
Chapter 6

Riemannian Manifolds and
Connections

6.1 Riemannian Metrics

Fortunately, the rich theory of vector spaces endowed with
a Euclidean inner product can, to a great extent, be lifted
to various bundles associated with a manifold.

The notion of local (and global) frame plays an important
technical role.

Definition 6.1.1 Let M be an n-dimensional smooth
manifold. For any open subset, U ⊆ M , an n-tuple of
vector fields, (X1, . . . , Xn), over U is called a frame over
U iff (X1(p), . . . , Xn(p)) is a basis of the tangent space,
TpM , for every p ∈ U . If U = M , then the Xi are global
sections and (X1, . . . , Xn) is called a frame (of M).
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The notion of a frame is due to Élie Cartan who (after
Darboux) made extensive use of them under the name of
moving frame (and the moving frame method).

Cartan’s terminology is intuitively clear: As a point, p,
moves in U , the frame, (X1(p), . . . , Xn(p)), moves from
fibre to fibre. Physicists refer to a frame as a choice of
local gauge.

If dim(M) = n, then for every chart, (U,ϕ), since
dϕ−1

ϕ(p):R
n → TpM is a bijection for every p ∈ U , the

n-tuple of vector fields, (X1, . . . , Xn), with
Xi(p) = dϕ−1

ϕ(p)(ei), is a frame of TM over U , where
(e1, . . . , en) is the canonical basis of Rn.

The following proposition tells us when the tangent bun-
dle is trivial (that is, isomorphic to the product,M×Rn):
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Proposition 6.1.2 The tangent bundle, TM , of a
smooth n-dimensional manifold, M , is trivial iff it
possesses a frame of global sections (vector fields de-
fined on M).

As an illustration of Proposition 6.1.2 we can prove that
the tangent bundle, TS1, of the circle, is trivial.

Indeed, we can find a section that is everywhere nonzero,
i.e. a non-vanishing vector field, namely

X(cos θ, sin θ) = (− sin θ, cos θ).

The reader should try proving that TS3 is also trivial (use
the quaternions).

However, TS2 is nontrivial, although this not so easy to
prove.

More generally, it can be shown that TSn is nontrivial
for all even n ≥ 2. It can even be shown that S1, S3 and
S7 are the only spheres whose tangent bundle is trivial.
This is a rather deep theorem and its proof is hard.



458 CHAPTER 6. RIEMANNIAN MANIFOLDS AND CONNECTIONS

Remark: A manifold, M , such that its tangent bundle,
TM , is trivial is called parallelizable .

We now define Riemannian metrics and Riemannian man-
ifolds.

Definition 6.1.3 Given a smooth n-dimensional man-
ifold, M , a Riemannian metric on M (or TM) is a
family, (〈−,−〉p)p∈M , of inner products on each tangent
space, TpM , such that 〈−,−〉p depends smoothly on p,
which means that for every chart, ϕα:Uα → Rn, for every
frame, (X1, . . . , Xn), on Uα, the maps

p )→ 〈Xi(p), Xj(p)〉p, p ∈ Uα, 1 ≤ i, j ≤ n

are smooth. A smooth manifold, M , with a Riemannian
metric is called a Riemannian manifold .
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If dim(M) = n, then for every chart, (U,ϕ), we have the
frame, (X1, . . . , Xn), over U , with Xi(p) = dϕ−1

ϕ(p)(ei),
where (e1, . . . , en) is the canonical basis of Rn. Since ev-
ery vector field over U is a linear combination,

∑n
i=1 fiXi,

for some smooth functions, fi:U → R, the condition of
Definition 6.1.3 is equivalent to the fact that the maps,

p )→ 〈dϕ−1
ϕ(p)(ei), dϕ

−1
ϕ(p)(ej)〉p, p ∈ U, 1 ≤ i, j ≤ n,

are smooth. If we let x = ϕ(p), the above condition says
that the maps,

x )→ 〈dϕ−1
x (ei), dϕ

−1
x (ej)〉ϕ−1(x), x ∈ ϕ(U ), 1 ≤ i, j ≤ n,

are smooth.

