
Chapter 3

Review of Groups and Group Actions

3.1 Groups

Definition 3.1.1 A group is a set, G, equipped with
an operation, ·:G × G → G, having the following prop-
erties: · is associative, has an identity element , e ∈ G,
and every element in G is invertible (w.r.t. ·). More ex-
plicitly, this means that the following equations hold for
all a, b, c ∈ G:

(G1) a · (b · c) = (a · b) · c. (associativity);

(G2) a · e = e · a = a. (identity);

(G3) For every a ∈ G, there is some a−1 ∈ G such that
a · a−1 = a−1 · a = e (inverse).

A group G is abelian (or commutative) if

a · b = b · a
for all a, b ∈ G.
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Observe that a group is never empty, since e ∈ G.

Some examples of groups are given below:

Example 3.1

1. The set Z = {. . . ,−n, . . . ,−1, 0, 1, . . . , n . . .} of in-
tegers is a group under addition, with identity element
0. However, Z∗ = Z − {0} is not a group under mul-
tiplication.

2. The set Q of rational numbers is a group under addi-
tion, with identity element 0. The set Q∗ = Q − {0}
is also a group under multiplication, with identity el-
ement 1.

3. Similarly, the sets R of real numbers and C of complex
numbers are groups under addition (with identity el-
ement 0), and R∗ = R − {0} and C∗ = C − {0} are
groups under multiplication (with identity element 1).

4. The sets Rn and Cn of n-tuples of real or complex
numbers are groups under componentwise addition:

(x1, . . . , xn) + (y1, · · · , yn) = (x1 + yn, . . . , xn + yn),

with identity element (0, . . . , 0). All these groups are
abelian.
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5. Given any nonempty set S, the set of bijections
f :S → S, also called permutations of S, is a group
under function composition (i.e., the multiplication
of f and g is the composition g ◦ f ), with identity
element the identity function idS. This group is not
abelian as soon as S has more than two elements.

6. The set of n× n matrices with real (or complex) co-
efficients is a group under addition of matrices, with
identity element the null matrix. It is denoted by
Mn(R) (or Mn(C)).

7. The set R[X ] of polynomials in one variable with real
coefficients is a group under addition of polynomials.

8. The set of n × n invertible matrices with real (or
complex) coefficients is a group under matrix mul-
tiplication, with identity element the identity matrix
In. This group is called the general linear group and
is usually denoted by GL(n,R) (or GL(n,C)).

9. The set of n×n invertible matrices with real (or com-
plex) coefficients and determinant +1 is a group un-
der matrix multiplication, with identity element the
identity matrix In. This group is called the special
linear group and is usually denoted by SL(n,R) (or
SL(n,C)).
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10. The set of n × n invertible matrices with real coef-
ficients such that RR� = In and of determinant +1
is a group called the orthogonal group and is usually
denoted by SO(n) (where R� is the transpose of the
matrix R, i.e., the rows of R� are the columns of R).
It corresponds to the rotations in Rn.

11. Given an open interval ]a, b[, the set C(]a, b[) of con-
tinuous functions f : ]a, b[ → R is a group under the
operation f + g defined such that

(f + g)(x) = f (x) + g(x)

for all x ∈]a, b[.

Given a group, G, for any two subsets R, S ⊆ G, we let

RS = {r · s | r ∈ R, s ∈ S}.
In particular, for any g ∈ G, if R = {g}, we write

gS = {g · s | s ∈ S}
and similarly, if S = {g}, we write

Rg = {r · g | r ∈ R}.
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From now on, we will drop the multiplication sign and
write g1g2 for g1 · g2.

Definition 3.1.2 Given a group, G, a subset, H , of G
is a subgroup of G iff

(1) The identity element, e, of G also belongs to H
(e ∈ H);

(2) For all h1, h2 ∈ H , we have h1h2 ∈ H ;

(3) For all h ∈ H , we have h−1 ∈ H .

It is easily checked that a subset, H ⊆ G, is a subgroup
of G iff H is nonempty and whenever h1, h2 ∈ H , then
h1h

−1
2 ∈ H .

If H is a subgroup of G and g ∈ G is any element, the
sets of the form gH are called left cosets of H in G and
the sets of the form Hg are called right cosets of H in
G.
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The left cosets (resp. right cosets) of H induce an equiv-
alence relation, ∼, defined as follows: For all g1, g2 ∈ G,

g1 ∼ g2 iff g1H = g2H

(resp. g1 ∼ g2 iff Hg1 = Hg2).

Obviously, ∼ is an equivalence relation. Now, it is easy
to see that g1H = g2H iff g−1

2 g1 ∈ H , so the equivalence
class of an element g ∈ G is the coset gH (resp. Hg).

The set of left cosets of H in G (which, in general, is
not a group) is denoted G/H . The “points” of G/H are
obtained by “collapsing” all the elements in a coset into
a single element.
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It is tempting to define a multiplication operation on left
cosets (or right cosets) by setting

(g1H)(g2H) = (g1g2)H,

but this operation is not well defined in general, unless
the subgroup H possesses a special property.

