Spring, 2008 CIS 610

Advanced (Geometric Methods in Computer Science
Jean (Gallier

Homework 1, Corrected Version
February 18, 2008; Due March 5, 2008

“A problems” are for practice only, and should not be turned in.

Problem A1l. (a) Find two symmetric matrices, A and B, such that AB is not symmetric.
(b) Find two matrices, A and B, such that

€A€B 7& €A+B.

Try
0 - 0
-1 and B = 5 0

0 -1

o O O
_ o O
O O O

1
0
0

Problem A2. (a) If K = R or K = C, recall that the projective space, P(K"*1), is the set
of equivalence classes of the equivalence relation, ~, on K™™' — {0}, defined so that, for all
u,v € K" — {0},

u~wv iff v=>MAu, forsome e K —{0}.

The map, p: (K" — {0}) — P(K™"!), is the projection mapping any nonzero vector in
K™ to its equivalence class modulo ~. We let RP" = P(R"!) and CP" = P(C"").

Prove that for any n > 0, there is a bijection between P(K" ™) and K™ UP(K™) (which
allows us to identify them).

(b) Prove that RP" and CP" are connected and compact.

Hint. If

St ={(x1,.. ., xpp1) € K" | 2F + - a2, =1},
prove that p(S™) = P(K"™!), and recall that S™ is compact for all n > 0 and connected for
n > 1. For n = 0, P(K) consists of a single point.

Problem A3. Recall that R? and C can be identified using the bijection (x,y) — z+iy. Also
recall that the subset U(1) C C consisting of all complex numbers of the form cosf + isin
is homeomorphic to the circle S* = {(z,y) € R? | 2 + y*> = 1}. If c:U(1) — U(1) is the
map defined such that

c(z) = 2%,
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prove that ¢(z1) = ¢(z2) iff either zo = 23 or 2z = —2z;, and thus that ¢ induces a bijective
map ¢: RP' — S'. Prove that ¢ is a homeomorphism (remember that RP' is compact).

“B problems” must be turned in.
Problem B1 (20 pts). Let A = (a;;) be a real or complex n x n matrix.

(1) If A is an eigenvalue of A, prove that there is some eigenvector u = (uq,...,u,) of A
for A such that

max |u;| = 1.
1<i<n

(2) If u = (uy,...,u,) is an eigenvector of A for A as in (1), assuming that i, 1 < i <n,
is an index such that |u;| = 1, prove that

n
(A —ai)u; = Z i ju;,
T
and thus that .
N —aii] <) g
o

Conclude that the eigenvalues of A are inside the union of the closed disks D; defined such

that .
D; = {z €eCllz—aiul < Z\aiﬂ}.

Jj=1
J#i

Remark: This result is known as Gershgorin’s theorem.

Problem B2 (10). Recall that a real n x n symmetric matrix, A, is positive semi-definite iff
its eigenvalues, A1, ..., A\, are non-negative (i.e., \; > 0 fori = 1,...,n) and positive definite
iff its eigenvalues are positive (i.e., \; >0 fori=1,...,n).

(a) Prove that a symmetric matrix, A, is positive semi-definite iff XTAX > 0, for all
X # 0 (X € R") and positive definite iff X TAX > 0, for all X # 0 (X € R").

(b

) Prove that for any two positive definite matrices, A, B, for all A\, u € R, with A\, x>0
and A+ p > 0, the matrix AA 4+ pB is still symmetric, positive definite. Deduce that the set
of n X n symmetric positive definite matrices is convex (in fact, a cone).

Problem B3 (40 pts). (a) Given a rotation matrix

cosf —sinf
R_(siHG 0059>’



where 0 < 6 < 7, prove that there is a skew symmetric matrix B such that

R=(I-B)I+B)"

(b) If B is a skew symmetric n X n matrix, prove that A\I,, — B and AI,, + B are invertible
for all A # 0, and that they commute.

(c) Prove that
R= (M, — B)(\, + B)™*

is a rotation matrix that does not admit —1 as an eigenvalue. (Recall, a rotation is an
orthogonal matrix R with positive determinant, i.e., det(R) = 1.)

(d) Given any rotation matrix R that does not admit —1 as an eigenvalue, prove that
there is a skew symmetric matrix B such that

R= (I, B)(I,+B)'=(,+B) (I, - B).
This is known as the Cayley representation of rotations (Cayley, 1846).

