Advanced Geometric Methods in Computer Science
Jean Gallier

Homework 1, Corrected Version
February 18, 2008; Due March 5, 2008

“A problems” are for practice only, and should not be turned in.

Problem A1. (a) Find two symmetric matrices, A and B, such that AB is not symmetric.
(b) Find two matrices, A and B, such that $e^A e^B \neq e^{A+B}$.

Try

$$A = \frac{\pi}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{and} \quad B = \frac{\pi}{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}.$$

Problem A2. (a) If $K = \mathbb{R}$ or $K = \mathbb{C}$, recall that the projective space, $P(K^{n+1})$, is the set of equivalence classes of the equivalence relation, \sim, on $K^{n+1} - \{0\}$, defined so that, for all $u, v \in K^{n+1} - \{0\}$,

$$u \sim v \quad \text{iff} \quad v = \lambda u, \quad \text{for some} \quad \lambda \in K - \{0\}.$$

The map, $p: (K^{n+1} - \{0\}) \rightarrow P(K^{n+1})$, is the projection mapping any nonzero vector in K^{n+1} to its equivalence class modulo \sim. We let $\mathbb{RP}^n = P(\mathbb{R}^{n+1})$ and $\mathbb{CP}^n = P(\mathbb{C}^{n+1})$.

Prove that for any $n \geq 0$, there is a bijection between $P(K^{n+1})$ and $K^n \cup P(K^n)$ (which allows us to identify them).

(b) Prove that \mathbb{RP}^n and \mathbb{CP}^n are connected and compact.

Hint. If

$$S^n = \{(x_1, \ldots, x_{n+1}) \in K^{n+1} \mid x_1^2 + \cdots + x_{n+1}^2 = 1\},$$

prove that $p(S^n) = P(K^{n+1})$, and recall that S^n is compact for all $n \geq 0$ and connected for $n \geq 1$. For $n = 0$, $P(K)$ consists of a single point.

Problem A3. Recall that \mathbb{R}^2 and \mathbb{C} can be identified using the bijection $(x, y) \mapsto x + iy$. Also recall that the subset $U(1) \subseteq \mathbb{C}$ consisting of all complex numbers of the form $\cos \theta + i \sin \theta$ is homeomorphic to the circle $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. If $c: U(1) \rightarrow U(1)$ is the map defined such that

$$c(z) = z^2,$$
prove that \(c(z_1) = c(z_2) \) iff either \(z_2 = z_1 \) or \(z_2 = -z_1 \), and thus that \(c \) induces a bijective map \(\widehat{c}: \mathbb{RP}^1 \to S^1 \). Prove that \(\widehat{c} \) is a homeomorphism (remember that \(\mathbb{RP}^1 \) is compact).

“B problems” must be turned in.

Problem B1 (20 pts). Let \(A = (a_{ij}) \) be a real or complex \(n \times n \) matrix.

(1) If \(\lambda \) is an eigenvalue of \(A \), prove that there is some eigenvector \(u = (u_1, \ldots, u_n) \) of \(A \) for \(\lambda \) such that

\[
\max_{1 \leq i \leq n} |u_i| = 1.
\]

(2) If \(u = (u_1, \ldots, u_n) \) is an eigenvector of \(A \) for \(\lambda \) as in (1), assuming that \(i, 1 \leq i \leq n \), is an index such that \(|u_i| = 1 \), prove that

\[
(\lambda - a_{ii}) u_i = \sum_{j=1, j \neq i}^{n} a_{ij} u_j,
\]

and thus that

\[
|\lambda - a_{ii}| \leq \sum_{j=1, j \neq i}^{n} |a_{ij}|.
\]

Conclude that the eigenvalues of \(A \) are inside the union of the closed disks \(D_i \) defined such that

\[
D_i = \left\{ z \in \mathbb{C} \mid |z - a_{ii}| \leq \sum_{j=1, j \neq i}^{n} |a_{ij}| \right\}.
\]

Remark: This result is known as **Gershgorin’s theorem.**

Problem B2 (10). Recall that a real \(n \times n \) symmetric matrix, \(A \), is **positive semi-definite** iff its eigenvalues, \(\lambda_1, \ldots, \lambda_n \) are non-negative (i.e., \(\lambda_i \geq 0 \) for \(i = 1, \ldots, n \)) and **positive definite** iff its eigenvalues are positive (i.e., \(\lambda_i > 0 \) for \(i = 1, \ldots, n \)).

