Spring, 2008 CIS 610

Advanced Geometric Methods in Computer Science Jean Gallier

Homework 1, Corrected Version

February 18, 2008; Due March 5, 2008

"A problems" are for practice only, and should not be turned in.

Problem A1. (a) Find two symmetric matrices, A and B, such that AB is not symmetric.

(b) Find two matrices, A and B, such that

$$e^A e^B \neq e^{A+B}.$$

Try

$$A = \frac{\pi}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{and} \quad B = \frac{\pi}{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}.$$

Problem A2. (a) If $K = \mathbb{R}$ or $K = \mathbb{C}$, recall that the projective space, $\mathbf{P}(K^{n+1})$, is the set of equivalence classes of the equivalence relation, \sim , on $K^{n+1} - \{0\}$, defined so that, for all $u, v \in K^{n+1} - \{0\}$,

$$u \sim v$$
 iff $v = \lambda u$, for some $\lambda \in K - \{0\}$.

The map, $p: (K^{n+1} - \{0\}) \to \mathbf{P}(K^{n+1})$, is the projection mapping any nonzero vector in K^{n+1} to its equivalence class modulo \sim . We let $\mathbb{RP}^n = \mathbf{P}(\mathbb{R}^{n+1})$ and $\mathbb{CP}^n = \mathbf{P}(\mathbb{C}^{n+1})$.

Prove that for any $n \ge 0$, there is a bijection between $\mathbf{P}(K^{n+1})$ and $K^n \cup \mathbf{P}(K^n)$ (which allows us to identify them).

(b) Prove that \mathbb{RP}^n and \mathbb{CP}^n are connected and compact.

Hint. If

$$S^n = \{(x_1, \dots, x_{n+1}) \in K^{n+1} \mid x_1^2 + \dots + x_{n+1}^2 = 1\},\$$

prove that $p(S^n) = \mathbf{P}(K^{n+1})$, and recall that S^n is compact for all $n \ge 0$ and connected for $n \ge 1$. For n = 0, $\mathbf{P}(K)$ consists of a single point.

Problem A3. Recall that \mathbb{R}^2 and \mathbb{C} can be identified using the bijection $(x, y) \mapsto x+iy$. Also recall that the subset $U(1) \subseteq \mathbb{C}$ consisting of all complex numbers of the form $\cos \theta + i \sin \theta$ is homeomorphic to the circle $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. If $c: U(1) \to U(1)$ is the map defined such that

$$c(z) = z^2$$

prove that $c(z_1) = c(z_2)$ iff either $z_2 = z_1$ or $z_2 = -z_1$, and thus that c induces a bijective map $\hat{c}: \mathbb{RP}^1 \to S^1$. Prove that \hat{c} is a homeomorphism (remember that \mathbb{RP}^1 is compact).

"B problems" must be turned in.

Problem B1 (20 pts). Let $A = (a_{ij})$ be a real or complex $n \times n$ matrix.

(1) If λ is an eigenvalue of A, prove that there is some eigenvector $u = (u_1, \ldots, u_n)$ of A for λ such that

$$\max_{1 \le i \le n} |u_i| = 1.$$

(2) If $u = (u_1, \ldots, u_n)$ is an eigenvector of A for λ as in (1), assuming that $i, 1 \leq i \leq n$, is an index such that $|u_i| = 1$, prove that

$$(\lambda - a_{i\,i})u_i = \sum_{\substack{j=1\\j\neq i}}^n a_{i\,j}u_j,$$

and thus that

$$|\lambda - a_{ii}| \le \sum_{\substack{j=1\\j\neq i}}^n |a_{ij}|.$$

Conclude that the eigenvalues of A are inside the union of the closed disks D_i defined such that

$$D_i = \left\{ z \in \mathbb{C} \mid |z - a_{ii}| \le \sum_{j=1 \atop j \neq i}^n |a_{ij}| \right\}.$$

Remark: This result is known as *Gershgorin's theorem*.

