Spring, 2006 CIS 610

Advanced Geometric Methods in Computer Science Jean Gallier

Homework 3

March 29, 2006; Due April 12, 2006

"A problems" are for practice only, and should not be turned in.

Problem A1. Give an example of a complex such that for some faces, σ , which is not a vertex, $lk(\sigma)$ is properly contained in $\overline{st(\sigma)} - st(\sigma)$.

"B problems" must be turned in.

Problem B1 (20 pts). A ray, R, of \mathbb{E}^d is any subset of the form

$$R = \{a + tu \mid t \in \mathbb{R}, t \ge 0\},\$$

for some point, $a \in \mathbb{E}^d$ and some nonzero vector, $u \in \mathbb{R}^d$. A subset, $A \subseteq \mathbb{E}^d$, is unbounded iff it is not contained in any ball.

Prove that every closed and unbounded convex set, $A \subseteq \mathbb{E}^d$, contains a ray.

Hint: Pick some point, $c \in A$, as the origin and consider the sphere, $S(c, r) \subseteq \mathbb{E}^d$, of center c and radius r > 0. As A is unbounded and $c \in A$, show that

$$A_r = A \cap S(c, r) \neq \emptyset$$

for all r > 0. As A is closed, each A_r is compact. Consider the radial projection, $\pi_r \colon S(c,r) \to S(c,1)$, from S(c,r) onto the unit sphere, S(c,1), of center c given by

$$\pi_r(a) = \frac{1}{r}a$$

This map is invertible, the inverse being given by

$$\pi_r^{-1}(b) = rb,$$

and clearly, π is continuous. Thus, each set,

$$K_r = \pi_r(A_r)$$

is a compact subset of S(c, 1). Moreover, check that $K_{r_1} \subseteq K_{r_2}$ whenever $r_2 \leq r_1$. Deduce from this and the fact that the K_r are compact that

$$\bigcap_{r>0} K_r \neq \emptyset.$$

Pick any $d \in \bigcap_{r>0} K_r$ and prove that $\{c + t\mathbf{cd} \mid t \ge 0\}$ is a ray contained in A.

Problem B2 (50 pts). A subset, $C \subseteq \mathbb{E}^d$, is a *cone* iff C is closed under positive linear combinations, that is, iff

$$\lambda_1 u_1 + \dots + \lambda_k u_k \in C,$$

for all $u_1, \ldots, u_k \in C$ and all $\lambda_i \in \mathbb{R}$, with $\lambda_i \ge 0$ and $1 \le i \le k$. Note that we always $0 \in C$.

(i) Check that C is convex.

For any subset, $V \subseteq \mathbb{R}^d$, the positive hull of C, $\operatorname{cone}(V)$, is given by

$$\operatorname{cone}(V) = \{\lambda_1 u_1 + \dots + \lambda_k u_k \mid u_i \in V, \ \lambda_i \ge 0, \ 1 \le i \le k\}.$$

A cone, $C \subseteq \mathbb{E}^d$, is a \mathcal{V} -cone or polyhedral cone if C is the positive hull of a finite set of vectors, that is,

$$C = \operatorname{cone}(\{u_1, \dots, u_p\}),$$

for some vectors, $u_1, \ldots, u_p \in \mathbb{R}^d$.

A cone, $C \subseteq \mathbb{E}^d$, is an \mathcal{H} -cone iff it is equal to a finite intersection of closed half spaces cut out by hyperplanes through 0.

Say that C has 0 as an apex iff there is a hyperplane, H, though 0, so that $H \cap C = \{0\}$.

(ii) Let H and H' be parallel hyperplanes with $0 \in H$. Prove that for any closed cone, C, if $C \cap H' \neq \emptyset$, then $C \cap H = \{0\}$ iff $C \cap H'$ is bounded.

Hint: If $A \cap H'$ is not bounded, use problem B1 to construct a sequence of points, a_n , along a ray in A and consider the sequence of unit vectors, $u_n = \frac{a_n}{\|a_n\|}$. Show that the u_n converge to a vector, $u \in C \cap H$, a contradiction.

(iii) Let C be a polyhedral cone of dimension $d \ge 2$. Prove that the following statements are equivalent:

- (a) C has 0 as an apex.
- (b) There is a hyperplane, H', not passing through 0 such that $C \cap H'$ is a polytope.
- (c) There is some polytope, P, of dimension d-1 such that $C = \operatorname{cone}(P)$.

(iv) Prove that every polyhedral cone with 0 as an apex is an intersection of closed half-spaces, $\bigcap_{i=1}^{p} (H_i)_{-}$, with $\bigcap_{i=1}^{p} H_i = \{0\}$.

If $C = \bigcap_{i=1}^{p} (H_i)_-$ with $\bigcap_{i=1}^{p} H_i = \{0\}$, is C is \mathcal{V} -cone with 0 as an apex?

Problem B3 (40 pts). Let $C \subseteq \mathbb{E}^d$ be any \mathcal{V} -cone with nonempty interior. Pick any Ω in the interior of C, and consider the polar dual, C^* , of C w.r.t. Ω .