IfM is a Riemannian manifold, the metric on TM is often
denoted g = (gp)p∈M . In a chart, using local coordinates,
we often use the notation g =

∑
ij gijdxi⊗dxj or simply

g =
∑

ij gijdxidxj, where

gij(p) =

〈(
∂

∂xi

)

p

,

(
∂

∂xj

)

p

〉

p

.
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For every p ∈ U , the matrix, (gij(p)), is symmetric, pos-
itive definite.

The standard Euclidean metric on Rn, namely,

g = dx21 + · · · + dx2n,

makes Rn into a Riemannian manifold.

Then, every submanifold, M , of Rn inherits a metric by
restricting the Euclidean metric to M .

For example, the sphere, Sn−1, inherits a metric that
makes Sn−1 into a Riemannian manifold. It is a good
exercise to find the local expression of this metric for S2

in polar coordinates.

A nontrivial example of a Riemannian manifold is the
Poincaré upper half-space, namely, the set
H = {(x, y) ∈ R2 | y > 0} equipped with the metric

g =
dx2 + dy2

y2
.
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A way to obtain a metric on a manifold, N , is to pull-
back the metric, g, on another manifold, M , along a local
diffeomorphism, ϕ:N → M .

Recall that ϕ is a local diffeomorphism iff

dϕp:TpN → Tϕ(p)M

is a bijective linear map for every p ∈ N .

Given any metric g on M , if ϕ is a local diffeomorphism,
we define the pull-back metric, ϕ∗g, on N induced by g
as follows: For all p ∈ N , for all u, v ∈ TpN ,

(ϕ∗g)p(u, v) = gϕ(p)(dϕp(u), dϕp(v)).

We need to check that (ϕ∗g)p is an inner product, which
is very easy since dϕp is a linear isomorphism.

Our map, ϕ, between the two Riemannian manifolds
(N,ϕ∗g) and (M, g) is a local isometry, as defined be-
low.
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Definition 6.1.4 Given two Riemannian manifolds,
(M1, g1) and (M2, g2), a local isometry is a smooth map,
ϕ:M1 → M2, such that dϕp:TpM1 → Tϕ(p)M2 is an
isometry between the Euclidean spaces (TpM1, (g1)p) and
(Tϕ(p)M2, (g2)ϕ(p)), for every p ∈ M1, that is,

(g1)p(u, v) = (g2)ϕ(p)(dϕp(u), dϕp(v)),

for all u, v ∈ TpM1 or, equivalently, ϕ∗g2 = g1. More-
over, ϕ is an isometry iff it is a local isometry and a
diffeomorphism.

The isometries of a Riemannian manifold, (M, g), form a
group, Isom(M, g), called the isometry group of (M, g).

An important theorem of Myers and Steenrod asserts that
the isometry group, Isom(M, g), is a Lie group.
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Given a map, ϕ:M1 → M2, and a metric g1 on M1, in
general, ϕ does not induce any metric on M2.

However, if ϕ has some extra properties, it does induce
a metric on M2. This is the case when M2 arises from
M1 as a quotient induced by some group of isometries of
M1. For more on this, see Gallot, Hulin and Lafontaine
[?], Chapter 2, Section 2.A.

Now, because a manifold is paracompact (see Section
4.6), a Riemannian metric always exists on M . This is
a consequence of the existence of partitions of unity (see
Theorem 4.6.5).

Theorem 6.1.5 Every smooth manifold admits a Rie-
mannian metric.
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6.2 Connections on Manifolds

Given a manifold, M , in general, for any two points,
p, q ∈ M , there is no “natural” isomorphism between
the tangent spaces TpM and TqM .

Given a curve, c: [0, 1] → M , on M as c(t) moves on
M , how does the tangent space, Tc(t)M change as c(t)
moves?