Problem B2 (10). Recall that a real $n \times n$ symmetric matrix, A, is positive semi-definite iff its eigenvalues, $\lambda_1, \ldots, \lambda_n$ are non-negative (i.e., $\lambda_i \ge 0$ for $i = 1, \ldots, n$) and positive definite iff its eigenvalues are positive (i.e., $\lambda_i > 0$ for $i = 1, \ldots, n$).

(a) Prove that a symmetric matrix, A, is positive semi-definite iff $X^{\top}AX \ge 0$, for all $X \ne 0$ ($X \in \mathbb{R}^n$) and positive definite iff $X^{\top}AX > 0$, for all $X \ne 0$ ($X \in \mathbb{R}^n$).

(b) Prove that for any two positive definite matrices, A, B, for all $\lambda, \mu \in \mathbb{R}$, with $\lambda, \mu \ge 0$ and $\lambda + \mu > 0$, the matrix $\lambda A + \mu B$ is still symmetric, positive definite. Deduce that the set of $n \times n$ symmetric positive definite matrices is convex (in fact, a cone).

Problem B3 (40 pts). (a) Given a rotation matrix

$$R = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix},$$

where $0 < \theta < \pi$, prove that there is a skew symmetric matrix B such that

$$R = (I - B)(I + B)^{-1}.$$

(b) If B is a skew symmetric $n \times n$ matrix, prove that $\lambda I_n - B$ and $\lambda I_n + B$ are invertible for all $\lambda \neq 0$, and that they commute.

(c) Prove that

$$R = (\lambda I_n - B)(\lambda I_n + B)^{-1}$$

is a rotation matrix that does not admit -1 as an eigenvalue. (Recall, a rotation is an orthogonal matrix R with positive determinant, i.e., det(R) = 1.)

(d) Given any rotation matrix R that does not admit -1 as an eigenvalue, prove that there is a skew symmetric matrix B such that

$$R = (I_n - B)(I_n + B)^{-1} = (I_n + B)^{-1}(I_n - B).$$

This is known as the *Cayley representation* of rotations (Cayley, 1846).

(e) Given any rotation matrix R, prove that there is a skew symmetric matrix B such that

$$R = \left((I_n - B)(I_n + B)^{-1} \right)^2.$$

Problem B4 (60). (a) Consider the map $\mathcal{H}: \mathbb{R}^3 \to \mathbb{R}^4$ defined such that

$$(x, y, z) \mapsto (xy, yz, xz, x^2 - y^2)$$

Prove that when it is restricted to the sphere S^2 (in \mathbb{R}^3), we have $\mathcal{H}(x, y, z) = \mathcal{H}(x', y', z')$ iff (x', y', z') = (x, y, z) or (x', y', z') = (-x, -y, -z). In other words, the inverse image of every point in $\mathcal{H}(S^2)$ consists of two antipodal points.

Prove that the map \mathcal{H} induces an injective map from the projective plane onto $\mathcal{H}(S^2)$, and that it is a homeomorphism.

(b) The map \mathcal{H} allows us to realize concretely the projective plane in \mathbb{R}^4 as an embedded manifold. Consider the three maps from \mathbb{R}^2 to \mathbb{R}^4 given by

$$\psi_{1}(u,v) = \left(\frac{uv}{u^{2}+v^{2}+1}, \frac{v}{u^{2}+v^{2}+1}, \frac{u}{u^{2}+v^{2}+1}, \frac{u^{2}-v^{2}}{u^{2}+v^{2}+1}\right),$$

$$\psi_{2}(u,v) = \left(\frac{u}{u^{2}+v^{2}+1}, \frac{v}{u^{2}+v^{2}+1}, \frac{uv}{u^{2}+v^{2}+1}, \frac{u^{2}-1}{u^{2}+v^{2}+1}\right),$$

$$\psi_{3}(u,v) = \left(\frac{u}{u^{2}+v^{2}+1}, \frac{uv}{u^{2}+v^{2}+1}, \frac{v}{u^{2}+v^{2}+1}, \frac{1-u^{2}}{u^{2}+v^{2}+1}\right).$$

