
Spring, 2006 CIS 610

Advanced Geometric Methods in Computer Science

Jean Gallier

Homework 3

March 29, 2006; Due April 12, 2006

“A problems” are for practice only, and should not be turned in.

Problem A1. Give an example of a complex such that for some faces, σ, which is not a
vertex, lk(σ) is properly contained in st(σ)− st(σ).

“B problems” must be turned in.

Problem B1 (20 pts). A ray , R, of Ed is any subset of the form

R = {a + tu | t ∈ R, t ≥ 0},

for some point, a ∈ Ed and some nonzero vector, u ∈ Rd. A subset, A ⊆ Ed, is unbounded
iff it is not contained in any ball.

Prove that every closed and unbounded convex set, A ⊆ Ed, contains a ray.

Hint : Pick some point, c ∈ A, as the origin and consider the sphere, S(c, r) ⊆ Ed, of center
c and radius r > 0. As A is unbounded and c ∈ A, show that

Ar = A ∩ S(c, r) 6= ∅

for all r > 0. As A is closed, each Ar is compact. Consider the radial projection,
πr : S(c, r) → S(c, 1), from S(c, r) onto the unit sphere, S(c, 1), of center c given by

πr(a) =
1

r
a.

This map is invertible, the inverse being given by

π−1
r (b) = rb,

and clearly, π is continuous. Thus, each set,

Kr = πr(Ar)

1



is a compact subset of S(c, 1). Moreover, check that Kr1 ⊆ Kr2 whenever r2 ≤ r1. Deduce
from this and the fact that the Kr are compact that⋂

r>0

Kr 6= ∅.

Pick any d ∈
⋂

r>0 Kr and prove that {c + tcd | t ≥ 0} is a ray contained in A.

Problem B2 (50 pts). A subset, C ⊆ Ed, is a cone iff C is closed under positive linear
combinations, that is, iff

λ1u1 + · · ·+ λkuk ∈ C,

for all u1, . . . , uk ∈ C and all λi ∈ R, with λi ≥ 0 and 1 ≤ i ≤ k. Note that we always 0 ∈ C.

(i) Check that C is convex.

For any subset, V ⊆ Rd, the positive hull of C, cone(V ), is given by

cone(V ) = {λ1u1 + · · ·+ λkuk | ui ∈ V, λi ≥ 0, 1 ≤ i ≤ k}.

A cone, C ⊆ Ed, is a V-cone or polyhedral cone if C is the positive hull of a finite set of
vectors, that is,

C = cone({u1, . . . , up}),

for some vectors, u1, . . . , up ∈ Rd.

A cone, C ⊆ Ed, is an H-cone iff it is equal to a finite intersection of closed half spaces
cut out by hyperplanes through 0.

Say that C has 0 as an apex iff there is a hyperplane, H, though 0, so that H ∩C = {0}.

(ii) Let H and H ′ be parallel hyperplanes with 0 ∈ H. Prove that for any closed cone,
C, if C ∩H ′ 6= ∅, then C ∩H = {0} iff C ∩H ′ is bounded.

Hint : If A∩H ′ is not bounded, use problem B1 to construct a sequence of points, an, along
a ray in A and consider the sequence of unit vectors, un = an

‖an‖ . Show that the un converge
to a vector, u ∈ C ∩H, a contradiction.

(iii) Let C be a polyhedral cone of dimension d ≥ 2. Prove that the following statements
are equivalent:

(a) C has 0 as an apex.

(b) There is a hyperplane, H ′, not passing through 0 such that C ∩H ′ is a polytope.

(c) There is some polytope, P , of dimension d− 1 such that C = cone(P ).

(iv) Prove that every polyhedral cone with 0 as an apex is an intersection of closed
half-spaces,

⋂p
i=1(Hi)−, with

⋂p
i=1 Hi = {0}.
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If C =
⋂p

i=1(Hi)− with
⋂p

i=1 Hi = {0}, is C is V-cone with 0 as an apex?

Problem B3 (40 pts). Let C ⊆ Ed be any V-cone with nonempty interior. Pick any Ω in
the interior of C, and consider the polar dual, C∗, of C w.r.t. Ω.

(i) Prove that C∗ is an H-polytope, namely if C = cone({u1, . . . , up}), then

C∗ = (0†)− ∩
p⋂

i=1

(u†
i )−,

where (0†)− is the closed half-space containing Ω determined by the polar hyperplane, 0†, of
0 w.r.t. the center Ω and (u†

i )− is the closed half space defined as follows:

(u†
i )− = {x ∈ Ed | Ωx · ui ≤ 0}.

Note that {x ∈ Ed | Ωx · ui = 0} is the hyperplane through Ω perpendicular to ui, so (u†
i )−

is the closed half-space on the side opposite to ui and bounded by this hyperplane. Draw a
few pictures in the case of the plane to understand what’s going on.

(ii) Use (i) and the equivalence of H-polytopes and V-polytopes to prove that C = C∗∗

is an H-cone. Therefore, any V-cone is an H-cone.

(iii) Use a similar argument to prove that any polyhedral set (i.e., a V-polyhedron) is an
H-polyhedron.

Problem B4 (20 pts). Let P ⊆ Ed be a V-polyhedron, P = conv(Y ) + cone(V ), where

Y = {y1, . . . , yp} and V = {v1, . . . , vq}. Define Ŷ = {ŷ1, . . . , ŷp} ⊆ Ed+1, and

V̂ = {v̂1, . . . , v̂q} ⊆ Ed+1, by

ŷi =

(
yi

1

)
, v̂j =

(
vj

0

)
.

