected and
that case (4) corresponds to a group (Proposition 3.3.7).

This group is the connected component of the identity
and it is denoted SO0(n, 1) (see Corollary 3.4.12).

For the time being, note that A ∈ SO0(n, 1) iff
A ∈ SO(n, 1) and an+1 n+1 (= c) > 0 (here, A = (ai j).)
In fact, we proved above that if an+1 n+1 > 0, then
an+1 n+1 ≥ 1.
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Remark: If we let

ΛP =

(
In−1,1 0

0 1

)
and ΛT = In,1,

where

In,1 =

(
In 0
0 −1

)
,

then we have the disjoint union

O(n, 1) = SO0(n, 1) ∪ ΛPSO0(n, 1)

∪ ΛTSO0(n, 1) ∪ ΛPΛTSO0(n, 1).

In order to determine the SVD of matrices in SO0(n, 1),
we analyze the eigenvectors and the eigenvalues of the
positive definite symmetric matrix

S =

(√
I + vv� v

v� c

)

involved in Proposition 3.3.1.
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Such a matrix is called a Lorentz boost . Observe that if
v = 0, then c = 1 and S = In+1.

Proposition 3.3.2 Assume v �= 0. The eigenvalues
of the symmetric positive definite matrix

S =

(√
I + vv� v

v� c

)
,

where c =
√

‖v‖2 + 1, are 1 with multiplicity n − 1,

and eα and e−α each with multiplicity 1 (for some
α ≥ 0). An orthonormal basis of eigenvectors of S
consists of vectors of the form(

u1

0

)
, . . . ,

(
un−1

0

)
,

( v√
2‖v‖
1√
2

)
,

( v√
2‖v‖

− 1√
2

)
,

where the ui ∈ R
n are all orthogonal to v and pairwise

orthogonal.



3.3. THE LORENTZ GROUPS O(N, 1), SO(N, 1) AND SO0(N, 1) 199

Corollary 3.3.3 The singular values of any matrix
A ∈ O(n, 1) are 1 with multiplicity n−1, eα, and e−α,
for some α ≥ 0.

Note that the case α = 0 is possible, in which case, A is
an orthogonal matrix of the form(

Q 0
0 1

)
or

(
Q 0
0 −1

)
,

with Q ∈ O(n). The two singular values eα and e−α tell
us how much A deviates from being orthogonal.

We can now determine a convenient form for the SVD of
matrices in O(n, 1).
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Theorem 3.3.4 Every matrix A ∈ O(n, 1) can be
written as

A =

(
P 0
0 ε

)



1 · · · 0 0 0
... . . . ... ... ...
0 · · · 1 0 0
0 · · · 0 cosh α sinh α
0 · · · 0 sinh α cosh α




(
Q� 0
0 1

)

with ε = ±1, P ∈ O(n) and Q ∈ SO(n). When
A ∈ SO(n, 1), we have det(P )ε = +1, and when
A ∈ SO0(n, 1), we have ε = +1 and P ∈ SO(n), that
is,

A =

(
P 0
0 1

)



1 · · · 0 0 0
... . . . ... ... ...
0 · · · 1 0 0
0 · · · 0 cosh α sinh α
0 · · · 0 sinh α cosh α




(
Q� 0
0 1

)

with P ∈ SO(n) and Q ∈ SO(n).
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Remark: We warn our readers about Chapter 6 of Baker’s
book [?]. Indeed, this chapter is seriously flawed.

The main two Theorems (Theorem 6.9 and Theorem 6.10)
are false and as consequence, the proof of Theorem 6.11 is
wrong too. Theorem 6.11 states that the exponential map
exp: so(n, 1) → SO0(n, 1) is surjective, which is correct,
but known proofs are nontrivial and quite lengthy (see
Section 5.5).

The proof of Theorem 6.12 is also false, although the
theorem itself is correct (this is our Theorem 5.5.7, see
Section 5.5).

For a thorough analysis of the eigenvalues of Lorentz
isometries (and much more), one should consult Riesz
[?] (Chapter III).