Observe that ψ_1 is the composition $\mathcal{H} \circ \alpha_1$, where $\alpha_1 \colon \mathbb{R}^2 \longrightarrow S^2$ is given by

$$(u,v) \mapsto \left(\frac{u}{\sqrt{u^2 + v^2 + 1}}, \frac{v}{\sqrt{u^2 + v^2 + 1}}, \frac{1}{\sqrt{u^2 + v^2 + 1}}\right),$$

that ψ_2 is the composition $\mathcal{H} \circ \alpha_2$, where $\alpha_2 \colon \mathbb{R}^2 \longrightarrow S^2$ is given by

$$(u,v) \mapsto \left(\frac{u}{\sqrt{u^2 + v^2 + 1}}, \frac{1}{\sqrt{u^2 + v^2 + 1}}, \frac{v}{\sqrt{u^2 + v^2 + 1}}\right).$$

and ψ_3 is the composition $\mathcal{H} \circ \alpha_3$, where $\alpha_3 \colon \mathbb{R}^2 \longrightarrow S^2$ is given by

$$(u,v) \mapsto \left(\frac{1}{\sqrt{u^2 + v^2 + 1}}, \frac{u}{\sqrt{u^2 + v^2 + 1}}, \frac{v}{\sqrt{u^2 + v^2 + 1}}\right),$$

Prove that each ψ_i is injective, continuous and nonsingular (i.e., the Jacobian is never zero).

Prove that if $\psi_1(u, v) = (x, y, z, t)$, then

$$y^{2} + z^{2} \le \frac{1}{4}$$
 and $y^{2} + z^{2} = \frac{1}{4}$ iff $u^{2} + v^{2} = 1$

Prove that u and v are solutions of the quadratic equations

$$\begin{array}{rcl} (y^2+z^2)u^2-zu+z^2 &=& 0\\ (y^2+z^2)v^2-yv+y^2 &=& 0. \end{array}$$

Prove that if $y^2 + z^2 \neq 0$, then

$$u = \frac{z(1 - \sqrt{1 - 4(y^2 + z^2)})}{2(y^2 + z^2)}$$
 if $u^2 + v^2 \le 1$,

else

$$u = \frac{z(1 + \sqrt{1 - 4(y^2 + z^2)})}{2(y^2 + z^2)} \quad \text{if} \quad u^2 + v^2 \ge 1,$$

and there are similar formulae for v. Prove that the expression giving u in terms of y and z is continuous everywhere in $\{(y, z) \mid y^2 + z^2 \leq \frac{1}{4}\}$ and similarly for the expression giving v in terms of y and z. Conclude that $\psi_1: \mathbb{R}^2 \to \psi_1(\mathbb{R}^2)$ is a homeomorphism onto its image. Therefore, $U_1 = \psi_1(\mathbb{R}^2)$ is an open subset of $\mathcal{H}(S^2)$.

Remark: From the equations above, you can prove that $u^2 + v^2 + 1$ is a root of the equation

$$(y^2 + z^2)D^2 - D + 1 = 0.$$

Then,

$$D = \frac{1 - \sqrt{1 - 4(y^2 + z^2)}}{2(y^2 + z^2)} \quad \text{if} \quad u^2 + v^2 \le 1,$$

else

$$D = \frac{1 + \sqrt{1 - 4(y^2 + z^2)}}{2(y^2 + z^2)} \quad \text{if} \quad u^2 + v^2 \ge 1.$$

Prove that if $\psi_2(u, v) = (x, y, z, t)$, then u and v are solutions of quadratic equations with coefficients involving x and y; find explicit formulae as for ψ_1^{-1} and conclude that $\psi_2: \mathbb{R}^2 \to \psi_3(\mathbb{R}^2)$ is a homeomorphism onto its image. The set $U_2 = \psi_2(\mathbb{R}^2)$ is an open subset of $\mathcal{H}(S^2)$.