This property is typical of the kernels of group homomor-
phisms, so we are led to

Definition 3.1.3 Given any two groups, G,G′, a func-
tion ϕ:G→ G′ is a homomorphism iff

ϕ(g1g2) = ϕ(g1)ϕ(g2), for all g1, g2 ∈ G.

Taking g1 = g2 = e (in G), we see that

ϕ(e) = e′,

and taking g1 = g and g2 = g−1, we see that

ϕ(g−1) = ϕ(g)−1.
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If ϕ:G → G′ and ψ:G′ → G′′ are group homomor-
phisms, then ψ ◦ ϕ:G→ G′′ is also a homomorphism.

If ϕ:G → G′ is a homomorphism of groups and H ⊆ G
and H ′ ⊆ G′ are two subgroups, then it is easily checked
that

Im H = ϕ(H) = {ϕ(g) | g ∈ H} is a subgroup of G′

(Im H is called the image of H by ϕ) and

ϕ−1(H ′) = {g ∈ G | ϕ(g) ∈ H ′} is a subgroup of G.

In particular, when H ′ = {e′}, we obtain the kernel ,
Ker ϕ, of ϕ. Thus,

Ker ϕ = {g ∈ G | ϕ(g) = e′}.

It is immediately verified that ϕ:G → G′ is injective iff
Ker ϕ = {e}. (We also write Ker ϕ = (0).)
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We say that ϕ is an isomorphism if there is a homomor-
phism, ψ:G′ → G, so that

ψ ◦ ϕ = idG and ϕ ◦ ψ = idG′.

In this case, ψ is unique and it is denoted ϕ−1.

When ϕ is an isomorphism we say the the groups G and
G′ are isomorphic. When G′ = G, a group isomorphism
is called an automorphism.

We claim that H = Ker ϕ satisfies the following prop-
erty:

gH = Hg, for all g ∈ G. (∗)
First, note that (∗) is equivalent to

gHg−1 = H, for all g ∈ G,

and the above is equivalent to

gHg−1 ⊆ H, for all g ∈ G. (∗∗)
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Definition 3.1.4 For any group, G, a subgroup,
N ⊆ G, is a normal subgroup of G iff

gNg−1 = N, for all g ∈ G.

This is denoted by N �G.

If N is a normal subgroup of G, the equivalence rela-
tion induced by left cosets is the same as the equivalence
induced by right cosets.

Furthermore, this equivalence relation, ∼, is a congru-
ence, which means that: For all g1, g2, g

′
1, g

′
2 ∈ G,

(1) If g1N = g′1N and g2N = g′2N , then g1g2N = g′1g
′
2N ,

and

(2) If g1N = g2N , then g−1
1 N = g−1

2 N .

As a consequence, we can define a group structure on
the set G/ ∼ of equivalence classes modulo ∼, by setting

(g1N)(g2N) = (g1g2)N.
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This group is denoted G/N . The equivalence class, gN ,
of an element g ∈ G is also denoted g. The map
π:G→ G/N , given by

π(g) = g = gN,

is clearly a group homomorphism called the canonical
projection.

Given a homomorphism of groups, ϕ:G→ G′, we easily
check that the groups G/Ker ϕ and Im ϕ = ϕ(G) are
isomorphic.

3.2 Group Actions and Homogeneous Spaces, I

If X is a set (usually, some kind of geometric space, for
example, the sphere in R3, the upper half-plane, etc.), the
“symmetries” of X are often captured by the action of a
group, G, on X .

In fact, if G is a Lie group and the action satisfies some
simple properties, the set X can be given a manifold
structure which makes it a projection (quotient) of G,
a so-called “homogeneous space”.
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Definition 3.2.1 Given a set, X , and a group, G, a left
action of G on X (for short, an action of G on X) is
a function, ϕ:G×X → X , such that

(1) For all g, h ∈ G and all x ∈ X ,

ϕ(g, ϕ(h, x)) = ϕ(gh, x),

(2) For all x ∈ X ,
ϕ(1, x) = x,

where 1 ∈ G is the identity element of G.

To alleviate the notation, we usually write g · x or even
gx for ϕ(g, x), in which case, the above axioms read:

(1) For all g, h ∈ G and all x ∈ X ,

g · (h · x) = gh · x,
(2) For all x ∈ X ,

1 · x = x.

The set X is called a (left) G-set .
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The action ϕ is faithful or effective iff for every g, if
g · x = x for all x ∈ X , then g = 1; the action ϕ is
transitive iff for any two elements x, y ∈ X , there is
some g ∈ G so that g · x = y.

Given an action, ϕ:G × X → X , for every g ∈ G, we
have a function, ϕg:X → X , defined by

ϕg(x) = g · x, for all x ∈ X.

Observe that ϕg has ϕg−1 as inverse, since

ϕg−1(ϕg(x)) = ϕg−1(g · x) = g−1 · (g · x)

= (g−1g) · x
= 1 · x = x,

and similarly, ϕg ◦ ϕg−1 = id.

Therefore, ϕg is a bijection of X , i.e., a permutation of
X .
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Moreover, we check immediately that

ϕg ◦ ϕh = ϕgh,

so, the map g 	→ ϕg is a group homomorphism from G
to SX , the group of permutations of X . With a slight
abuse of notation, this group homomorphism G −→ SX

is also denoted ϕ.