(i) Prove that C^* is an \mathcal{H} -polytope, namely if $C = \operatorname{cone}(\{u_1, \ldots, u_p\})$, then

$$C^* = (0^{\dagger})_- \cap \bigcap_{i=1}^p (u_i^{\dagger})_-,$$

where $(0^{\dagger})_{-}$ is the closed half-space containing Ω determined by the polar hyperplane, 0^{\dagger} , of 0 w.r.t. the center Ω and $(u_i^{\dagger})_{-}$ is the closed half space defined as follows:

$$(u_i^{\dagger})_- = \{ x \in \mathbb{E}^d \mid \mathbf{\Omega} \mathbf{x} \cdot u_i \leq 0 \}$$

Note that $\{x \in \mathbb{E}^d \mid \mathbf{\Omega} \mathbf{x} \cdot u_i = 0\}$ is the hyperplane through Ω perpendicular to u_i , so $(u_i^{\dagger})_{-}$ is the closed half-space on the side opposite to u_i and bounded by this hyperplane. Draw a few pictures in the case of the plane to understand what's going on.

(ii) Use (i) and the equivalence of \mathcal{H} -polytopes and \mathcal{V} -polytopes to prove that $C = C^{**}$ is an \mathcal{H} -cone. Therefore, any \mathcal{V} -cone is an \mathcal{H} -cone.

(iii) Use a similar argument to prove that any polyhedral set (i.e., a \mathcal{V} -polyhedron) is an \mathcal{H} -polyhedron.

Problem B4 (20 pts). Let $P \subseteq \mathbb{E}^d$ be a \mathcal{V} -polyhedron, $P = \operatorname{conv}(Y) + \operatorname{cone}(V)$, where $Y = \{y_1, \ldots, y_p\}$ and $V = \{v_1, \ldots, v_q\}$. Define $\widehat{Y} = \{\widehat{y}_1, \ldots, \widehat{y}_p\} \subseteq \mathbb{E}^{d+1}$, and $\widehat{V} = \{\widehat{v}_1, \ldots, \widehat{v}_q\} \subseteq \mathbb{E}^{d+1}$, by

$$\widehat{y}_i = \begin{pmatrix} y_i \\ 1 \end{pmatrix}, \qquad \widehat{v}_j = \begin{pmatrix} v_j \\ 0 \end{pmatrix}.$$

(i) Check that

 $C(P) = \operatorname{cone}(\{\widehat{Y} \cup \widehat{V}\})$

is a \mathcal{V} -cone in \mathbb{E}^{d+1} such that

$$P = C(P) \cap H_{d+1},$$

where H_{d+1} is the hyperplane of equation $x_{d+1} = 1$.

Conversely, prove that if $C = \operatorname{cone}(W)$ is a \mathcal{V} -cone in \mathbb{E}^{d+1} , with $w_{id+1} \ge 0$ for every $w_i \in W$, then $P = C \cap H_{d+1}$ is a \mathcal{V} -polyhedron.

(ii) Now, let $P \subseteq \mathbb{E}^d$ be an \mathcal{H} -polyhedron. Then, P is cut out by m hyperplanes, H_i , and for each H_i , there is a nonzero vector, u_i , and some $b_i \in \mathbb{R}$ so that

$$H_i = \{ x \in \mathbb{E}^d \mid u_i \cdot x = b_i \}$$

and P is given by

$$P = \bigcap_{i=1}^{m} \{ x \in \mathbb{E}^d \mid u_i \cdot x \le b_i \}.$$

If A denotes the $m \times d$ matrix whose *i*-th row is u_i and b is the vector $b = (b_1, \ldots, b_m)$, then we can write

$$P = P(A, b) = \{ x \in \mathbb{E}^d \mid Ax \le b \}.$$

We "homogenize" P(A, b) as follows: Let C(P) be the subset of \mathbb{E}^{d+1} defined by

$$C(P) = \left\{ \begin{pmatrix} x \\ x_{d+1} \end{pmatrix} \in \mathbb{R}^{d+1} \mid Ax \le x_{d+1}b, \ x_{d+1} \ge 0 \right\} \\ = \left\{ \begin{pmatrix} x \\ x_{d+1} \end{pmatrix} \in \mathbb{R}^{d+1} \mid Ax - x_{d+1}b \le 0, \ -x_{d+1} \le 0 \right\}.$$

Thus, we see that C(P) is the \mathcal{H} -cone given by the system of inequalities

$$\begin{pmatrix} A & -b \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ x_{d+1} \end{pmatrix} \le \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

and that

$$P = C(P) \cap H_{d+1}.$$

Conversely, if Q is any \mathcal{H} -cone in \mathbb{E}^{d+1} (in fact, any \mathcal{H} -polyhedron), it is clear that $P = Q \cap H_{d+1}$ is an \mathcal{H} -polyhedron in \mathbb{E}^d .