If M = Rn, then the spaces, Tc(t)R
n, are canonically

isomorphic to Rn and any vector, v ∈ Tc(0)R
n ∼= Rn, is

simply moved along c by parallel transport , that is, at
c(t), the tangent vector, v, also belongs to Tc(t)R

n.

However, if M is curved, for example, a sphere, then it is
not obvious how to “parallel transport” a tangent vector
at c(0) along a curve c.
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A way to achieve this is to define the notion of parallel
vector field along a curve and this, in turn, can be defined
in terms of the notion of covariant derivative of a vector
field.

Assume for simplicity that M is a surface in R3. Given
any two vector fields, X and Y defined on some open sub-
set, U ⊆ R3, for every p ∈ U , the directional derivative,
DXY (p), of Y with respect to X is defined by

DXY (p) = lim
t→0

Y (p + tX(p))− Y (p)

t
.

If f :U → R is a differentiable function on U , for every
p ∈ U , the directional derivative, X [f ](p) (or X(f)(p)),
of f with respect to X is defined by

X [f ](p) = lim
t→0

f(p + tX(p))− f(p)

t
.

We know that X [f ](p) = dfp(X(p)).
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It is easily shown that DXY (p) is R-bilinear in X and Y ,
is C∞(U )-linear inX and satisfies the Leibnitz derivation
rule with respect to Y , that is:

Proposition 6.2.1 The directional derivative of vec-
tor fields satisfies the following properties:

DX1+X2Y (p) = DX1Y (p) +DX2Y (p)

DfXY (p) = fDXY (p)

DX(Y1 + Y2)(p) = DXY1(p) +DXY2(p)

DX(fY )(p) = X [f ](p)Y (p) + f(p)DXY (p),

for all X,X1, X2, Y, Y1, Y2 ∈ X(U ) and all f ∈ C∞(U ).

Now, if p ∈ U where U ⊆ M is an open subset of M , for
any vector field, Y , defined on U (Y (p) ∈ TpM , for all
p ∈ U ), for every X ∈ TpM , the directional derivative,
DXY (p), makes sense and it has an orthogonal decom-
position,

DXY (p) = ∇XY (p) + (Dn)XY (p),

where its horizontal (or tangential) component is
∇XY (p) ∈ TpM and its normal component is (Dn)XY (p).
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The component, ∇XY (p), is the covariant derivative of
Y with respect to X ∈ TpM and it allows us to define
the covariant derivative of a vector field, Y ∈ X(U ), with
respect to a vector field, X ∈ X(M), on M .

We easily check that ∇XY satisfies the four equations of
Proposition 6.2.1.

In particular, Y , may be a vector field associated with a
curve, c: [0, 1] → M .

A vector field along a curve, c, is a vector field, Y , such
that Y (c(t)) ∈ Tc(t)M , for all t ∈ [0, 1]. We also write
Y (t) for Y (c(t)).

Then, we say that Y is parallel along c iff ∇∂/∂tY = 0
along c.
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The notion of parallel transport on a surface can be de-
fined using parallel vector fields along curves. Let p, q be
any two points on the surface M and assume there is a
curve, c: [0, 1] → M , joining p = c(0) to q = c(1).

Then, using the uniqueness and existence theorem for
ordinary differential equations, it can be shown that for
any initial tangent vector, Y0 ∈ TpM , there is a unique
parallel vector field, Y , along c, with Y (0) = Y0.

If we set Y1 = Y (1), we obtain a linear map, Y0 )→ Y1,
from TpM to TqM which is also an isometry.

As a summary, given a surface, M , if we can define a no-
tion of covariant derivative, ∇:X(M)×X(M) → X(M),
satisfying the properties of Proposition 6.2.1, then we can
define the notion of parallel vector field along a curve and
the notion of parallel transport, which yields a natural
way of relating two tangent spaces, TpM and TqM , using
curves joining p and q.
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This can be generalized to manifolds using the notion of
connection. We will see that the notion of connection
induces the notion of curvature. Moreover, if M has a
Riemannian metric, we will see that this metric induces
a unique connection with two extra properties (the Levi-
Civita connection).