Conversely, it is easy to see that any group homomor-
phism, ϕ:G→ SX , yields a group action,
·:G×X −→ X , by setting

g · x = ϕ(g)(x).

Observe that an action, ϕ, is faithful iff the group
homomorphism, ϕ:G → SX, is injective. Also, we
have g · x = y iff g−1 · y = x.

Definition 3.2.2 Given two G-sets, X and Y , a func-
tion, f :X → Y , is said to be equivariant , or a G-map
iff for all x ∈ X and all g ∈ G, we have

f (g · x) = g · f (x).
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Remark: We can also define a right action,

·:X × G → X , of a group G on a set X , as a map
satisfying the conditions

(1) For all g, h ∈ G and all x ∈ X ,

(x · g) · h = x · gh,
(2) For all x ∈ X ,

x · 1 = x.

Every notion defined for left actions is also defined for
right actions, in the obvious way.

Here are some examples of (left) group actions.

Example 1: The unit sphere S2 (more generally, Sn−1).

Recall that for any n ≥ 1, the (real) unit sphere, Sn−1,
is the set of points in Rn given by

Sn−1 = {(x1, . . . , xn) ∈ Rn | x2
1 + · · · + x2

n = 1}.
In particular, S2 is the usual sphere in R3.
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Since the group SO(3) = SO(3,R) consists of (orienta-
tion preserving) linear isometries, i.e., linear maps that
are distance preserving (and of determinant +1), and ev-
ery linear map leaves the origin fixed, we see that any
rotation maps S2 into itself.

� Beware that this would be false if we considered the
group of affine isometries, SE(3), of E3. For example,

a screw motion does not map S2 into itself, even though
it is distance preserving, because the origin is translated.

Thus, we have an action, ·:SO(3) × S2 → S2, given by

R · x = Rx.

The verification that the above is indeed an action is triv-
ial. This action is transitive.

Similarly, for any n ≥ 1, we get an action,
·:SO(n) × Sn−1 → Sn−1. It is easy to show that this
action is transitive.



3.2. GROUP ACTIONS AND HOMOGENEOUS SPACES, I 151

Analogously, we can define the (complex) unit sphere,
Σn−1, as the set of points in Cn given by

Σn−1 = {(z1, . . . , zn) ∈ Cn | z1z1 + · · · + znzn = 1}.
If we write zj = xj + iyj, with xj, yj ∈ R, then

Σn−1 = {(x1, . . . , xn, y1, . . . , yn) ∈ R2n |
x2

1 + · · · + x2
n + y2

1 + · · · + y2
n = 1}.

Therefore, we can view the complex sphere, Σn−1 (in Cn),
as the real sphere, S2n−1 (in R2n).

By analogy with the real case, we can define an action,
·:SU(n) × Σn−1 → Σn−1, of the group, SU(n), of lin-
ear maps of Cn preserving the hermitian inner product
(and the origin, as all linear maps do) and this action is
transitive.
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� One should not confuse the unit sphere, Σn−1, with the
hypersurface, Sn−1

C , given by

Sn−1
C = {(z1, . . . , zn) ∈ Cn | z2

1 + · · · + z2
n = 1}.

For instance, one should check that a line, L, through
the origin intersects Σn−1 in a circle, whereas it intersects
Sn−1

C in exactly two points!

Example 2: The upper half-plane.

The upper half-plane, H , is the open subset of R2 con-
sisting of all points, (x, y) ∈ R2, with y > 0.

It is convenient to identify H with the set of complex
numbers, z ∈ C, such that � z > 0. Then, we can define
an action, ·:SL(2,R) × H → H , as follows: For any
z ∈ H , for any A ∈ SL(2,R),

A · z =
az + b

cz + d
,

where

A =

(
a b
c d

)
with ad− bc = 1.
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It is easily verified that A ·z is indeed always well defined
and in H when z ∈ H . This action is transitive (check
this).

Maps of the form

z 	→ az + b

cz + d
,

where z ∈ C and ad− bc = 1, are called Möbius trans-
formations .

Here, a, b, c, d ∈ R, but in general, we allow a, b, c, d ∈
C. Actually, these transformations are not necessarily
defined everywhere on C, for example, for z = −d/c if
c �= 0.

To fix this problem, we add a “point at infinity”, ∞, to
C and define Möbius transformations as functions
C ∪ {∞} −→ C ∪ {∞}. If c = 0, the Möbius trans-
formation sends ∞ to itself, otherwise, −d/c 	→ ∞ and
∞ 	→ a/c.
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The space C ∪ {∞} can be viewed as the plane, R2,
extended with a point at infinity. Using a stereographic
projection from the sphere S2 to the plane, (say from the
north pole to the equatorial plane), we see that there is a
bijection between the sphere, S2, and C ∪ {∞}.

More precisely, the stereographic projection of the sphere
S2 from the north pole, N = (0, 0, 1), to the plane z = 0
(extended with the point at infinity, ∞) is given by

(x, y, z) ∈ S2−{(0, 0, 1)} 	→
(

x

1 − z
,

y

1 − z

)
=
x + iy

1 − z
,

with (0, 0, 1) 	→ ∞.