(i) Check that

C(P ) = cone({Ŷ ∪ V̂ })

is a V-cone in Ed+1 such that
P = C(P ) ∩Hd+1,

where Hd+1 is the hyperplane of equation xd+1 = 1.

Conversely, prove that if C = cone(W ) is a V-cone in Ed+1, with wid+1 ≥ 0 for every
wi ∈ W , then P = C ∩Hd+1 is a V-polyhedron.

(ii) Now, let P ⊆ Ed be an H-polyhedron. Then, P is cut out by m hyperplanes, Hi, and
for each Hi, there is a nonzero vector, ui, and some bi ∈ R so that

Hi = {x ∈ Ed | ui · x = bi}
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and P is given by

P =
m⋂

i=1

{x ∈ Ed | ui · x ≤ bi}.

If A denotes the m× d matrix whose i-th row is ui and b is the vector b = (b1, . . . , bm), then
we can write

P = P (A, b) = {x ∈ Ed | Ax ≤ b}.

We “homogenize” P (A, b) as follows: Let C(P ) be the subset of Ed+1 defined by

C(P ) =

{(
x

xd+1

)
∈ Rd+1 | Ax ≤ xd+1b, xd+1 ≥ 0

}
=

{(
x

xd+1

)
∈ Rd+1 | Ax− xd+1b ≤ 0, −xd+1 ≤ 0

}
.

Thus, we see that C(P ) is the H-cone given by the system of inequalities(
A −b
0 −1

) (
x

xd+1

)
≤

(
0

0

)
and that

P = C(P ) ∩Hd+1.

Conversely, if Q is any H-cone in Ed+1 (in fact, any H-polyhedron), it is clear that
P = Q ∩Hd+1 is an H-polyhedron in Ed.

Problem B4 shows that the equivalence of V-polyhedra and H-polyhedra reduces to the
equivalence of V-cones and H-cones, constructively (i.e. we can go from cones to polyhedra
and back algorithmically).

Problem B5 (40 pts). Let C ⊆ Ed be an H-cone. Then, C is cut out by m hyperplanes,
Hi, through 0. For each Hi, there is a nonzero vector, ui, so that

Hi = {x ∈ Ed | ui · x = 0}

and C is given by

C =
m⋂

i=1

{x ∈ Ed | ui · x ≤ 0}.

If A denotes the m× d matrix whose i-th row is ui, then we can write

C = P (A, 0) = {x ∈ Ed | Ax ≤ 0}.

Observe that C = C0(A) ∩Hw, where

C0(A) =

{(
x

w

)
∈ Rd+m | Ax ≤ w

}
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is an H-cone in Ed+m and

Hw =

{(
x

w

)
∈ Rd+m | w = 0

}
is a hyperplane in Ed+m.

(i) Prove that C0(A) is a V-cone by observing that if we write(
x

w

)
=

d∑
i=1

|xi|(sign(xi))

(
ei

Aei

)
+

m∑
j=1

(wj − (Ax)j)

(
0

ej

)
,

then

C0(A) = cone

({
±

(
ei

Aei

)
| 1 ≤ i ≤ d

}
∪

{(
0

ej

)
| 1 ≤ j ≤ m

})
.

(ii) Since C = C0(A)∩Hw is now the intersection of a V-cone with a hyperplane, to prove
that C is a V-cone it is enough to prove that the intersection of a V-cone with a hyperplane
is also a V-cone. For this, we use Fourier-Motzkin elimination. It suffices to prove the result
for a hyperplane, Hk, in Ed+m of equation yk = 0 (1 ≤ k ≤ d + m).

Say C = cone(Y ) ⊆ Ed is a V-cone. Then, the intersection C ∩ Hk (where Hk is the
hyperplane of equation yk = 0) is a V-cone, C ∩Hk = cone(Y /k), with

Y /k = {yi | yik = 0} ∪ {yikyj − yjkyi | yik > 0, yjk < 0},

the set of vectors obtained from Y by “eliminating the k-th coordinate”. Here, each yi is a
vector in Rd.

Hint . The only nontrivial direction is to prove that C ∩Hk ⊆ cone(Y /k). For this, consider
any v =

∑d
i=1 tiyi ∈ C ∩Hk, with ti ≥ 0 and vk = 0. Such a v can be written

v =
∑

i|yik=0

tiyi +
∑

i|yik>0

tiyi +
∑

j|yjk<0

tjyj

and as vk = 0, we have ∑
i|yik>0

tiyik +
∑

j|yjk<0

tjyjk = 0.

If tiyik = 0 for i = 1, . . . , d, we are done. Otherwise, we can write

Λ =
∑

i|yik>0

tiyik =
∑

j|yjk<0

−tjyjk > 0.

Then,

v =
∑

i|yik=0

tiyi +
1

Λ

∑
i|yik>0

 ∑
j|yjk<0

−tjyjk

 tiyi +
1

Λ

∑
j|yjk<0

 ∑
i|yik>0

tiyik

 tjyj.
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Conclude that every H-cone is a V-cone.

(iii) Use Problem B4 to prove that if P is an H-polyhedron then it is a V-polyhedron.

Problem B6 (20 pts). Prove that Farkas Lemma, version III implies Farkas Lemma,
version II (from the notes).

TOTAL: 190 points.
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