(a) Prove that a symmetric matrix, \(A \), is positive semi-definite iff \(X^TAX \geq 0 \), for all \(X \neq 0 \) (\(X \in \mathbb{R}^n \)) and positive definite iff \(X^TAX > 0 \), for all \(X \neq 0 \) (\(X \in \mathbb{R}^n \)).

(b) Prove that for any two positive definite matrices, \(A, B \), for all \(\lambda, \mu \in \mathbb{R} \), with \(\lambda, \mu \geq 0 \) and \(\lambda + \mu > 0 \), the matrix \(\lambda A + \mu B \) is still symmetric, positive definite. Deduce that the set of \(n \times n \) symmetric positive definite matrices is convex (in fact, a cone).

Problem B3 (40 pts). (a) Given a rotation matrix

\[
R = \begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix},
\]

2
where $0 < \theta < \pi$, prove that there is a skew symmetric matrix B such that
\[R = (I - B)(I + B)^{-1}. \]

(b) If B is a skew symmetric $n \times n$ matrix, prove that $\lambda I_n - B$ and $\lambda I_n + B$ are invertible for all $\lambda \neq 0$, and that they commute.

(c) Prove that
\[R = (\lambda I_n - B)(\lambda I_n + B)^{-1} \]
is a rotation matrix that does not admit -1 as an eigenvalue. (Recall, a rotation is an orthogonal matrix R with positive determinant, i.e., $\det(R) = 1$.)

(d) Given any rotation matrix R that does not admit -1 as an eigenvalue, prove that there is a skew symmetric matrix B such that
\[R = (I_n - B)(I_n + B)^{-1} = (I_n + B)^{-1}(I_n - B). \]
This is known as the Cayley representation of rotations (Cayley, 1846).

(e) Given any rotation matrix R, prove that there is a skew symmetric matrix B such that
\[R = ((I_n - B)(I_n + B)^{-1})^2. \]

Problem B4 (60). (a) Consider the map $H: \mathbb{R}^3 \to \mathbb{R}^4$ defined such that
\[(x, y, z) \mapsto (xy, yz, xz, x^2 - y^2). \]
Prove that when it is restricted to the sphere S^2 (in \mathbb{R}^3), we have $H(x, y, z) = H(x', y', z')$ iff $(x', y', z') = (x, y, z)$ or $(x', y', z') = (-x, -y, -z)$. In other words, the inverse image of every point in $H(S^2)$ consists of two antipodal points.

Prove that the map H induces an injective map from the projective plane onto $H(S^2)$, and that it is a homeomorphism.

(b) The map H allows us to realize concretely the projective plane in \mathbb{R}^4 as an embedded manifold. Consider the three maps from \mathbb{R}^2 to \mathbb{R}^4 given by
\[
\psi_1(u, v) = \left(\frac{uv}{u^2 + v^2 + 1}, \frac{v}{u^2 + v^2 + 1}, \frac{u}{u^2 + v^2 + 1}, \frac{u^2 - v^2}{u^2 + v^2 + 1} \right), \\
\psi_2(u, v) = \left(\frac{u}{u^2 + v^2 + 1}, \frac{v}{u^2 + v^2 + 1}, \frac{uv}{u^2 + v^2 + 1}, \frac{u^2 - 1}{u^2 + v^2 + 1} \right), \\
\psi_3(u, v) = \left(\frac{u}{u^2 + v^2 + 1}, \frac{uv}{u^2 + v^2 + 1}, \frac{v}{u^2 + v^2 + 1}, \frac{1 - u^2}{u^2 + v^2 + 1} \right).
\]
Observe that ψ_1 is the composition $H \circ \alpha_1$, where $\alpha_1: \mathbb{R}^2 \to S^2$ is given by
\[(u, v) \mapsto \left(\frac{u}{\sqrt{u^2 + v^2 + 1}}, \frac{v}{\sqrt{u^2 + v^2 + 1}}, \frac{1}{\sqrt{u^2 + v^2 + 1}} \right). \]
that ψ_2 is the composition $\mathcal{H} \circ \alpha_2$, where $\alpha_2: \mathbb{R}^2 \rightarrow S^2$ is given by
\[(u, v) \mapsto \left(\frac{u}{\sqrt{u^2 + v^2 + 1}}, \frac{1}{\sqrt{u^2 + v^2 + 1}}, \frac{v}{\sqrt{u^2 + v^2 + 1}} \right),\]
and ψ_3 is the composition $\mathcal{H} \circ \alpha_3$, where $\alpha_3: \mathbb{R}^2 \rightarrow S^2$ is given by
\[(u, v) \mapsto \left(\frac{1}{\sqrt{u^2 + v^2 + 1}}, \frac{u}{\sqrt{u^2 + v^2 + 1}}, \frac{v}{\sqrt{u^2 + v^2 + 1}} \right),\]
Prove that each ψ_i is injective, continuous and nonsingular (i.e., the Jacobian is never zero).