The inverse stereographic projection is given by

(x, y) 	→
(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
,

with ∞ 	→ (0, 0, 1).
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Intuitively, the inverse stereographic projection “wraps”
the equatorial plane around the sphere. The space
C ∪ {∞} is known as the Riemann sphere.

We will see shortly that C∪{∞} ∼= S2 is also the complex
projective line, CP1.

In summary, Möbius transformations are bijections of the
Riemann sphere. It is easy to check that these transfor-
mations form a group under composition for all a, b, c, d ∈
C, with ad− bc = 1. This is the Möbius group, denoted
Möb+.

The Möbius transformations corresponding to the case
a, b, c, d ∈ R, with ad − bc = 1 form a subgroup of
Möb+ denoted Möb+

R.

The map from SL(2,C) to Möb+ that sendsA ∈ SL(2,C)
to the corresponding Möbius transformation is a surjec-
tive group homomorphism and one checks easily that its
kernel is {−I, I} (where I is the 2 × 2 identity matrix).
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Therefore, the Möbius group Möb+ is isomorphic to the
quotient group SL(2,C)/{−I, I}, denoted PSL(2,C).

This latter group turns out to be the group of projective
transformations of the projective space CP1.

The same reasoning shows that the subgroup Möb+
R is

isomorphic to SL(2,R)/{−I, I}, denoted PSL(2,R).

The group SL(2,C) acts on C∪{∞} ∼= S2 the same way
that SL(2,R) acts onH , namely: For anyA ∈ SL(2,C),
for any z ∈ C ∪ {∞},

A · z =
az + b

cz + d
,

where

A =

(
a b
c d

)
with ad− bc = 1.

This action is clearly transitive.
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One may recall from complex analysis that the (complex)
Möbius transformation

z 	→ z − i

z + i

is a biholomorphic isomorphism between the upper half
plane, H , and the open unit disk,

D = {z ∈ C | |z| < 1}.
As a consequence, it is possible to define a transitive ac-
tion of SL(2,R) on D. This can be done in a more direct
fashion, using a group isomorphic to SL(2,R), namely,
SU(1, 1) (a group of complex matrices), but we don’t
want to do this right now.
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Example 3: The set of n× n symmetric, positive, def-
inite matrices, SPD(n).

The group GL(n) = GL(n,R) acts on SPD(n) as fol-
lows: For all A ∈ GL(n) and all S ∈ SPD(n),

A · S = ASA�.

It is easily checked that ASA� is in SPD(n) if S is in
SPD(n). This action is transitive because every SPD
matrix, S, can be written as S = AA�, for some invert-
ible matrix, A (prove this as an exercise).
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Example 4: The projective spaces RPn and CPn.

The (real) projective space, RPn, is the set of all lines
through the origin in Rn+1, i.e., the set of one-dimensional
subspaces of Rn+1 (where n ≥ 0).

Since a one-dimensional subspace, L ⊆ Rn+1, is spanned
by any nonzero vector, u ∈ L, we can view RPn as the
set of equivalence classes of vectors in Rn+1−{0} modulo
the equivalence relation,

u ∼ v iff v = λu, for some λ �= 0 ∈ R.

In terms of this definition, there is a projection,
pr: Rn+1−{0} → RPn, given by pr(u) = [u]∼, the equiv-
alence class of u modulo ∼.

Write [u] for the line defined by the nonzero vector, u.
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Since every line, L, in Rn+1 intersects the sphere Sn in
two antipodal points, we can view RPn as the quotient of
the sphere Sn by identification of antipodal points. We
write

Sn/{I,−I} ∼= RPn.

We define an action of SO(n+ 1) on RPn as follows: For
any line, L = [u], for any R ∈ SO(n + 1),

R · L = [Ru].

Since R is linear, the line [Ru] is well defined, i.e., does
not depend on the choice of u ∈ L. It is clear that this
action is transitive.

The (complex) projective space, CPn, is defined analo-
gously as the set of all lines through the origin in Cn+1,
i.e., the set of one-dimensional subspaces of Cn+1 (where
n ≥ 0).
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This time, we can view CPn as the set of equivalence
classes of vectors in Cn+1 − {0} modulo the equivalence
relation,

u ∼ v iff v = λu, for some λ �= 0 ∈ C.

We have the projection, pr: Cn+1 − {0} → CPn, given
by pr(u) = [u]∼, the equivalence class of u modulo ∼.

Again, write [u] for the line defined by the nonzero vector,
u.

Remark: Algebraic geometers write PnR for RPn and PnC

(or even Pn) for CPn.

Recall that Σn ⊆ Cn+1, the unit sphere in Cn+1, is defined
by

Σn = {(z1, . . . , zn+1) ∈ Cn+1 | z1z1+· · ·+zn+1zn+1 = 1}.
For any line, L = [u], where u ∈ Cn+1 is a nonzero vector,
writing u = (u1, . . . , un+1), a point z ∈ Cn+1 belongs to
L iff z = λ(u1, . . . , un+1), for some λ ∈ C.
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Therefore, the intersection, L∩Σn, of the line L and the
sphere Σn is given by

L ∩ Σn = {λ(u1, . . . , un+1) ∈ Cn+1 |
λ ∈ C, λλ(u1u1 + · · · + un+1un+1) = 1},

i.e.,

L ∩ Σn =
{
λ(u1, . . . , un+1) ∈ Cn+1 | λ ∈ C,

|λ| =
1√|u1|2 + · · · + |un+1|2

}
.