Prove that if $\psi_3(u, v) = (x, y, z, t)$, then u and v are solutions of quadratic equations with coefficients involving x and z. As for ψ_2^{-1} , conclude that $\psi_3: \mathbb{R}^2 \to \psi_3(\mathbb{R}^2)$ is a homeomorphism onto its image. The set $U_3 = \psi_3(\mathbb{R}^2)$ is an open subset of $\mathcal{H}(S^2)$.

Prove that the union of the U_i 's covers $\mathcal{H}(S^2)$. Conclude that ψ_1, ψ_2, ψ_3 are parametrizations of \mathbb{RP}^2 as a manifold in \mathbb{R}^4 .

Prove that if $(x, y, z, t) \in \mathcal{H}(S^2)$, then

$$\begin{array}{rcl} x^2y^2 + x^2z^2 + y^2z^2 &=& xyz \\ x(z^2 - y^2) &=& yzt. \end{array}$$

The zero locus of these equations strictly contains $\mathcal{H}(S^2)$, prove it. This is a "famous mistake" of Hilbert and Cohn-Vossen in *Geometry and the Immagination*! In an attempt to fix this bug, prove that when you express x in terms of y and z using ψ_1 , you get the equation

$$x^2y^2 + x^2z^2 + y^2z^2 = xyz.$$

When you express t in terms of y and z using ψ_1 , you get the equation

$$(y^{2} + z^{2})(z^{2} - y^{2} + t^{2}) = t(z^{2} - y^{2}).$$

When you express t in terms of x and y using ψ_2 , you get the equation

$$4(x^{2} + y^{2})((x^{2} + y^{2})t^{2} + (2x^{2} + y^{2})^{2}) = (2x^{2} + y^{2})^{2}.$$

When you express t in terms of x and z using ψ_3 , you get an equation similar to the previous one. Do these four equations define exactly $\mathcal{H}(S^2)$? (I suspect they do!)

(c) Investigate the surfaces in \mathbb{R}^3 obtained by dropping one of the four coordinates. Show that there are only two of them (the "Steiner Roman surface" and the "crosscap", up to a rigid motion).

Problem B5 (40). (a) Consider the map, $f: \mathbf{GL}^+(n) \to \mathbf{S}(n)$, given by

$$f(A) = A^{\top}A - I$$

Check that

$$df(A)(H) = A^{\top}H + H^{\top}A$$

for any matrix, H.

(b) Consider the map, $f: \mathbf{GL}(n) \to \mathbb{R}$, given by

 $f(A) = \det(A).$

Prove that df(I)(B) = tr(B), the trace of B, for any matrix B (here, I is the identity matrix). Then, prove that

$$df(A)(B) = \det(A)\operatorname{tr}(A^{-1}B),$$

where $A \in \mathbf{GL}(n)$.

- (c) Use the map $A \mapsto \det(A) 1$ to prove that $\mathbf{SL}(n)$ is a manifold of dimension $n^2 1$.
- (d) Let J be the $(n+1) \times (n+1)$ diagonal matrix

$$J = \begin{pmatrix} I_n & 0\\ 0 & -1 \end{pmatrix}.$$

We denote by SO(n, 1) the group of real $(n + 1) \times (n + 1)$ matrices

$$\mathbf{SO}(n,1) = \{A \in \mathbf{GL}(n+1) \mid A^{\top}JA = J \text{ and } \det(A) = 1\}$$

Check that $\mathbf{SO}(n, 1)$ is indeed a group with the inverse of A given by $A^{-1} = JA^{\top}J$ (this is the *special Lorentz group.*) Consider the function $f: \mathbf{GL}^+(n+1) \to \mathbf{S}(n+1)$, given by

$$f(A) = A^{\dagger}JA - J,$$

where $\mathbf{S}(n+1)$ denotes the space of $(n+1) \times (n+1)$ symmetric matrices. Prove that

$$df(A)(H) = A^{\top}JH + H^{\top}JA$$

for any matrix, *H*. Prove that df(A) is surjective for all $A \in \mathbf{SO}(n, 1)$ and that $\mathbf{SO}(n, 1)$ is a manifold of dimension $\frac{n(n+1)}{2}$.