Prove that if $\psi_1(u, v) = (x, y, z, t)$, then
\[y^2 + z^2 \leq \frac{1}{4} \quad \text{and} \quad y^2 + z^2 = \frac{1}{4} \iff u^2 + v^2 = 1.\]

Prove that u and v are solutions of the quadratic equations
\[(y^2 + z^2)u^2 - zu + z^2 = 0\]
\[(y^2 + z^2)v^2 - yv + y^2 = 0.\]

Prove that if $y^2 + z^2 \neq 0$, then
\[u = \frac{z(1 - \sqrt{1 - 4(y^2 + z^2)})}{2(y^2 + z^2)} \quad \text{if} \quad u^2 + v^2 \leq 1,\]
else
\[u = \frac{z(1 + \sqrt{1 - 4(y^2 + z^2)})}{2(y^2 + z^2)} \quad \text{if} \quad u^2 + v^2 \geq 1,\]
and there are similar formulae for v. Prove that the expression giving u in terms of y and z is continuous everywhere in $\{(y, z) \mid y^2 + z^2 \leq \frac{1}{4}\}$ and similarly for the expression giving v in terms of y and z. Conclude that $\psi_1: \mathbb{R}^2 \rightarrow \psi_1(\mathbb{R}^2)$ is a homeomorphism onto its image.

Therefore, $U_1 = \psi_1(\mathbb{R}^2)$ is an open subset of $\mathcal{H}(S^2)$.

Remark: From the equations above, you can prove that $u^2 + v^2 + 1$ is a root of the equation
\[(y^2 + z^2)D^2 - D + 1 = 0.\]

Then,
\[D = \frac{1 - \sqrt{1 - 4(y^2 + z^2)}}{2(y^2 + z^2)} \quad \text{if} \quad u^2 + v^2 \leq 1,\]
else
\[D = \frac{1 + \sqrt{1 - 4(y^2 + z^2)}}{2(y^2 + z^2)} \quad \text{if} \quad u^2 + v^2 \geq 1.\]
Prove that if \(\psi_2(u,v) = (x,y,z,t) \), then \(u \) and \(v \) are solutions of quadratic equations with coefficients involving \(x \) and \(y \); find explicit formulae as for \(\psi_1^{-1} \) and conclude that \(\psi_2: \mathbb{R}^2 \to \psi_3(\mathbb{R}^2) \) is a homeomorphism onto its image. The set \(U_2 = \psi_2(\mathbb{R}^2) \) is an open subset of \(\mathcal{H}(S^2) \).

Prove that if \(\psi_3(u,v) = (x,y,z,t) \), then \(u \) and \(v \) are solutions of quadratic equations with coefficients involving \(x \) and \(z \). As for \(\psi_2^{-1} \), conclude that \(\psi_3: \mathbb{R}^2 \to \psi_3(\mathbb{R}^2) \) is a homeomorphism onto its image. The set \(U_3 = \psi_3(\mathbb{R}^2) \) is an open subset of \(\mathcal{H}(S^2) \).