Thus, we see that there is a bijection between L∩Σn and
the circle, S1, i.e., geometrically, L ∩ Σn is a circle.

Moreover, since any line, L, through the origin is deter-
mined by just one other point, we see that for any two
lines L1 and L2 through the origin,

L1 �= L2 iff (L1 ∩ Σn) ∩ (L2 ∩ Σn) = ∅.
However, Σn is the sphere S2n+1 in R2n+2.
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It follows that CPn is the quotient of S2n+1 by the equiv-
alence relation, ∼, defined such that

y ∼ z iff y, z ∈ L ∩ Σn,

for some line, L, through the origin.

Therefore, we can write

S2n+1/S1 ∼= CPn.

The case n = 1 is particularly interesting, as it turns out
that

S3/S1 ∼= S2.

This is the famous Hopf fibration. To show this, proceed
as follows: As

S3 ∼= Σ1 = {(z, z′) ∈ C2 | |z|2 + |z′|2 = 1},
define a map, HF:S3 → S2, by

HF((z, z′)) = (2zz′, |z|2 − |z′|2).
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We leave as a homework exercise to prove that this map
has range S2 and that

HF((z1, z
′
1)) = HF((z2, z

′
2))

iff

(z1, z
′
1) = λ(z2, z

′
2), for some λ with |λ| = 1.

In other words, for any point, p ∈ S2, the inverse image,
HF−1(p) (also called fibre over p), is a circle on S3.

Consequently, S3 can be viewed as the union of a family
of disjoint circles. This is the Hopf fibration.

It is possible to visualize the Hopf fibration using the
stereographic projection from S3 onto R3. This is a beau-
tiful and puzzling picture. For example, see Berger [?].
Therefore, HF induces a bijection from CP1 to S2, and it
is a homeomorphism.

We define an action of SU(n+1) on CPn as follows: For
any line, L = [u], for any R ∈ SU(n + 1),

R · L = [Ru].

Again, this action is well defined and it is transitive.



3.2. GROUP ACTIONS AND HOMOGENEOUS SPACES, I 165

Example 5: Affine spaces.

If E is any (real) vector space and X is any set, a tran-
sitive and faithful action, ·:E ×X → X , of the additive
group of E on X makes X into an affine space. The
intuition is that the members of E are translations.

Those familiar with affine spaces as in Gallier [?] (Chapter
2) or Berger [?] will point out that if X is an affine space,
then, not only is the action of E on X transitive, but
more is true: For any two points, a, b ∈ E, there is a
unique vector, u ∈ E, such that u · a = b.
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By the way, the action of E on X is usually considered
to be a right action and is written additively, so u · a is
written a + u (the result of translating a by u).

Thus, it would seem that we have to require more of
our action. However, this is not necessary because E
(under addition) is abelian. More precisely, we have the
proposition

Proposition 3.2.3 If G is an abelian group acting on
a set X and the action ·:G×X → X is transitive and
faithful, then for any two elements x, y ∈ X, there is
a unique g ∈ G so that g · x = y (the action is simply
transitive).

More examples will be considered later.



3.2. GROUP ACTIONS AND HOMOGENEOUS SPACES, I 167

The subset of group elements that leave some given ele-
ment x ∈ X fixed plays an important role.

Definition 3.2.4 Given an action, ·:G×X → X , of a
group G on a set X , for any x ∈ X , the group Gx (also
denoted StabG(x)), called the stabilizer of x or isotropy
group at x is given by

Gx = {g ∈ G | g · x = x}.

We have to verify that Gx is indeed a subgroup of G, but
this is easy.

In general, Gx is not a normal subgroup.

Observe that
Gg·x = gGxg

−1,

for all g ∈ G and all x ∈ X .

Therefore, the stabilizers of x and g · x are conjugate of
each other.
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When the action of G on X is transitive, for any fixed
x ∈ G, the set X is a quotient (as set, not as group) of G
by Gx. Indeed, we can define the map, πx:G→ X , by

πx(g) = g · x, for all g ∈ G.

Observe that

πx(gGx) = (gGx) · x = g · (Gx · x) = g · x = πx(g).

This shows that πx:G → X induces a quotient map,
πx:G/Gx → X , from the set, G/Gx, of (left) cosets of
Gx to X , defined by

πx(gGx) = g · x.
Since

πx(g) = πx(h) iff g · x = h · x iff g−1h · x = x

iff
g−1h ∈ Gx iff gGx = hGx,

we deduce πx:G/Gx → X is injective.

However, since our action is assumed to be transitive, for
every y ∈ X , there is some g ∈ G so that g · x = y
and so, πx(gGx) = g · x = y, i.e., the map πx is also
surjective.
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Therefore, the map πx:G/Gx → X is a bijection (of sets,
not groups). The map πx:G→ X is also surjective. Let
us record this important fact as

Proposition 3.2.5 If ·:G × X → X is a transitive
action of a group G on a set X, for every fixed x ∈ X,
the surjection, π:G→ X, given by

π(g) = g · x
induces a bijection

π:G/Gx → X,

where Gx is the stabilizer of x.