(e) Given any rotation matrix R, prove that there is a skew symmetric matrix B such
that )
R = ((In - B)(I, + B)*l) :

Problem B4 (60). (a) Consider the map H:R? — R* defined such that

(ZE,y,Z) = (l’y,yZ,J}Z,ZEZ - y2)

Prove that when it is restricted to the sphere S? (in R?), we have H(x,y, z) = H(2', v/, ') iff
(', 2) = (x,y,2) or (2',y,7) = (—x,—y, —2). In other words, the inverse image of every
point in H(S?) consists of two antipodal points.

Prove that the map H induces an injective map from the projective plane onto H(S?),
and that it is a homeomorphism.

(b) The map H allows us to realize concretely the projective plane in R* as an embedded
manifold. Consider the three maps from R? to R* given by

2 .2
alw) = (e : T )

WP+ u+02+ 10w+ 02+ 1 w2402 41

¢( ) U ) UV w? —1
w,v) =
2 AU w2+ w2+ U w241
1/}< ) U UV ) 1 —u?

w,v) = )
A w+or+1 e+ 24+ 1w+ 0241 w2402+ 1

Observe that 1), is the composition H o oy, where a;: R? — S? is given by

( u v 1 )
(u7v)'—> 9 ) b
Vuz+ 02 +1 V2 + 02+ 1 Vu? + 02+ 1
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that 1)y is the composition H o ap, where an: R? — S? is given by

U 1 v
(u,v)r—>( , , )
V402 +1 vz + 02 +1 Vul+02 41

and )5 is the composition H o a3, where as: R? — S? is given by

1 U v
(u7 U) = ) Y )
V402 +1 vz + 02 +1 Vul+02 41
Prove that each v; is injective, continuous and nonsingular (i.e., the Jacobian is never zero).

Prove that if ¢ (u,v) = (x,y, 2, t), then

Prove that u and v are solutions of the quadratic equations

)

(y° 4+ 22 u? — zu+ 2% =

(¥ + 2 —yo+y* = 0.

Prove that if y? + 22 # 0, then

1—+/1—4(y?2 2
2( (y% + 2%)) if UQ_I_UQSL

2(y% + 2?)

u =

else

RSV ()

N 2(y* + 22)
and there are similar formulae for v. Prove that the expression giving u in terms of y and
z is continuous everywhere in {(y,z) | y? + 2% < 411} and similarly for the expression giving

v in terms of y and z. Conclude that 1;: R? — 1);(R?) is a homeomorphism onto its image.
Therefore, U; = 11 (R?) is an open subset of H(S5?).

if w240 >1,

Remark: From the equations above, you can prove that u? +v%+1 is a root of the equation

(P +22)D*~D+1=0.

Then,
1 —/1—4(y? 2
D= \/ v +2%) if w?+0? <1,
2(y* + 2%)
else
1+ /1 —4(y? 2
D= + > + = it w?+0%>1.
2(y* + 2?)



Prove that if is(u,v) = (z,y, 2,t), then u and v are solutions of quadratic equations
with coefficients involving x and y; find explicit formulae as for ¢;' and conclude that
y: R? — 4h3(R?) is a homeomorphism onto its image. The set Uy = 15(R?) is an open
subset of H(S?).

Prove that if ¥3(u,v) = (z,y, z,t), then u and v are solutions of quadratic equations with
coefficients involving  and z. As for ¢, ', conclude that 13: R? — ¢)3(R?) is a homeomor-
phism onto its image. The set Uz = 13(R?) is an open subset of H(S?).

Prove that the union of the U;’s covers H(S?). Conclude that 1)y, 9,13 are parametriza-
tions of RP? as a manifold in R%.

Prove that if (z,vy, z,t) € H(S?), then

22+ 22 2R = ays
v(22 —y*) = yat.

The zero locus of these equations strictly contains H(S?), prove it. This is a “famous
mistake” of Hilbert and Cohn-Vossen in Geometry and the Immagination! In an attempt
to fix this bug, prove that when you express x in terms of y and z using 1, you get the
equation

x2y2 + 2222 + y222 = TYz.
When you express ¢ in terms of y and z using 1)1, you get the equation
(1 +22) (2" — > + ) = 1(2* — o).
When you express t in terms of x and y using 1,5, you get the equation
42 + ) (2% + ) + (227 + 7)) = (227 + yP)%
When you express t in terms of x and z using 13, you get an equation similar to the previous
one. Do these four equations define exactly H(S5?)? (I suspect they do!)

(c) Investigate the surfaces in R® obtained by dropping one of the four coordinates. Show
that there are only two of them (the “Steiner Roman surface” and the “crosscap”, up to a
rigid motion).

