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Jean Gallier

Homework 1, Corrected Version

February 18, 2008; Due March 5, 2008

“A problems” are for practice only, and should not be turned in.

Problem A1. (a) Find two symmetric matrices, A and B, such that AB is not symmetric.

(b) Find two matrices, A and B, such that

eAeB �= eA+B.

Try

A =
π

2


 0 0 0

0 0 −1
0 1 0


 and B =

π

2


 0 0 1

0 0 0
−1 0 0


 .

Problem A2. (a) If K = R or K = C, recall that the projective space, P(Kn+1), is the set
of equivalence classes of the equivalence relation, ∼, on Kn+1 − {0}, defined so that, for all
u, v ∈ Kn+1 − {0},

u ∼ v iff v = λu, for some λ ∈ K − {0}.
The map, p: (Kn+1 − {0}) → P(Kn+1), is the projection mapping any nonzero vector in
Kn+1 to its equivalence class modulo ∼. We let RP

n = P(Rn+1) and CP
n = P(Cn+1).

Prove that for any n ≥ 0, there is a bijection between P(Kn+1) and Kn ∪P(Kn) (which
allows us to identify them).

(b) Prove that RP
n and CP

n are connected and compact.

Hint . If
Sn = {(x1, . . . , xn+1) ∈ Kn+1 | x2

1 + · · · + x2
n+1 = 1},

prove that p(Sn) = P(Kn+1), and recall that Sn is compact for all n ≥ 0 and connected for
n ≥ 1. For n = 0, P(K) consists of a single point.

Problem A3. Recall that R
2 and C can be identified using the bijection (x, y) �→ x+iy. Also

recall that the subset U(1) ⊆ C consisting of all complex numbers of the form cos θ + i sin θ
is homeomorphic to the circle S1 = {(x, y) ∈ R

2 | x2 + y2 = 1}. If c:U(1) → U(1) is the
map defined such that

c(z) = z2,
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prove that c(z1) = c(z2) iff either z2 = z1 or z2 = −z1, and thus that c induces a bijective
map ĉ: RP

1 → S1. Prove that ĉ is a homeomorphism (remember that RP
1 is compact).

“B problems” must be turned in.

Problem B1 (20 pts). Let A = (ai j) be a real or complex n× n matrix.

(1) If λ is an eigenvalue of A, prove that there is some eigenvector u = (u1, . . . , un) of A
for λ such that

max
1≤i≤n

|ui| = 1.

(2) If u = (u1, . . . , un) is an eigenvector of A for λ as in (1), assuming that i, 1 ≤ i ≤ n,
is an index such that |ui| = 1, prove that

(λ− ai i)ui =
n∑

j=1
j �=i

ai juj,

and thus that

|λ− ai i| ≤
n∑

j=1
j �=i

|ai j|.

Conclude that the eigenvalues of A are inside the union of the closed disks Di defined such
that

Di =
{
z ∈ C | |z − ai i| ≤

n∑
j=1
j �=i

|ai j|
}
.

Remark: This result is known as Gershgorin’s theorem.

Problem B2 (10). Recall that a real n×n symmetric matrix, A, is positive semi-definite iff
its eigenvalues, λ1, . . . , λn are non-negative (i.e., λi ≥ 0 for i = 1, . . . , n) and positive definite
iff its eigenvalues are positive (i.e., λi > 0 for i = 1, . . . , n).

(a) Prove that a symmetric matrix, A, is positive semi-definite iff X�AX ≥ 0, for all
X �= 0 (X ∈ R

n) and positive definite iff X�AX > 0, for all X �= 0 (X ∈ R
n).

(b) Prove that for any two positive definite matrices, A,B, for all λ, µ ∈ R, with λ, µ ≥ 0
and λ+µ > 0, the matrix λA+µB is still symmetric, positive definite. Deduce that the set
of n× n symmetric positive definite matrices is convex (in fact, a cone).

Problem B3 (40 pts). (a) Given a rotation matrix

R =

(
cos θ − sin θ
sin θ cos θ

)
,
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where 0 < θ < π, prove that there is a skew symmetric matrix B such that

R = (I −B)(I +B)−1.

(b) If B is a skew symmetric n×n matrix, prove that λIn −B and λIn +B are invertible
for all λ �= 0, and that they commute.

(c) Prove that
R = (λIn −B)(λIn +B)−1

is a rotation matrix that does not admit −1 as an eigenvalue. (Recall, a rotation is an
orthogonal matrix R with positive determinant, i.e., det(R) = 1.)

(d) Given any rotation matrix R that does not admit −1 as an eigenvalue, prove that
there is a skew symmetric matrix B such that

R = (In −B)(In +B)−1 = (In +B)−1(In −B).

This is known as the Cayley representation of rotations (Cayley, 1846).

(e) Given any rotation matrix R, prove that there is a skew symmetric matrix B such
that

R =
(
(In −B)(In +B)−1

)2
.

Problem B4 (60). (a) Consider the map H: R3 → R
4 defined such that

(x, y, z) �→ (xy, yz, xz, x2 − y2).