The map π:G→ X (corresponding to a fixed x ∈ X) is
sometimes called a projection of G onto X . Proposition
3.2.5 shows that for every y ∈ X , the subset, π−1(y),
(called the fibre above y) is equal to some coset, gGx, of
G and thus, is in bijection with the group Gx itself.
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We can think of G as a moving family of fibres, Gx,
parametrized by X .

This point of view of viewing a space as a moving family
of simpler spaces is typical in (algebraic) geometry, and
underlies the notion of (principal) fibre bundle.

Note that if the action ·:G×X → X is transitive, then
the stabilizers Gx and Gy of any two elements x, y ∈
X are isomorphic, as they as conjugates. Thus, in this
case, it is enough to compute one of these stabilizers for
a “convenient” x.

As the situation of Proposition 3.2.5 is of particular in-
terest, we make the following definition:

Definition 3.2.6 A set,X , is said to be a homogeneous
space if there is a transitive action, ·:G × X → X , of
some group, G, on X .

We see that all the spaces of Example 1–5 are homoge-
neous spaces.
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Another example that will play an important role when
we deal with Lie groups is the situation where we have a
group, G, a subgroup, H , of G (not necessarily normal)
and where X = G/H , the set of left cosets of G modulo
H .

The group G acts on G/H by left multiplication:

a · (gH) = (ag)H,

where a, g ∈ G. This action is clearly transitive and one
checks that the stabilizer of gH is gHg−1.

If G is a topological group and H is a closed subgroup of
G (see later for an explanation), it turns out that G/H is
Hausdorff (Recall that a topological space, X , is Haus-
dorff iff for any two distinct points x �= y ∈ X , there
exists two disjoint open subsets, U and V , with x ∈ U
and y ∈ V .)

If G is a Lie group, we obtain a manifold.



172 CHAPTER 3. REVIEW OF GROUPS AND GROUP ACTIONS

� Even if G and X are topological spaces and the action,
·:G ×X → X , is continuous, the space G/Gx under

the quotient topology is, in general, not homeomorphic
to X .

We will give later sufficient conditions that insure that
X is indeed a topological space or even a manifold. In
particular, X will be a manifold when G is a Lie group.

In general, an action ·:G ×X → X is not transitive on
X , but for every x ∈ X , it is transitive on the set

O(x) = G · x = {g · x | g ∈ G}.
Such a set is called the orbit of x. The orbits are the
equivalence classes of the following equivalence relation:
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Definition 3.2.7 Given an action, ·:G × X → X , of
some group, G, on X , the equivalence relation, ∼, on X
is defined so that, for all x, y ∈ X ,

x ∼ y iff y = g · x, for some g ∈ G.

For every x ∈ X , the equivalence class of x is the orbit
of x, denoted O(x) or OrbG(x), with

O(x) = {g · x | g ∈ G}.
The set of orbits is denoted X/G.

The orbit space, X/G, is obtained from X by an identi-
fication (or merging) process: For every orbit, all points
in that orbit are merged into a single point.

For example, if X = S2 and G is the group consisting of
the restrictions of the two linear maps I and −I of R3 to
S2 (where −I(x, y, z) = (−x,−y,−z)), then

X/G = S2/{I,−I} ∼= RP2.

Many manifolds can be obtained in this fashion, including
the torus, the Klein bottle, the Möbius band, etc.
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Since the action ofG is transitive onO(x), by Proposition
3.2.5, we see that for every x ∈ X , we have a bijection

O(x) ∼= G/Gx.

As a corollary, if both X and G are finite, for any set,
A ⊆ X , of representatives from every orbit, we have the
orbit formula:

|X| =
∑
a∈A

[G:Gx] =
∑
a∈A

|G|/|Gx|.

Even if a group action, ·:G × X → X , is not transi-
tive, when X is a manifold, we can consider the set of
orbits, X/G, and if the action of G on X satisfies certain
conditions, X/G is actually a manifold.

Manifolds arising in this fashion are often called orb-
ifolds .

In summary, we see that manifolds arise in at least two
ways from a group action:
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(1) As homogeneous spaces, G/Gx, if the action is tran-
sitive.

(2) As orbifolds, X/G.

Of course, in both cases, the action must satisfy some
additional properties.

Let us now determine some stabilizers for the actions of
Examples 1–4, and for more examples of homogeneous
spaces.

(a) Consider the action, ·:SO(n) × Sn−1 → Sn−1, of
SO(n) on the sphere Sn−1 (n ≥ 1) defined in Example
1. Since this action is transitive, we can determine the
stabilizer of any convenient element of Sn−1, say
e1 = (1, 0, . . . , 0).

In order for any R ∈ SO(n) to leave e1 fixed, the first
column of R must be e1, so R is an orthogonal matrix of
the form

R =

(
1 U
0 S

)
, with det(S) = 1.
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As the rows of R must be unit vector, we see that U = 0
and S ∈ SO(n− 1).