Clearly, a result similar to Theorem 3.3.4 also holds for
the matrices in the groups O(1, n), SO(1, n) and SO0(1, n).
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For example, every matrix A ∈ SO0(1, n) can be written
as

A =

(
1 0
0 P

)



cosh α sinh α 0 · · · 0
sinh α cosh α 0 · · · 0

0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1




(
1 0
0 Q�

)
,

where P, Q ∈ SO(n).

In the case n = 3, we obtain the proper orthochronous
Lorentz group, SO0(1, 3), also denoted Lor(1, 3). By
the way, O(1, 3) is called the (full) Lorentz group and
SO(1, 3) is the special Lorentz group.
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Theorem 3.3.4 (really, the version for SO0(1, n)) shows
that the Lorentz group SO0(1, 3) is generated by the ma-
trices of the form(

1 0
0 P

)
with P ∈ SO(3)

and the matrices of the form


cosh α sinh α 0 0
sinh α cosh α 0 0

0 0 1 0
0 0 0 1


 .

This fact will be useful when we prove that the homo-
morphism ϕ:SL(2, C) → SO0(1, 3) is surjective.

Remark: Unfortunately, unlike orthogonal matrices which
can always be diagonalized over C, not every matrix in
SO(1, n) can be diagonalized for n ≥ 2. This has to do
with the fact that the Lie algebra so(1, n) has non-zero
idempotents (see Section 5.5).
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It turns out that the group SO0(1, 3) admits another
interesting characterization involving the hypersurface

H = {(t, x, y, z) ∈ R
4 | t2 − x2 − y2 − z2 = 1}.

This surface has two sheets and it is not hard to show
that SO0(1, 3) is the subgroup of SO(1, 3) that preserves
these two sheets (does not swap them).

Actually, we will prove this fact for any n. In preparation
for this we need some definitions and a few propositions.

Let us switch back to SO(n, 1). First, as a matter of
notation, we write every u ∈ R

n+1 as u = (u, t), where
u ∈ R

n and t ∈ R, so that the Lorentz inner product can
be expressed as

〈u, v〉 = 〈(u, t), (v, s)〉 = u · v − ts,

where u · v is the standard Euclidean inner product (the
Euclidean norm of x is denoted ‖x‖).

Then, we can classify the vectors in R
n+1 as follows:
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Definition 3.3.5 A nonzero vector, u = (u, t) ∈ R
n+1

is called

(a) spacelike iff 〈u, u〉 > 0, i.e., iff ‖u‖2 > t2;

(b) timelike iff 〈u, u〉 < 0, i.e., iff ‖u‖2 < t2;

(c) lightlike or isotropic iff 〈u, u〉 = 0, i.e., iff ‖u‖2 = t2.

A spacelike (resp. timelike, resp. lightlike) vector is said
to be positive iff t > 0 and negative iff t < 0. The set of
all isotropic vectors

Hn(0) = {u = (u, t) ∈ R
n+1 | ‖u‖2 = t2}

is called the light cone. For every r > 0, let

Hn(r) = {u = (u, t) ∈ R
n+1 | ‖u‖2 − t2 = −r},

a hyperboloid of two sheets.

It is easy to check that Hn(r) has two connected compo-
nents.
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Since every Lorentz isometry, A ∈ SO(n, 1), preserves
the Lorentz inner product, we conclude that A globally
preserves every hyperboloid, Hn(r), for r > 0.

We claim that every A ∈ SO0(n, 1) preserves both H+
n (r)

and H−
n (r). This follows immediately from

Proposition 3.3.6 If an+1 n+1 > 0, then every isom-
etry, A ∈ SO(n, 1), preserves all positive (resp. nega-
tive) timelike vectors and all positive (resp. negative)
lightlike vectors. Moreover, if A ∈ SO(n, 1) preserves
all positive timelike vectors, then an+1 n+1 > 0.

Let O+(n, 1) denote the subset of O(n, 1) consisting of
all matrices, A = (ai j), such that an+1 n+1 > 0.

Using Proposition 3.3.6, we can now show that O+(n, 1)
is a subgroup of O(n, 1) and that SO0(n, 1) is a subgroup
of SO(n, 1). Recall that

SO0(n, 1) = {A ∈ SO(n, 1) | an+1 n+1 > 0}.
Note that SO0(n, 1) = O+(n, 1) ∩ SO(n, 1).

