
Differential Geometry and Lie Groups
with Applications to Medical Imaging,

Computer Vision and Geometric Modeling
CIS610, Spring 2008

Jean Gallier
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104, USA

e-mail: jean@saul.cis.upenn.edu

January 22, 2008



2



Chapter 1

Introduction: Problems, Questions,
Motivations

Let M be some “space” of data. Often, the space M has
some geometric and topological structure. Sometimes,
there is a way of multiplying the objects in M which
makes M into a group.

Problems we often want to solve:

(1) Interpolate data: Given a, b ∈ M , compute

(1 − λ)a + λb, λ ∈ [0, 1].

(2) Compute the mean of a finite set of data (a sample)
a = {a1, . . . , an},

a =
a1 + · · · + an

n
.
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(3) Compute the (sample) variance of a finite set of data
a = {a1, . . . , an},

var(a) =

∑n
i=1(ai − a)2

n − 1
.

(4) Given two samples, a = {a1, . . . , an} and
b = {b1, . . . , bn}, find their (sample) covariance,

cov(a, b) =

∑n
i=1(ai − a)(bi − b)

n − 1

The covariance of a and b measures how a and b varies
from the mean with respect to each other. Note,
cov(a, a) = var(a). If cov(a, b) = 0 we say that a
and b are uncorrelated .
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(5) Let X be an n × d matrix with entries in M . We
denote the ith row of X by Xi, with 1 ≤ i ≤ n.
The jth column is denoted Cj (1 ≤ j ≤ d). (It is
sometimes called a feature vector , but this terminol-
ogy is far from being universally accepted. In fact,
many people in computer vision call the data points,
Xi, feature vectors!)

Perform PCA analysis of the data set, X1, . . . , Xn,
with Xi ∈ Md.

The purpose of principal components analysis (PCA)
is to identify patterns in data and understand the
variance-covariance structure of the data.
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This is useful for

(a) Data reduction: Often much of the variability of
the data can be accounted for by a smaller number
of principal components .

(b) Interpretation: PCA can show relationships that
were not previously suspected.

(6) Assume M is some kind of geometric space.
For a, b ∈ M , find a shortest path from a to b.

If M is a vector space, there are good methods for solving
these problems.

However, if M is a “curved space” it may be very difficult,
even impossible, to solve these problems.
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If fact, it is not clear that the notion of mean makes any
sense if M is not a vector space!

For example, in medical imaging, DTI (Diffusion Ten-
sor Imaging) produces a 3D symmetric, positive definite
matrix, at each voxel of an imaging volume. In brain
imaging, this method is used to track the white matter
fibres, which demonstrate higher diffusivity of water in
the direction of the fibre.

One would hope to produce statistical atlases from dif-
fusion tensor images and to understand the anatomical
variability caused by a disease.

Unfortunately, the space of n × n symmetric, positive
definite matrices , SPD(n), is not a vector space. Conse-
quently, standard linear statistical methods do not apply.
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Recall that a matrix, A, is in SPD(n) iff it is symmetric
and if its eigenvalues are all strictly positive. The second
condition is equivalent to

x�Ax > 0 for all x �= 0 (x ∈ R
n).

For example, it is easy to show that a matrix(
a b
b c

)

is positive definite iff ac − b2 > 0 and a, c > 0.

So, SPD(2) can be viewed as a certain open region in
R

3. It is a convex cone, so (convex) interpolation and the
notion of mean make sense. The space SPD(n) is also a
convex cone.
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Actually, this may not be the best way to represent SPD(n).
It turns out that SPD(n) is the homogeneous space
SL(n)/SO(n) (in fact, a symmetric space). It is a Rie-
mannian manifold of nonpositive sectional curvature.

Since SPD(3) is convex, the mean of m matrices in
SPD(3) belongs to SPD(3).

However, the mean of matrices in SPD(3) with the same
determinant can be a matrix with a greater determinant,
which is undesirable. Worse, PCA is invalid because it
does not preserve positive-definiteness.

Some of these problems can be alleviated using the expo-
nential map and its inverse (log). Indeed, if S(n) denotes
the vector space of all symmetric n × n matrices, then
the exponential map,

exp:S(n) → SPD(n),

is a bijection!



10 CHAPTER 1. INTRODUCTION: PROBLEMS, QUESTIONS, MOTIVATIONS

This fact is the basis of the approach of Arsigny, Fillard,
Pennec and Ayache. We will study their papers on this
subject later on.

An other example is given by the group of rotations,
SO(3). These are the 3 × 3 (orthogonal) matrices, R,
such that RR� = R�R = I and det(R) = 1.

This is a curved space and if R1, R2 ∈ SO(3), in general,
(1 − λ)R1 + λR2 is not a rotation matrix!

It is also possible to interpolate, again using the exponen-
tial map,

exp: so(3) → SO(3),

where so(3) is the vector space of 3 × 3 skew-symmetric
matrices. Another interpolation method uses the quater-
nions.

However, computing the mean is a harder problem.
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All this raises a number of questions:

(1) What is a “good” notion of space, M , so that

(a) At least, “locally”, such a space “looks” Euclidean.

(b) We can promote calculus on R
n to functions,

f : M → R. In particular, we can

(c) define smooth functions on M .

(d) define the derivative (differential) of functions on
M .

(e) solve differential equations (ODE’s) on M .

(f) integrate (nice) functions on M .

(g) We can define the distance between two points.

(h) We can find shortest paths (perhaps only under
certain conditions).

(2) What does it mean for a space to be curved?
How do we define the notion of curvature?
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(3) What is the effect of curvature (whatever it is)?

(4) What is the Laplacian on a manifold? For example,
what is the Laplacian on the sphere Sn ⊆ R

n+1, with

Sn = {(x1, . . . , xn+1) ∈ R
n+1 | x2

1 + · · ·+ x2
n+1 = 1}.

What are the eigenfunctions of the Laplacian on the
sphere?
(the nonzero functions, f , such that

∆f = λf, for some λ ∈ R)

They turn out to be the spherical harmonics .

The concept of a manifold seems to be a very good can-
didate for the notion of space we are seeking.



13

A very useful thing about manifolds is that for every
point, p ∈ M , there is a kind of “linear approximation”,
the tangent space, TpM , to M at p. Near p, TpM ap-
proximates M .

Given a smooth map, f : M → N , for every p ∈ M , there
is a linear map (the tangent map),

dfp: TpM → Tf(p)N,

which can be viewed as a “linear approximation” of f
(near p).

Furthermore, if every tangent space, TpM , has an inner
product (a way to define orthogonality and distances),
then M is called a Riemannian manifold and there is a
map,

exp: TpM → M,

defined at least near 0 (in TpM).
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In a Riemannian manifold, we can also define covariant
derivatives and various notions of curvature.

When a manifold also has a group structure (so that mul-
tiplication and inversion are smooth), we get a very in-
teresting structure called a Lie group.

Even if a manifold, M , is not a Lie group, there may
be an action, ·: G × M → M , of a Lie group, G, on
M and under certain conditions, M , can be viewed as a
“quotient” G/K, where K is a subgroup of G.

When M ∼= G/K, as above, certain notions on G can
be transported to M . We say that M is a homogeneous
space.

Let us now begin to familiarize ourselves with Lie groups
and manifolds by looking at many concrete examples. We
begin with groups of matrices (matrix groups).