Therefore, the stabilizer of e1 is isomorphic to SO(n−1),
and we deduce the bijection

SO(n)/SO(n− 1) ∼= Sn−1.

� Strictly speaking, SO(n − 1) is not a subgroup of
SO(n) and in all rigor, we should consider the sub-

group, S̃O(n− 1), of SO(n) consisting of all matrices of
the form (

1 0
0 S

)
, with det(S) = 1

and write
SO(n)/S̃O(n− 1) ∼= Sn−1.

However, it is common practice to identify SO(n − 1)

with S̃O(n− 1).

When n = 2, as SO(1) = {1}, we find that SO(2) ∼= S1,
a circle, a fact that we already knew.
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When n = 3, we find that SO(3)/SO(2) ∼= S2. This
says that SO(3) is somehow the result of glueing circles
to the surface of a sphere (in R3), in such a way that these
circles do not intersect. This is hard to visualize!

A similar argument for the complex unit sphere, Σn−1,
shows that

SU(n)/SU(n− 1) ∼= Σn−1 ∼= S2n−1.

Again, we identify SU(n−1) with a subgroup of SU(n),
as in the real case. In particular, when n = 2, as
SU(1) = {1}, we find that

SU(2) ∼= S3,

i.e., the group SU(2) is topologically the sphere S3!
Actually, this is not surprising if we remember that SU(2)
is in fact the group of unit quaternions.
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(b) We saw in Example 2 that the action,
·:SL(2,R) × H → H , of the group SL(2,R) on the
upper half plane is transitive. Let us find out what the
stabilizer of z = i is. We should have

ai + b

ci + d
= i,

that is, ai + b = −c + di, i.e.,

(d− a)i = b + c.

Since a, b, c, d are real, we must have d = a and b = −c.
Moreover, ad−bc = 1, so we get a2+b2 = 1. We conclude
that a matrix in SL(2,R) fixes i iff it is of the form(

a −b
b a

)
, with a2 + b2 = 1.

Clearly, these are the rotation matrices in SO(2) and so,
the stabilizer of i is SO(2). We conclude that

SL(2,R)/SO(2) ∼= H.

This time, we can view SL(2,R) as the result of glueing
circles to the upper half plane. This is not so easy to
visualize.
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There is a better way to visualize the topology of SL(2,R)
by making it act on the open disk, D. We will return to
this action in a little while.

Now, consider the action of SL(2,C) on C∪{∞} ∼= S2.
As it is transitive, let us find the stabilizer of z = 0. We
must have

b

d
= 0,

and as ad − bc = 1, we must have b = 0 and ad = 1.
Thus, the stabilizer of 0 is the subgroup, SL(2,C)0, of
SL(2,C) consisting of all matrices of the form(

a 0
c a−1

)
, where a ∈ C − {0} and c ∈ C.

We get

SL(2,C)/SL(2,C)0 ∼= C ∪ {∞} ∼= S2,

but this is not very illuminating.
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(c) In Example 3, we considered the action,
·:GL(n)×SPD(n) → SPD(n), of GL(n) on SPD(n),
the set of symmetric positive definite matrices.

As this action is transitive, let us find the stabilizer of I .
For any A ∈ GL(n), the matrix A stabilizes I iff

AIA� = AA� = I.

Therefore, the stabilizer of I is O(n) and we find that

GL(n)/O(n) = SPD(n).

Observe that if GL+(n) denotes the subgroup of GL(n)
consisting of all matrices with a strictly positive determi-
nant, then we have an action
·:GL+(n) × SPD(n) → SPD(n).

This action is transtive and we find that the stabilizer of
I is SO(n); consequently, we get

GL+(n)/SO(n) = SPD(n).
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(d) In Example 4, we considered the action,
·:SO(n + 1) × RPn → RPn, of SO(n + 1) on the (real)
projective space, RPn. As this action is transitive, let us
find the stabilizer of the line, L = [e1], where
e1 = (1, 0, . . . , 0).

We find that the stabilizer of L = [e1] is isomorphic to
the group O(n) and so,

SO(n + 1)/O(n) ∼= RPn.

� Strictly speaking, O(n) is not a subgroup of SO(n+1),
so the above equation does not make sense. We should

write
SO(n + 1)/Õ(n) ∼= RPn,

where Õ(n) is the subgroup of SO(n + 1) consisting of
all matrices of the form(
α 0
0 S

)
, with S ∈ O(n), α = ±1, det(S) = α.

However, the common practice is to write O(n) instead

of Õ(n).
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We should mention that RP3 and SO(3) are homeomor-
phic spaces. This is shown using the quaternions, for
example, see Gallier [?], Chapter 8.

A similar argument applies to the action,
·:SU(n+ 1)×CPn → CPn, of SU(n+ 1) on the (com-
plex) projective space, CPn. We find that

SU(n + 1)/U(n) ∼= CPn.

Again, the above is a bit sloppy as U(n) is not a subgroup
of SU(n+1). To be rigorous, we should use the subgroup,

Ũ(n), consisting of all matrices of the form(
α 0
0 S

)
, with S ∈ U(n), |α| = 1, det(S) = α.