Problem B5 (40). (a) Consider the map, f: GL™(n) — S(n), given by
FA) = ATA— 1.

Check that
df(A)(H) = ATH+ H'" A,

for any matrix, H.
(b) Consider the map, f: GL(n) — R, given by

F(A) = det(A).
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Prove that df(I)(B) = tr(B), the trace of B, for any matrix B (here, I is the identity
matrix). Then, prove that

df (A)(B) = det(A)tr(A™'B),
where A € GL(n).
(c) Use the map A ~ det(A) — 1 to prove that SL(n) is a manifold of dimension n? — 1.
(d) Let J be the (n+ 1) x (n+ 1) diagonal matrix

I, 0
)
We denote by SO(n, 1) the group of real (n + 1) x (n + 1) matrices

SO(n,1)={AcGL(n+1)|ATJA=J and det(A)=1}.

Check that SO(n, 1) is indeed a group with the inverse of A given by A~' = JATJ (this is
the special Lorentz group.) Consider the function f: GL*(n + 1) — S(n + 1), given by

f(A)=ATJA -,
where S(n + 1) denotes the space of (n + 1) x (n + 1) symmetric matrices. Prove that
df(A)(H)=ATJH+ H"JA

for any matrix, H. Prove that df(A) is surjective for all A € SO(n, 1) and that SO(n, 1) is

a manifold of dimension @

Problem B6 (20 pts). (a) Given any matrix

B= (“ b ) € s1(2,C),
C a

if w? = a? 4 bc and w is any of the two complex roots of a? + be, prove that if w # 0, then

B sinh w

e’ =coshwl + B

)
w

and e = I + B, if a®> + bc = 0. Observe that tr(e®) = 2 cosh w.

Prove that the exponential map, exp: s((2,C) — SL(2,C), is not surjective. For instance,

prove that
-1 1
0 -1

is not the exponential of any matrix in s[(2, C).



Problem B7 (50 pts). Recall that for any matrix

0 —c b
A= ¢ 0 =—a ],
-b a 0
if we let 6 = Va2 + b2 + 2 and
a’> ab ac
B=1ab ¥ bc |,
ac be 2

then the exponential map, exp: s0(3) — SO(3), is given by

in 6 1 —cosf
epr:eA:Cos¢913+SHQ1 A+( 90208 >B,

or, equivalently, by

A sin 0 (1 — cosf)
e :Ig—|— 0 A—|— 92

if 0 # k27 (k € Z), with exp(03) = I3 (Rodrigues’s formula (1840)).

(a) Let R € SO(3) and assume that R # I and tr(R) # —1. Then, prove that a log of R
(i.e., a skew symmetric matrix, S, so that e® = R) is given by

AQ

IOg(R) (R - RT)7

~ 2sind
where 1 +2cosf = tr(R) and 0 < 6 < 7.

(b) Now, assume that tr(R) = —1. In this case, show that R is a rotation of angle 7, that
R is symmetric and has eigenvalues, —1, —1,1. Assuming that e = R, Rodrigues formula
becomes

2
R=1+ A%
m

SO
2

2="(r-D.
2
If we let S = A/m, we see that we need to find a skew-symmetric matrix, S, so that

o1

=5

(R—1)=C.

Observe that C' is also symmetric and has eigenvalues, —1, —1,0. Thus, we can diagonalize

C, as

-1 0 0
cC=P| 0 -1 0]|P",
0 0 0



and if we let

0 —1 0
S=P|1 0 0]|P,
0 0 0

check that S? = C.

(c) From (a) and (b), we know that we can compute explicity a log of a rotation matrix,
although when 6 ~ 0, we have to be careful in computing 5129; in this case, we may want to
use

1
0 3! 5!
Given two rotations, Ry, Ry € SO(3), there are three natural interpolation formulae:

_ T T
e(l t)log R1+tlog Rg; Rl et log(R, R2) €t log(R2R, )Rl,

with 0 <¢ < 1.

Write a computer program to investigate the difference between these interpolation for-
mulae. The position of a rigid body spinning around its center of gravity is determined by
a rotation matrix, R € SO(3). If Ry denotes the initial position and Ry the final position of
this rigid body, by computing interpolants of R; and Ry, we get a motion of the rigid body
and we can create an animation of this motion by displaying several interpolants. The rigid
body can be a “funny” object, for example a banana, a bottle, etc.

TOTAL: 240 points.