Problem B4 shows that the equivalence of \mathcal{V} -polyhedra and \mathcal{H} -polyhedra reduces to the equivalence of \mathcal{V} -cones and \mathcal{H} -cones, constructively (i.e. we can go from cones to polyhedra and back algorithmically).

Problem B5 (40 pts). Let $C \subseteq \mathbb{E}^d$ be an \mathcal{H} -cone. Then, C is cut out by m hyperplanes, H_i , through 0. For each H_i , there is a nonzero vector, u_i , so that

$$H_i = \{ x \in \mathbb{E}^d \mid u_i \cdot x = 0 \}$$

and C is given by

$$C = \bigcap_{i=1}^{m} \{ x \in \mathbb{E}^d \mid u_i \cdot x \le 0 \}.$$

If A denotes the $m \times d$ matrix whose *i*-th row is u_i , then we can write

$$C = P(A, 0) = \{x \in \mathbb{E}^d \mid Ax \le 0\}.$$

Observe that $C = C_0(A) \cap H_w$, where

$$C_0(A) = \left\{ \begin{pmatrix} x \\ w \end{pmatrix} \in \mathbb{R}^{d+m} \mid Ax \le w \right\}$$

is an \mathcal{H} -cone in \mathbb{E}^{d+m} and

$$H_w = \left\{ \begin{pmatrix} x \\ w \end{pmatrix} \in \mathbb{R}^{d+m} \mid w = 0 \right\}$$

is a hyperplane in \mathbb{E}^{d+m} .

(i) Prove that $C_0(A)$ is a \mathcal{V} -cone by observing that if we write

$$\binom{x}{w} = \sum_{i=1}^{d} |x_i| (\operatorname{sign}(x_i)) \binom{e_i}{Ae_i} + \sum_{j=1}^{m} (w_j - (Ax)_j) \binom{0}{e_j},$$

then

$$C_0(A) = \operatorname{cone}\left(\left\{ \pm \begin{pmatrix} e_i \\ Ae_i \end{pmatrix} \mid 1 \le i \le d \right\} \cup \left\{ \begin{pmatrix} 0 \\ e_j \end{pmatrix} \mid 1 \le j \le m \right\} \right).$$

(ii) Since $C = C_0(A) \cap H_w$ is now the intersection of a \mathcal{V} -cone with a hyperplane, to prove that C is a \mathcal{V} -cone it is enough to prove that the intersection of a \mathcal{V} -cone with a hyperplane is also a \mathcal{V} -cone. For this, we use *Fourier-Motzkin elimination*. It suffices to prove the result for a hyperplane, H_k , in \mathbb{E}^{d+m} of equation $y_k = 0$ $(1 \le k \le d+m)$.

Say $C = \operatorname{cone}(Y) \subseteq \mathbb{E}^d$ is a \mathcal{V} -cone. Then, the intersection $C \cap H_k$ (where H_k is the hyperplane of equation $y_k = 0$) is a \mathcal{V} -cone, $C \cap H_k = \operatorname{cone}(Y^{/k})$, with

$$Y^{/k} = \{ y_i \mid y_{ik} = 0 \} \cup \{ y_{ik}y_j - y_{jk}y_i \mid y_{ik} > 0, \ y_{jk} < 0 \},\$$

the set of vectors obtained from Y by "eliminating the k-th coordinate". Here, each y_i is a vector in \mathbb{R}^d .

Hint. The only nontrivial direction is to prove that $C \cap H_k \subseteq \operatorname{cone}(Y^{/k})$. For this, consider any $v = \sum_{i=1}^d t_i y_i \in C \cap H_k$, with $t_i \ge 0$ and $v_k = 0$. Such a v can be written

$$v = \sum_{i|y_{ik}=0} t_i y_i + \sum_{i|y_{ik}>0} t_i y_i + \sum_{j|y_{jk}<0} t_j y_j$$

and as $v_k = 0$, we have

$$\sum_{i|y_{ik}>0} t_i y_{ik} + \sum_{j|y_{jk}<0} t_j y_{jk} = 0.$$

If $t_i y_{ik} = 0$ for i = 1, ..., d, we are done. Otherwise, we can write

$$\Lambda = \sum_{i|y_{ik}>0} t_i y_{ik} = \sum_{j|y_{jk}<0} -t_j y_{jk} > 0.$$

Then,

$$v = \sum_{i|y_{ik}=0} t_i y_i + \frac{1}{\Lambda} \sum_{i|y_{ik}>0} \left(\sum_{j|y_{jk}<0} -t_j y_{jk} \right) t_i y_i + \frac{1}{\Lambda} \sum_{j|y_{jk}<0} \left(\sum_{i|y_{ik}>0} t_i y_{ik} \right) t_j y_j.$$

Conclude that every \mathcal{H} -cone is a \mathcal{V} -cone.

(iii) Use Problem B4 to prove that if P is an \mathcal{H} -polyhedron then it is a \mathcal{V} -polyhedron.

Problem B6 (20 pts). Prove that Farkas Lemma, version III implies Farkas Lemma, version II (from the notes).

TOTAL: 190 points.