Proposition 3.3.7 The set O+(n, 1) is a subgroup of
O(n, 1) and the set SO0(n, 1) is a subgroup of SO(n, 1).
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Next, we wish to prove that the action
SO0(n, 1)×H+

n (1) −→ H+
n (1) is transitive. For this, we

need the next two propositions.

Proposition 3.3.8 Let u = (u, t) and v = (v, s) be
nonzero vectors in R

n+1 with 〈u, v〉 = 0. If u is time-
like, then v is spacelike (i.e., 〈v, v〉 > 0).

Lemma 3.3.8 also holds if u = (u, t) is a nonzero isotropic
vector and v = (v, s) is a nonzero vector that is not
collinear with u: If 〈u, v〉 = 0, then v is spacelike (i.e.,
〈v, v〉 > 0).

Proposition 3.3.9 The action
SO0(n, 1) ×H+

n (1) −→ H+
n (1) is transitive.
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Let us find the stabilizer of en+1 = (0, . . . , 0, 1).

We must have Aen+1 = en+1, and the polar form implies
that

A =

(
P 0
0 1

)
, with P ∈ SO(n).

Therefore, the stabilizer of en+1 is isomorphic to SO(n)
and we conclude that H+

n (1), as a homogeneous space, is

H+
n (1) ∼= SO0(n, 1)/SO(n).

We will show in Section 3.4 that SO0(n, 1) is connected.
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3.4 Topological Groups

Since Lie groups are topological groups (and manifolds),
it is useful to gather a few basic facts about topological
groups.

Definition 3.4.1 A set, G, is a topological group iff

(a) G is a Hausdorff topological space;

(b) G is a group (with identity 1);

(c) Multiplication, ·: G × G → G, and the inverse op-
eration, G −→ G: g �→ g−1, are continuous, where
G × G has the product topology.

It is easy to see that the two requirements of condition
(c) are equivalent to

(c′) The map G×G −→ G: (g, h) �→ gh−1 is continuous.
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Given a topological group G, for every a ∈ G we de-
fine left translation as the map, La: G → G, such that
La(b) = ab, for all b ∈ G, and right translation as the
map, Ra: G → G, such that Ra(b) = ba, for all b ∈ G.

Observe that La−1 is the inverse of La and similarly, Ra−1

is the inverse of Ra. As multiplication is continuous, we
see that La and Ra are continuous.

Moreover, since they have a continuous inverse, they are
homeomorphisms.

As a consequence, if U is an open subset of G, then so is
gU = Lg(U) (resp. Ug = RgU), for all g ∈ G.

Therefore, the topology of a topological group (i.e., its
family of open sets) is determined by the knowledge of
the open subsets containing the identity, 1.
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Given any subset, S ⊆ G, let S−1 = {s−1 | s ∈ S}; let
S0 = {1} and Sn+1 = SnS, for all n ≥ 0. Property (c)
of Definition 3.4.1 has the following useful consequences:

Proposition 3.4.2 If G is a topological group and U
is any open subset containing 1, then there is some
open subset, V ⊆ U , with 1 ∈ V , so that V = V −1

and V 2 ⊆ U . Furthermore, V ⊆ U .

A subset, U , containing 1 such that U = U−1, is called
symmetric.

Using Proposition 3.4.2, we can give a very convenient
characterization of the Hausdorff separation property in
a topological group.
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Proposition 3.4.3 If G is a topological group, then
the following properties are equivalent:

(1) G is Hausdorff;

(2) The set {1} is closed;

(3) The set {g} is closed, for every g ∈ G.

If H is a subgroup of G (not necessarily normal), we
can form the set of left cosets, G/H and we have the
projection, p: G → G/H , where p(g) = gH = g.

If G is a topological group, then G/H can be given the
quotient topology , where a subset U ⊆ G/H is open iff
p−1(U) is open in G.

With this topology, p is continuous. The trouble is that
G/H is not necessarily Hausdorff. However, we can neatly
characterize when this happens.
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Proposition 3.4.4 If G is a topological group and H
is a subgroup of G then the following properties hold:

(1) The map p: G → G/H is an open map, which
means that p(V ) is open in G/H whenever V is
open in G.

(2) The space G/H is Hausdorff iff H is closed in G.

(3) If H is open, then H is closed and G/H has the
discrete topology (every subset is open).