Definition 6.2.2 Let M be a smooth manifold.
A connection on M is a R-bilinear map,

∇:X(M)× X(M) → X(M),

where we write ∇XY for ∇(X, Y ), such that the follow-
ing two conditions hold:

∇fXY = f∇XY

∇X(fY ) = X [f ]Y + f∇XY,

for all X,Y ∈ X(M) and all f ∈ C∞(M). The vector
field, ∇XY , is called the covariant derivative of Y with
respect to X .

A connection onM is also known as an affine connection
on M .
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A basic property of ∇ is that it is a local operator .

Proposition 6.2.3 Let M be a smooth manifold and
let ∇ be a connection on M . For every open subset,
U ⊆ M , for every vector field, Y ∈ X(M), if
Y ≡ 0 on U , then ∇XY ≡ 0 on U for all X ∈ X(M),
that is, ∇ is a local operator.

Proposition 6.2.3 implies that a connection, ∇, on M ,
restricts to a connection, ∇ ! U , on every open subset,
U ⊆ M .

It can also be shown that (∇XY )(p) only depends on
X(p), that is, for any two vector fields, X,Y ∈ X(M), if
X(p) = Y (p) for some p ∈ M , then

(∇XZ)(p) = (∇Y Z)(p) for every Z ∈ X(M).

Consequently, for any p ∈ M , the covariant derivative,
(∇uY )(p), is well defined for any tangent vector,
u ∈ TpM , and any vector field, Y , defined on some open
subset, U ⊆ M , with p ∈ U .
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Observe that on U , the n-tuple of vector fields,(
∂
∂x1

, . . . , ∂
∂xn

)
, is a local frame.

We can write

∇ ∂
∂xi

(
∂

∂xj

)
=

n∑

k=1

Γkij
∂

∂xk
,

for some unique smooth functions, Γkij, defined on U ,
called the Christoffel symbols .

We say that a connection, ∇, is flat on U iff

∇X

(
∂

∂xi

)
= 0, for all X ∈ X(U ), 1 ≤ i ≤ n.
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Proposition 6.2.4 Every smooth manifold, M , pos-
sesses a connection.

Proof . We can find a family of charts, (Uα,ϕα), such
that {Uα}α is a locally finite open cover of M . If (fα) is
a partition of unity subordinate to the cover {Uα}α and
if ∇α is the flat connection on Uα, then it is immediately
verified that

∇ =
∑

α

fα∇α

is a connection on M .

Remark: A connection on TM can be viewed as a lin-
ear map,

∇:X(M) −→ HomC∞(M)(X(M), (X(M)),

such that, for any fixed Y ∈ X (M), the map,
∇Y :X )→ ∇XY , is C∞(M)-linear, which implies that
∇Y is a (1, 1) tensor.
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6.3 Parallel Transport

The notion of connection yields the notion of parallel
transport. First, we need to define the covariant deriva-
tive of a vector field along a curve.

Definition 6.3.1 Let M be a smooth manifold and let
γ: [a, b] → M be a smooth curve in M . A smooth vector
field along the curve γ is a smooth map,
X : [a, b] → TM , such that π(X(t)) = γ(t), for all
t ∈ [a, b] (X(t) ∈ Tγ(t)M).