The common practice is to write U(n) instead of Ũ(n).
In particular, when n = 1, we find that

SU(2)/U(1) ∼= CP1.

But, we know that SU(2) ∼= S3 and, clearly, U(1) ∼= S1.
So, again, we find that S3/S1 ∼= CP1 (but we know,
more, namely, S3/S1 ∼= S2 ∼= CP1.)
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(e) We now consider a generalization of projective spaces
(real and complex). First, consider the real case.

Given any n ≥ 1, for any k, with 0 ≤ k ≤ n, let G(k, n)
be the set of all linear k-dimensional subspaces of Rn (also
called k-planes).

Any k-dimensional subspace, U , of R is spanned by k
linearly independent vectors, u1, . . . , uk, in Rn; writeU =
span(u1, . . . , uk).

We can define an action, ·:O(n)×G(k, n) → G(k, n), as
follows: For anyR ∈ O(n), for anyU = span(u1, . . . , uk),
let

R · U = span(Ru1, . . . , Ruk).

We have to check that the above is well defined but this
is not hard.

It is also easy to see that this action is transitive. Thus,
it is enough to find the stabilizer of any k-plane.
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We can show that the stabilizer of U is isomorphic to
O(k) × O(n− k) and we find that

O(n)/(O(k) × O(n− k)) ∼= G(k, n).

It turns out that this makes G(k, n) into a smooth man-
ifold of dimension k(n− k) called a Grassmannian.

If we recall the projection pr: Rn+1 − {0} → RPn, by
definition, a k-plane in RPn is the image under pr of any
(k + 1)-plane in Rn+1.

So, for example, a line in RPn is the image of a 2-plane
in Rn+1, and a hyperplane in RPn is the image of a hy-
perplane in Rn+1.

The advantage of this point of view is that the k-planes
in RPn are arbitrary, i.e., they do not have to go through
“the origin” (which does not make sense, anyway!).
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Then, we see that we can interpret the Grassmannian,
G(k + 1, n + 1), as a space of “parameters” for the k-
planes in RPn. For example, G(2, n + 1) parametrizes
the lines in RPn. In this viewpoint, G(k + 1, n + 1) is
usually denoted G(k, n).

It can be proved (using some exterior algebra) thatG(k, n)

can be embedded in RP(nk)−1.

Much more is true. For example, G(k, n) is a projective
variety, which means that it can be defined as a subset of

RP(nk)−1 equal to the zero locus of a set of homogeneous
equations.

There is even a set of quadratic equations, known as the
Plücker equations , defining G(k, n). In particular, when
n = 4 and k = 2, we have G(2, 4) ⊆ RP5 and G(2, 4) is
defined by a single equation of degree 2.
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The Grassmannian G(2, 4) = G(1, 3) is known as the
Klein quadric. This hypersurface in RP5 parametrizes
the lines in RP3. It play an important role in computer
vision.

Complex Grassmannians are defined in a similar way, by
replacing R by C throughout. The complex Grassman-
nian, GC(k, n), is a complex manifold as well as a real
manifold and we have

U(n)/(U(k) × U(n− k)) ∼= GC(k, n).

We now return to case (b) to give a better picture of
SL(2,R). Instead of having SL(2,R) act on the upper
half plane we define an action of SL(2,R) on the open
unit disk, D.

Technically, it is easier to consider the group, SU(1, 1),
which is isomorphic to SL(2,R), and to make SU(1, 1)
act on D.
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The group SU(1, 1) is the group of 2×2 complex matrices
of the form (

a b
b a

)
, with aa− bb = 1.

The reader should check that if we let

g =

(
1 −i
1 i

)
,

then the map from SL(2,R) to SU(1, 1) given by

A 	→ gAg−1

is an isomorphism. Observe that the Möbius transforma-
tion associated with g is

z 	→ z − i

z + 1
,

which is the holomorphic isomorphism mapping H to D
mentionned earlier!
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Now, we can define a bijection between SU(1, 1) and
S1 ×D given by(

a b
b a

)
	→ (a/|a|, b/a).

We conclude that SL(2,R) ∼= SU(1, 1) is topologically
an open solid torus (i.e., with the surface of the torus
removed). It is possible to further classify the elements
of SL(2,R) into three categories and to have geometric
interpretations of these as certain regions of the torus.
For details, the reader should consult Carter, Segal and
Macdonald [?] or Duistermatt and Kolk [?] (Chapter 1,
Section 1.2).

The group SU(1, 1) acts onD by interpreting any matrix
in SU(1, 1) as a Möbius tranformation, i.e.,(

a b
b a

)
	→

(
z 	→ az + b

bz + a

)
.

The reader should check that these transformations pre-
serve D.
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Both the upper half-plane and the open disk are mod-
els of Lobachevsky’s non-Euclidean geometry (where the
parallel postulate fails).

They are also models of hyperbolic spaces (Riemannian
manifolds with constant negative curvature, see Gallot,
Hulin and Lafontaine [?], Chapter III).

According to Dubrovin, Fomenko, and Novikov [?] (Chap-
ter 2, Section 13.2), the open disk model is due to Poincaré
and the upper half-plane model to Klein, although Poincaré
was the first to realize that the upper half-plane is a hy-
perbolic space.