Prove that the union of the \(U_i \)'s covers \(\mathcal{H}(S^2) \). Conclude that \(\psi_1, \psi_2, \psi_3 \) are parametrizations of \(\mathbb{R}P^2 \) as a manifold in \(\mathbb{R}^4 \).

The zero locus of these equations strictly contains \(\mathcal{H}(S^2) \), prove it. This is a “famous mistake” of Hilbert and Cohn-Vossen in *Geometry and the Immagination*! In an attempt to fix this bug, prove that when you express \(x \) in terms of \(y \) and \(z \) using \(\psi_1 \), you get the equation

\[x^2y^2 + x^2z^2 + y^2z^2 = xyz. \]

When you express \(t \) in terms of \(y \) and \(z \) using \(\psi_1 \), you get the equation

\[(y^2 + z^2)(z^2 - y^2 + t^2) = t(z^2 - y^2). \]

When you express \(t \) in terms of \(x \) and \(y \) using \(\psi_2 \), you get the equation

\[4(x^2 + y^2)((x^2 + y^2)t^2 + (2x^2 + y^2)^2) = (2x^2 + y^2)^2. \]

When you express \(t \) in terms of \(x \) and \(z \) using \(\psi_3 \), you get an equation similar to the previous one. Do these four equations define exactly \(\mathcal{H}(S^2) \)? (I suspect they do!)

(c) Investigate the surfaces in \(\mathbb{R}^3 \) obtained by dropping one of the four coordinates. Show that there are only two of them (the “Steiner Roman surface” and the “crosscap”, up to a rigid motion).

Problem B5 (40). (a) Consider the map, \(f: \text{GL}^+(n) \to S(n) \), given by

\[f(A) = A^\top A - I. \]

Check that

\[df(A)(H) = A^\top H + H^\top A, \]

for any matrix, \(H \).

(b) Consider the map, \(f: \text{GL}(n) \to \mathbb{R} \), given by

\[f(A) = \det(A). \]
Prove that \(df(I)(B) = \text{tr}(B) \), the trace of \(B \), for any matrix \(B \) (here, \(I \) is the identity matrix). Then, prove that

\[
df(A)(B) = \det(A)\text{tr}(A^{-1}B),
\]

where \(A \in \text{GL}(n) \).

(c) Use the map \(A \mapsto \det(A) - 1 \) to prove that \(\text{SL}(n) \) is a manifold of dimension \(n^2 - 1 \).

(d) Let \(J \) be the \((n+1) \times (n+1)\) diagonal matrix

\[
J = \begin{pmatrix}
I_n & 0 \\
0 & -1
\end{pmatrix}.
\]

We denote by \(\text{SO}(n,1) \) the group of real \((n+1) \times (n+1)\) matrices

\[
\text{SO}(n,1) = \{ A \in \text{GL}(n+1) \mid A^\top JA = J \text{ and } \det(A) = 1 \}.
\]

Check that \(\text{SO}(n,1) \) is indeed a group with the inverse of \(A \) given by \(A^{-1} = JA^\top J \) (this is the special Lorentz group.) Consider the function \(f: \text{GL}^+(n+1) \to \text{S}(n+1) \), given by

\[
f(A) = A^\top JA - J,
\]

where \(\text{S}(n+1) \) denotes the space of \((n+1) \times (n+1)\) symmetric matrices. Prove that

\[
df(A)(H) = A^\top JH + H^\top JA
\]

for any matrix, \(H \). Prove that \(df(A) \) is surjective for all \(A \in \text{SO}(n,1) \) and that \(\text{SO}(n,1) \) is a manifold of dimension \(\frac{n(n+1)}{2} \).

Problem B6 (20 pts). (a) Given any matrix

\[
B = \begin{pmatrix}
a & b \\
c & -a
\end{pmatrix} \in \mathfrak{sl}(2, \mathbb{C}),
\]

if \(\omega^2 = a^2 + bc \) and \(\omega \) is any of the two complex roots of \(a^2 + bc \), prove that if \(\omega \neq 0 \), then

\[
e^B = \cosh \omega I + \frac{\sinh \omega}{\omega} B,
\]

and \(e^B = I + B \), if \(a^2 + bc = 0 \). Observe that \(\text{tr}(e^B) = 2 \cosh \omega \).