Recall that the curve, γ: [a, b] → M , is smooth iff γ is
the restriction to [a, b] of a smooth curve on some open
interval containing [a, b].
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Proposition 6.3.2 Let M be a smooth manifold, let
∇ be a connection on M and γ: [a, b] → M be a smooth
curve in M . There is a R-linear map, D/dt, defined
on the vector space of smooth vector fields, X, along
γ, which satisfies the following conditions:

(1) For any smooth function, f : [a, b] → R,

D(fX)

dt
=

df

dt
X + f

DX

dt

(2) If X is induced by a vector field, Z ∈ X(M),
that is, X(t0) = Z(γ(t0)) for all t0 ∈ [a, b], then
DX

dt
(t0) = (∇γ′(t0)Z)γ(t0).
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Proof . Since γ([a, b]) is compact, it can be covered by a
finite number of open subsets, Uα, such that (Uα,ϕα) is a
chart. Thus, we may assume that γ: [a, b] → U for some
chart, (U,ϕ). As ϕ ◦ γ: [a, b] → Rn, we can write

ϕ ◦ γ(t) = (u1(t), . . . , un(t)),

where each ui = pri ◦ ϕ ◦ γ is smooth. Now, it is easy to
see that

γ′(t0) =
n∑

i=1

dui
dt

(
∂

∂xi

)

γ(t0)

.

If (s1, . . . , sn) is a frame over U , we can write

X(t) =
n∑

i=1

Xi(t)si(γ(t)),

for some smooth functions, Xi.
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Then, conditions (1) and (2) imply that

DX

dt
=

n∑

j=1

(
dXj

dt
sj(γ(t)) +Xj(t)∇γ′(t)(sj(γ(t)))

)

and since

γ′(t) =
n∑

i=1

dui
dt

(
∂

∂xi

)

γ(t)

,

there exist some smooth functions, Γkij, so that

∇γ′(t)(sj(γ(t))) =
n∑

i=1

dui
dt

∇ ∂
∂xi

(sj(γ(t)))

=
∑

i,k

dui
dt
Γkijsk(γ(t)).

It follows that

DX

dt
=

n∑

k=1



dXk

dt
+
∑

ij

Γkij
dui
dt

Xj



 sk(γ(t)).

Conversely, the above expression defines a linear operator,
D/dt, and it is easy to check that it satisfies (1) and (2).
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The operator, D/dt is often called covariant derivative
along γ and it is also denoted by ∇γ′(t) or simply ∇γ′.

Definition 6.3.3 Let M be a smooth manifold and let
∇ be a connection onM . For every curve, γ: [a, b] → M ,
in M , a vector field, X , along γ is parallel (along γ) iff

DX

dt
= 0.

If M was embedded in Rd, for some d, then to say that
X is parallel along γ would mean that the directional
derivative, (Dγ′X)(γ(t)), is normal to Tγ(t)M .

The following proposition can be shown using the exis-
tence and uniqueness of solutions of ODE’s (in our case,
linear ODE’s) and its proof is omitted:
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Proposition 6.3.4 Let M be a smooth manifold and
let ∇ be a connection on M . For every C1 curve,
γ: [a, b] → M , in M , for every t ∈ [a, b] and every
v ∈ Tγ(t)M , there is a unique parallel vector field, X,
along γ such that X(t) = v.

For the proof of Proposition 6.3.4 it is sufficient to con-
sider the portions of the curve γ contained in some chart.
In such a chart, (U,ϕ), as in the proof of Proposition
6.3.2, using a local frame, (s1, . . . , sn), over U , we have

DX

dt
=

n∑

k=1



dXk

dt
+
∑

ij

Γkij
dui
dt

Xj



 sk(γ(t)),

with ui = pri ◦ ϕ ◦ γ. Consequently, X is parallel along
our portion of γ iff the system of linear ODE’s in the
unknowns, Xk,

dXk

dt
+
∑

ij

Γkij
dui
dt

Xj = 0, k = 1, . . . , n,

is satisfied.
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Remark: Proposition 6.3.4 can be extended to piece-
wise C1 curves.

Definition 6.3.5 Let M be a smooth manifold and let
∇ be a connection on M . For every curve,
γ: [a, b] → M , in M , for every t ∈ [a, b], the paral-
lel transport from γ(a) to γ(t) along γ is the linear
map from Tγ(a)M to Tγ(t)M , which associates to any
v ∈ Tγ(a)M the vector, Xv(t) ∈ Tγ(t)M , where Xv is
the unique parallel vector field along γ with Xv(a) = v.