Prove that when it is restricted to the sphere S2 (in R
3), we have H(x, y, z) = H(x′, y′, z′) iff

(x′, y′, z′) = (x, y, z) or (x′, y′, z′) = (−x,−y,−z). In other words, the inverse image of every
point in H(S2) consists of two antipodal points.

Prove that the map H induces an injective map from the projective plane onto H(S2),
and that it is a homeomorphism.

(b) The map H allows us to realize concretely the projective plane in R
4 as an embedded

manifold. Consider the three maps from R
2 to R

4 given by

ψ1(u, v) =

(
uv

u2 + v2 + 1
,

v

u2 + v2 + 1
,

u

u2 + v2 + 1
,

u2 − v2

u2 + v2 + 1

)
,

ψ2(u, v) =

(
u

u2 + v2 + 1
,

v

u2 + v2 + 1
,

uv

u2 + v2 + 1
,

u2 − 1

u2 + v2 + 1

)
,

ψ3(u, v) =

(
u

u2 + v2 + 1
,

uv

u2 + v2 + 1
,

v

u2 + v2 + 1
,

1 − u2

u2 + v2 + 1

)
.

Observe that ψ1 is the composition H ◦ α1, where α1: R
2 −→ S2 is given by

(u, v) �→
(

u√
u2 + v2 + 1

,
v√

u2 + v2 + 1
,

1√
u2 + v2 + 1

)
,
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that ψ2 is the composition H ◦ α2, where α2: R
2 −→ S2 is given by

(u, v) �→
(

u√
u2 + v2 + 1

,
1√

u2 + v2 + 1
,

v√
u2 + v2 + 1

)
.

and ψ3 is the composition H ◦ α3, where α3: R
2 −→ S2 is given by

(u, v) �→
(

1√
u2 + v2 + 1

,
u√

u2 + v2 + 1
,

v√
u2 + v2 + 1

)
,

Prove that each ψi is injective, continuous and nonsingular (i.e., the Jacobian is never zero).

Prove that if ψ1(u, v) = (x, y, z, t), then

y2 + z2 ≤ 1

4
and y2 + z2 =

1

4
iff u2 + v2 = 1.

Prove that u and v are solutions of the quadratic equations

(y2 + z2)u2 − zu+ z2 = 0

(y2 + z2)v2 − yv + y2 = 0.

Prove that if y2 + z2 �= 0, then

u =
z(1 − √

1 − 4(y2 + z2))

2(y2 + z2)
if u2 + v2 ≤ 1,

else

u =
z(1 +

√
1 − 4(y2 + z2))

2(y2 + z2)
if u2 + v2 ≥ 1,

and there are similar formulae for v. Prove that the expression giving u in terms of y and
z is continuous everywhere in {(y, z) | y2 + z2 ≤ 1

4
} and similarly for the expression giving

v in terms of y and z. Conclude that ψ1: R
2 → ψ1(R

2) is a homeomorphism onto its image.
Therefore, U1 = ψ1(R

2) is an open subset of H(S2).

Remark: From the equations above, you can prove that u2 +v2 +1 is a root of the equation

(y2 + z2)D2 −D + 1 = 0.

Then,

D =
1 − √

1 − 4(y2 + z2)

2(y2 + z2)
if u2 + v2 ≤ 1,

else

D =
1 +

√
1 − 4(y2 + z2

2(y2 + z2)
if u2 + v2 ≥ 1.
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Prove that if ψ2(u, v) = (x, y, z, t), then u and v are solutions of quadratic equations
with coefficients involving x and y; find explicit formulae as for ψ−1

1 and conclude that
ψ2: R

2 → ψ3(R
2) is a homeomorphism onto its image. The set U2 = ψ2(R

2) is an open
subset of H(S2).

Prove that if ψ3(u, v) = (x, y, z, t), then u and v are solutions of quadratic equations with
coefficients involving x and z. As for ψ−1

2 , conclude that ψ3: R
2 → ψ3(R

2) is a homeomor-
phism onto its image. The set U3 = ψ3(R

2) is an open subset of H(S2).

Prove that the union of the Ui’s covers H(S2). Conclude that ψ1, ψ2, ψ3 are parametriza-
tions of RP

2 as a manifold in R
4.

Prove that if (x, y, z, t) ∈ H(S2), then

x2y2 + x2z2 + y2z2 = xyz

x(z2 − y2) = yzt.

The zero locus of these equations strictly contains H(S2), prove it. This is a “famous
mistake” of Hilbert and Cohn-Vossen in Geometry and the Immagination! In an attempt
to fix this bug, prove that when you express x in terms of y and z using ψ1, you get the
equation

x2y2 + x2z2 + y2z2 = xyz.

When you express t in terms of y and z using ψ1, you get the equation

(y2 + z2)(z2 − y2 + t2) = t(z2 − y2).

When you express t in terms of x and y using ψ2, you get the equation

4(x2 + y2)((x2 + y2)t2 + (2x2 + y2)2) = (2x2 + y2)2.