(4) The subgroup H is open iff 1 ∈
◦
H (i.e., there is

some open subset, U , so that
1 ∈ U ⊆ H).

Proposition 3.4.5 If G is a connected topological
group, then G is generated by any symmetric neigh-
borhood, V , of 1. In fact,

G =
⋃
n≥1

V n.
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A subgroup, H , of a topological group G is discrete iff the
induced topology on H is discrete, i.e., for every h ∈ H ,
there is some open subset, U , of G so that U ∩H = {h}.

Proposition 3.4.6 If G is a topological group and H
is discrete subgroup of G, then H is closed.

Proposition 3.4.7 If G is a topological group and H
is any subgroup of G, then the closure, H, of H is a
subgroup of G.

Proposition 3.4.8 Let G be a topological group and
H be any subgroup of G. If H and G/H are con-
nected, then G is connected.
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Proposition 3.4.9 Let G be a topological group and
let V be any connected symmetric open subset con-
taining 1. Then, if G0 is the connected component of
the identity, we have

G0 =
⋃
n≥1

V n

and G0 is a normal subgroup of G. Moreover, the
group G/G0 is discrete.

A topological space, X is locally compact iff for every
point p ∈ X , there is a compact neighborhood, C of p,
i.e., there is a compact, C, and an open, U , with
p ∈ U ⊆ C. For example, manifolds are locally compact.
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Proposition 3.4.10 Let G be a topological group and
assume that G is connected and locally compact. Then,
G is countable at infinity, which means that G is the
union of a countable family of compact subsets. In
fact, if V is any symmetric compact neighborhood of
1, then

G =
⋃
n≥1

V n.

If a topological group, G acts on a topological space, X ,
and the action ·: G × X → X is continous, we say that
G acts continuously on X .

The following theorem gives sufficient conditions for the
quotient space, G/Gx, to be homeomorphic to X .
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Theorem 3.4.11 Let G be a topological group which
is locally compact and countable at infinity, X a lo-
cally compact Hausdorff topological space and assume
that G acts transitively and continuously on X. Then,
for any x ∈ X, the map ϕ: G/Gx → X is a homeo-
morphism.

Proof . A proof can be found in Mneimné and Testard
[?] (Chapter 2).

Remark: If a topological group acts continuously and
transitively on a Hausdorff topological space, then for ev-
ery x ∈ X , the stabilizer, Gx, is a closed subgroup of
G.

This is because, as the action is continuous, the projection
π: G −→ X : g �→ g · x is continuous, and
Gx = π−1({x}), with {x} closed.
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As an application of Theorem 3.4.11 and Proposition
3.4.8, we show that the Lorentz group SO0(n, 1) is con-
nected.

Firstly, it is easy to check that SO0(n, 1) and H+
n (1) sat-

isfy the assumptions of Theorem 3.4.11 because they are
both manifolds, although this notion has not been dis-
cussed yet (but will be in Chapter 4).

Also, we saw at the end of Section 3.3 that the action
·:SO0(n, 1)×H+

n (1) −→ H+
n (1) of SO0(n, 1) on H+

n (1)
is transitive, so that, as topological spaces

SO0(n, 1)/SO(n) ∼= H+
n (1).

Now, we already showed that H+
n (1) is connected so, by

Proposition 3.4.8, the connectivity of SO0(n, 1) follows
from the connectivity of SO(n) for n ≥ 1.
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The connectivity of SO(n) is a consequence of the sur-
jectivity of the exponential map (see Theorem 2.3.2) but
we can also give a quick proof using Proposition 3.4.8.

Indeed, SO(n + 1) and Sn are both manifolds and we
saw in Section 3.2 that

SO(n + 1)/SO(n) ∼= Sn.

Now, Sn is connected for n ≥ 1 and SO(1) ∼= S1 is
connected. We finish the proof by induction on n.

Corollary 3.4.12 The Lorentz group SO0(n, 1) is con-
nected; it is the component of the identity in O(n, 1).

Readers who wish to learn more about topological groups
may consult Sagle and Walde [?] and Chevalley [?] for
an introductory account, and Bourbaki [?], Weil [?] and
Pontryagin [?, ?], for a more comprehensive account (es-
pecially the last two references).
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