The following proposition is an immediate consequence
of properties of linear ODE’s:

Proposition 6.3.6 Let M be a smooth manifold and
let ∇ be a connection on M . For every C1 curve,
γ: [a, b] → M , in M , the parallel transport along γ
defines for every t ∈ [a, b] a linear isomorphism,
Pγ:Tγ(a)M → Tγ(t)M , between the tangent spaces,
Tγ(a)M and Tγ(t)M .
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In particular, if γ is a closed curve, that is, if
γ(a) = γ(b) = p, we obtain a linear isomorphism, Pγ, of
the tangent space, TpM , called the holonomy of γ. The
holonomy group of ∇ based at p, denoted Holp(∇), is
the subgroup of GL(V,R) given by

Holp(∇) = {Pγ ∈ GL(V,R) |
γ is a closed curve based at p}.

If M is connected, then Holp(∇) depends on the base-
point p ∈ M up to conjugation and so Holp(∇) and
Holq(∇) are isomorphic for all p, q ∈ M . In this case, it
makes sense to talk about the holonomy group of ∇. By
abuse of language, we call Holp(∇) the holonomy group
of M .
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6.4 Connections Compatible with a Metric;

Levi-Civita Connections

If a Riemannian manifold,M , has a metric, then it is nat-
ural to define when a connection, ∇, on M is compatible
with the metric.

Given any two vector fields, Y, Z ∈ X(M), the smooth
function, 〈Y, Z〉 ,is defined by

〈Y, Z〉(p) = 〈Yp, Zp〉p,

for all p ∈ M .

Definition 6.4.1 Given any metric, 〈−,−〉, on a smooth
manifold, M , a connection, ∇, on M is compatible with
the metric, for short, a metric connection iff

X(〈Y, Z〉) = 〈∇XY, Z〉 + 〈Y,∇XZ〉,

for all vector fields, X, Y, Z ∈ X(M).
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Proposition 6.4.2 Let M be a Riemannian manifold
with a metric, 〈−,−〉. Then, M , possesses metric
connections.

Proof . For every chart, (Uα,ϕα), we use the Gram-Schmidt
procedure to obtain an orthonormal frame over Uα and
we let ∇α be the trivial connection over Uα. By con-
struction, ∇α is compatible with the metric. We finish
the argumemt by using a partition of unity, leaving the
details to the reader.

We know from Proposition 6.4.2 that metric connections
on TM exist. However, there are many metric connec-
tions on TM and none of them seems more relevant than
the others.

It is remarkable that if we require a certain kind of sym-
metry on a metric connection, then it is uniquely deter-
mined.
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Such a connection is known as the Levi-Civita connec-
tion . The Levi-Civita connection can be characterized
in several equivalent ways, a rather simple way involving
the notion of torsion of a connection.

There are two error terms associated with a connection.
The first one is the curvature,

R(X, Y ) = ∇[X,Y ] +∇Y∇X −∇X∇Y .

The second natural error term is the torsion , T (X, Y ),
of the connection, ∇, given by

T (X, Y ) = ∇XY −∇YX − [X, Y ],

which measures the failure of the connection to behave
like the Lie bracket.
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Proposition 6.4.3 (Levi-Civita, Version 1) Let M
be any Riemannian manifold. There is a unique, met-
ric, torsion-free connection, ∇, on M , that is, a con-
nection satisfying the conditions

X(〈Y, Z〉) = 〈∇XY, Z〉 + 〈Y,∇XZ〉
∇XY −∇YX = [X,Y ],

for all vector fields, X,Y, Z ∈ X(M). This connec-
tion is called the Levi-Civita connection (or canoni-
cal connection) on M . Furthermore, this connection
is determined by the Koszul formula