Prove that the exponential map, \(\exp: \mathfrak{sl}(2, \mathbb{C}) \to \text{SL}(2, \mathbb{C}) \), is *not* surjective. For instance, prove that

\[
\begin{pmatrix}
-1 & 1 \\
0 & -1
\end{pmatrix}
\]

is not the exponential of any matrix in \(\mathfrak{sl}(2, \mathbb{C}) \).
Problem B7 (50 pts). Recall that for any matrix

\[
A = \begin{pmatrix}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{pmatrix},
\]

if we let \(\theta = \sqrt{a^2 + b^2 + c^2} \) and

\[
B = \begin{pmatrix}
a^2 & ab & ac \\
ab & b^2 & bc \\
ac & bc & c^2
\end{pmatrix},
\]

then the exponential map, \(\exp: \mathfrak{so}(3) \to \text{SO}(3) \), is given by

\[
\exp A = e^A = \cos \theta I_3 + \frac{\sin \theta}{\theta} A + \frac{1 - \cos \theta}{\theta^2} B,
\]
or, equivalently, by

\[
e^A = I_3 + \frac{\sin \theta}{\theta} A + \frac{1 - \cos \theta}{\theta^2} A^2,
\]

if \(\theta \neq k2\pi \) (\(k \in \mathbb{Z} \)), with \(\exp(0) = I_3 \) (Rodrigues’s formula (1840)).

(a) Let \(R \in \text{SO}(3) \) and assume that \(R \neq I \) and \(\text{tr}(R) \neq -1 \). Then, prove that a log of \(R \) (i.e., a skew symmetric matrix, \(S \), so that \(e^S = R \)) is given by

\[
\log(R) = \frac{\theta}{2\sin \theta}(R - R^T),
\]

where \(1 + 2\cos \theta = \text{tr}(R) \) and \(0 < \theta < \pi \).

(b) Now, assume that \(\text{tr}(R) = -1 \). In this case, show that \(R \) is a rotation of angle \(\pi \), that \(R \) is symmetric and has eigenvalues, \(-1, -1, 1\). Assuming that \(e^A = R \), Rodrigues formula becomes

\[
R = I + \frac{2}{\pi^2} A^2,
\]

so

\[
A^2 = \frac{\pi^2}{2}(R - I).
\]

If we let \(S = A/\pi \), we see that we need to find a skew-symmetric matrix, \(S \), so that

\[
S^2 = \frac{1}{2}(R - I) = C.
\]

Observe that \(C \) is also symmetric and has eigenvalues, \(-1, -1, 0\). Thus, we can diagonalize \(C \), as

\[
C = P \begin{pmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{pmatrix} P^T,
\]
and if we let
\[S = P \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^\top, \]
check that \(S^2 = C \).

(c) From (a) and (b), we know that we can compute explicitly a log of a rotation matrix, although when \(\theta \approx 0 \), we have to be careful in computing \(\frac{\sin \theta}{\theta} \); in this case, we may want to use
\[\sin \frac{\theta}{\theta} = 1 - \frac{\theta^2}{3!} + \frac{\theta^4}{5!} + \cdots. \]

Given two rotations, \(R_1, R_2 \in SO(3) \), there are three natural interpolation formulae:
\[
e^{(1-t) \log R_1 + t \log R_2}; \quad R_1 e^{t \log (R_1^\top R_2)}; \quad e^{t \log (R_2 R_1^\top)} R_1,
\]
with \(0 \leq t \leq 1 \).

Write a computer program to investigate the difference between these interpolation formulae. The position of a rigid body spinning around its center of gravity is determined by a rotation matrix, \(R \in SO(3) \). If \(R_1 \) denotes the initial position and \(R_2 \) the final position of this rigid body, by computing interpolants of \(R_1 \) and \(R_2 \), we get a motion of the rigid body and we can create an animation of this motion by displaying several interpolants. The rigid body can be a “funny” object, for example a banana, a bottle, etc.

TOTAL: 240 points.