When you express t in terms of x and z using ψ3, you get an equation similar to the previous
one. Do these four equations define exactly H(S2)? (I suspect they do!)

(c) Investigate the surfaces in R
3 obtained by dropping one of the four coordinates. Show

that there are only two of them (the “Steiner Roman surface” and the “crosscap”, up to a
rigid motion).

Problem B5 (40). (a) Consider the map, f :GL+(n) → S(n), given by

f(A) = A�A− I.

Check that
df(A)(H) = A�H +H�A,

for any matrix, H.

(b) Consider the map, f :GL(n) → R, given by

f(A) = det(A).
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Prove that df(I)(B) = tr(B), the trace of B, for any matrix B (here, I is the identity
matrix). Then, prove that

df(A)(B) = det(A)tr(A−1B),

where A ∈ GL(n).

(c) Use the map A �→ det(A)− 1 to prove that SL(n) is a manifold of dimension n2 − 1.

(d) Let J be the (n+ 1) × (n+ 1) diagonal matrix

J =

(
In 0
0 −1

)
.

We denote by SO(n, 1) the group of real (n+ 1) × (n+ 1) matrices

SO(n, 1) = {A ∈ GL(n+ 1) | A�JA = J and det(A) = 1}.

Check that SO(n, 1) is indeed a group with the inverse of A given by A−1 = JA�J (this is
the special Lorentz group.) Consider the function f :GL+(n+ 1) → S(n+ 1), given by

f(A) = A�JA− J,

where S(n+ 1) denotes the space of (n+ 1) × (n+ 1) symmetric matrices. Prove that

df(A)(H) = A�JH +H�JA

for any matrix, H. Prove that df(A) is surjective for all A ∈ SO(n, 1) and that SO(n, 1) is

a manifold of dimension n(n+1)
2

.

Problem B6 (20 pts). (a) Given any matrix

B =

(
a b
c −a

)
∈ sl(2,C),

if ω2 = a2 + bc and ω is any of the two complex roots of a2 + bc, prove that if ω �= 0, then

eB = coshω I +
sinh ω

ω
B,

and eB = I +B, if a2 + bc = 0. Observe that tr(eB) = 2 cosh ω.

Prove that the exponential map, exp: sl(2,C) → SL(2,C), is not surjective. For instance,
prove that (−1 1

0 −1

)
is not the exponential of any matrix in sl(2,C).
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Problem B7 (50 pts). Recall that for any matrix

A =


 0 −c b

c 0 −a
−b a 0


 ,

if we let θ =
√
a2 + b2 + c2 and

B =


 a2 ab ac
ab b2 bc
ac bc c2


 ,

then the exponential map, exp: so(3) → SO(3), is given by

expA = eA = cos θ I3 +
sin θ

θ
A+

(1 − cos θ)

θ2
B,

or, equivalently, by

eA = I3 +
sin θ

θ
A+

(1 − cos θ)

θ2
A2,

if θ �= k2π (k ∈ Z), with exp(03) = I3 (Rodrigues’s formula (1840)).

(a) Let R ∈ SO(3) and assume that R �= I and tr(R) �= −1. Then, prove that a log of R
(i.e., a skew symmetric matrix, S, so that eS = R) is given by

log(R) =
θ

2 sin θ
(R−RT ),

where 1 + 2 cos θ = tr(R) and 0 < θ < π.

(b) Now, assume that tr(R) = −1. In this case, show that R is a rotation of angle π, that
R is symmetric and has eigenvalues, −1,−1, 1. Assuming that eA = R, Rodrigues formula
becomes

R = I +
2

π2
A2,

so

A2 =
π2

2
(R− I).

If we let S = A/π, we see that we need to find a skew-symmetric matrix, S, so that

S2 =
1

2
(R− I) = C.

Observe that C is also symmetric and has eigenvalues, −1,−1, 0. Thus, we can diagonalize
C, as

C = P


−1 0 0

0 −1 0
0 0 0


P�,
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and if we let

S = P


 0 −1 0

1 0 0
0 0 0


P�,

check that S2 = C.

(c) From (a) and (b), we know that we can compute explicity a log of a rotation matrix,
although when θ ≈ 0, we have to be careful in computing sin θ

θ
; in this case, we may want to

use
sin θ

θ
= 1 − θ2

3!
+
θ4

5!
+ · · · .

Given two rotations, R1, R2 ∈ SO(3), there are three natural interpolation formulae:

e(1−t) log R1+t log R2 ; R1e
t log(R�

1 R2); et log(R2R�
1 )R1,

with 0 ≤ t ≤ 1.

Write a computer program to investigate the difference between these interpolation for-
mulae. The position of a rigid body spinning around its center of gravity is determined by
a rotation matrix, R ∈ SO(3). If R1 denotes the initial position and R2 the final position of
this rigid body, by computing interpolants of R1 and R2, we get a motion of the rigid body
and we can create an animation of this motion by displaying several interpolants. The rigid
body can be a “funny” object, for example a banana, a bottle, etc.

TOTAL: 240 points.
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