2〈∇XY, Z〉 = X(〈Y, Z〉) + Y (〈X,Z〉)− Z(〈X, Y 〉)
− 〈Y, [X,Z]〉 − 〈X, [Y, Z]〉 − 〈Z, [Y,X ]〉.
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Proof . First, we prove uniqueness. Since our metric is
a non-degenerate bilinear form, it suffices to prove the
Koszul formula. As our connection is compatible with
the metric, we have

X(〈Y, Z〉) = 〈∇XY, Z〉 + 〈Y,∇XZ〉
Y (〈X,Z〉) = 〈∇YX, Z〉 + 〈X,∇Y Z〉

−Z(〈X, Y 〉) = −〈∇ZX, Y 〉 − 〈X,∇ZY 〉

and by adding up the above equations, we get

X(〈Y, Z〉) + Y (〈X,Z)〉 − Z(〈X, Y 〉) =
〈Y,∇XZ −∇ZX〉
+ 〈X,∇Y Z −∇ZY 〉
+ 〈Z,∇XY +∇YX〉.

Then, using the fact that the torsion is zero, we get

X(〈Y, Z〉) + Y (〈X,Z〉)− Z(〈X, Y 〉) =
〈Y, [X,Z]〉 + 〈X, [Y, Z]〉
+ 〈Z, [Y,X ]〉 + 2〈Z,∇XY 〉

which yields the Koszul formula.

We will not prove existence here. The reader should con-
sult the standard texts for a proof.
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Remark: In a chart, (U,ϕ), if we set

∂kgij =
∂

∂xk
(gij)

then it can be shown that the Christoffel symbols are
given by

Γkij =
1

2

n∑

l=1

gkl(∂igjl + ∂jgil − ∂lgij),

where (gkl) is the inverse of the matrix (gkl).

It can be shown that a connection is torsion-free iff

Γkij = Γ
k
ji, for all i, j, k.

We conclude this section with various useful facts about
torsion-free or metric connections.

First, there is a nice characterization for the Levi-Civita
connection induced by a Riemannian manifold over a sub-
manifold.
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Proposition 6.4.4 Let M be any Riemannian mani-
fold and let N be any submanifold of M equipped with
the induced metric. If ∇M and ∇N are the Levi-Civita
connections on M and N , respectively, induced by the
metric on M , then for any two vector fields, X and
Y in X(M) with X(p), Y (p) ∈ TpN , for all p ∈ N , we
have

∇N
XY = (∇M

X Y )‖,

where (∇M
X Y )‖(p) is the orthogonal projection of

∇M
X Y (p) onto TpN , for every p ∈ N .

In particular, if γ is a curve on a surface, M ⊆ R3, then
a vector field, X(t), along γ is parallel iff X ′(t) is normal
to the tangent plane, Tγ(t)M .

If ∇ is a metric connection, then we can say more about
the parallel transport along a curve. Recall from Section
6.3, Definition 6.3.3, that a vector field, X , along a curve,
γ, is parallel iff

DX

dt
= 0.
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Proposition 6.4.5 Given any Riemannian manifold,
M , and any metric connection, ∇, on M , for every
curve, γ: [a, b] → M , on M , if X and Y are two vector
fields along γ, then

d

dt
〈X(t), Y (t)〉 =

〈
DX

dt
, Y

〉
+

〈
X,

DY

dt

〉
.

Using Proposition 6.4.5 we get

Proposition 6.4.6 Given any Riemannian manifold,
M , and any metric connection, ∇, on M , for every
curve, γ: [a, b] → M , on M , if X and Y are two vector
fields along γ that are parallel, then

〈X,Y 〉 = C,

for some constant, C. In particular, ‖X(t)‖ is con-
stant. Furthermore, the linear isomorphism,
Pγ:Tγ(a) → Tγ(b), is an isometry.

In particular, Proposition 6.4.6 shows that the holonomy
group, Holp(∇), based at p, is a subgroup of O(n).