Problem B6 (20 pts). (a) Given any matrix

$$B = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in \mathfrak{sl}(2, \mathbb{C}),$$

if $\omega^2 = a^2 + bc$ and ω is any of the two complex roots of $a^2 + bc$, prove that if $\omega \neq 0$, then

$$e^B = \cosh \omega I + \frac{\sinh \omega}{\omega} B,$$

and $e^B = I + B$, if $a^2 + bc = 0$. Observe that $tr(e^B) = 2 \cosh \omega$.

Prove that the exponential map, $\exp: \mathfrak{sl}(2, \mathbb{C}) \to \mathbf{SL}(2, \mathbb{C})$, is *not* surjective. For instance, prove that

$$\begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$$

is not the exponential of any matrix in $\mathfrak{sl}(2,\mathbb{C})$.

Problem B7 (50 pts). Recall that for any matrix

$$A = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix},$$

if we let $\theta = \sqrt{a^2 + b^2 + c^2}$ and

$$B = \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix},$$

then the exponential map, $\exp:\mathfrak{so}(3) \to \mathbf{SO}(3)$, is given by

$$\exp A = e^A = \cos \theta I_3 + \frac{\sin \theta}{\theta} A + \frac{(1 - \cos \theta)}{\theta^2} B,$$

or, equivalently, by

$$e^{A} = I_{3} + \frac{\sin\theta}{\theta}A + \frac{(1-\cos\theta)}{\theta^{2}}A^{2},$$

if $\theta \neq k2\pi$ ($k \in \mathbb{Z}$), with $\exp(0_3) = I_3$ (Rodrigues's formula (1840)).

(a) Let $R \in \mathbf{SO}(3)$ and assume that $R \neq I$ and $\operatorname{tr}(R) \neq -1$. Then, prove that a log of R (i.e., a skew symmetric matrix, S, so that $e^S = R$) is given by

$$\log(R) = \frac{\theta}{2\sin\theta} (R - R^T),$$

where $1 + 2\cos\theta = \operatorname{tr}(R)$ and $0 < \theta < \pi$.

(b) Now, assume that tr(R) = -1. In this case, show that R is a rotation of angle π , that R is symmetric and has eigenvalues, -1, -1, 1. Assuming that $e^A = R$, Rodrigues formula becomes

$$R = I + \frac{2}{\pi^2} A^2,$$

SO

$$A^{2} = \frac{\pi^{2}}{2}(R - I).$$

If we let $S = A/\pi$, we see that we need to find a skew-symmetric matrix, S, so that

$$S^2 = \frac{1}{2}(R - I) = C.$$

Observe that C is also symmetric and has eigenvalues, -1, -1, 0. Thus, we can diagonalize C, as

$$C = P \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{\top},$$

and if we let

$$S = P \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{\top},$$

check that $S^2 = C$.

(c) From (a) and (b), we know that we can compute explicitly a log of a rotation matrix, although when $\theta \approx 0$, we have to be careful in computing $\frac{\sin \theta}{\theta}$; in this case, we may want to use

$$\frac{\sin\theta}{\theta} = 1 - \frac{\theta^2}{3!} + \frac{\theta^4}{5!} + \cdots$$

Given two rotations, $R_1, R_2 \in \mathbf{SO}(3)$, there are three natural interpolation formulae:

$$e^{(1-t)\log R_1+t\log R_2}; \quad R_1 e^{t\log(R_1^{\top}R_2)}; \quad e^{t\log(R_2R_1^{\top})}R_1,$$

with $0 \le t \le 1$.

Write a computer program to investigate the difference between these interpolation formulae. The position of a rigid body spinning around its center of gravity is determined by a rotation matrix, $R \in \mathbf{SO}(3)$. If R_1 denotes the initial position and R_2 the final position of this rigid body, by computing interpolants of R_1 and R_2 , we get a motion of the rigid body and we can create an animation of this motion by displaying several interpolants. The rigid body can be a "funny" object, for example a banana, a bottle, etc.

TOTAL: 240 points.