Advanced Geometric Methods in Computer Science
Jean Gallier

Homework 3

March 29, 2006; Due April 12, 2006

“A problems” are for practice only, and should not be turned in.

Problem A1. Give an example of a complex such that for some faces, \(\sigma \), which is not a vertex, \(\text{lk}(\sigma) \) is properly contained in \(\text{st}(\sigma) - \text{st}(\sigma) \).

“B problems” must be turned in.

Problem B1 (20 pts). A ray, \(R \), of \(\mathbb{E}^d \) is any subset of the form

\[
R = \{ a + tu \mid t \in \mathbb{R}, t \geq 0 \},
\]

for some point, \(a \in \mathbb{E}^d \) and some nonzero vector, \(u \in \mathbb{R}^d \). A subset, \(A \subseteq \mathbb{E}^d \), is unbounded iff it is not contained in any ball.

Prove that every closed and unbounded convex set, \(A \subseteq \mathbb{E}^d \), contains a ray.

\textit{Hint:} Pick some point, \(c \in A \), as the origin and consider the sphere, \(S(c, r) \subseteq \mathbb{E}^d \), of center \(c \) and radius \(r > 0 \). As \(A \) is unbounded and \(c \in A \), show that

\[
A_r = A \cap S(c, r) \neq \emptyset
\]

for all \(r > 0 \). As \(A \) is closed, each \(A_r \) is compact. Consider the radial projection,

\[
\pi_r : S(c, r) \to S(c, 1),
\]

from \(S(c, r) \) onto the unit sphere, \(S(c, 1) \), of center \(c \) given by

\[
\pi_r(a) = \frac{1}{r} a.
\]

This map is invertible, the inverse being given by

\[
\pi_r^{-1}(b) = rb,
\]

and clearly, \(\pi \) is continuous. Thus, each set,

\[
K_r = \pi_r(A_r)
\]
is a compact subset of \(S(c, 1) \). Moreover, check that \(K_{r_1} \subseteq K_{r_2} \) whenever \(r_2 \leq r_1 \). Deduce from this and the fact that the \(K_r \) are compact that

\[
\bigcap_{r > 0} K_r \neq \emptyset.
\]

Pick any \(d \in \bigcap_{r > 0} K_r \) and prove that \(\{ c + tcd \mid t \geq 0 \} \) is a ray contained in \(A \).

Problem B2 (50 pts). A subset, \(C \subseteq \mathbb{E}^d \), is a cone iff \(C \) is closed under positive linear combinations, that is, iff

\[
\lambda_1 u_1 + \cdots + \lambda_k u_k \in C,
\]

for all \(u_1, \ldots, u_k \in C \) and all \(\lambda_i \in \mathbb{R} \), with \(\lambda_i \geq 0 \) and \(1 \leq i \leq k \). Note that we always \(0 \in C \).

(i) Check that \(C \) is convex.

For any subset, \(V \subseteq \mathbb{R}^d \), the positive hull of \(C \), \(\text{cone}(V) \), is given by

\[
\text{cone}(V) = \{ \lambda_1 u_1 + \cdots + \lambda_k u_k \mid u_i \in V, \lambda_i \geq 0, 1 \leq i \leq k \}.
\]

A cone, \(C \subseteq \mathbb{E}^d \), is a \(\mathcal{V} \)-cone or polyhedral cone if \(C \) is the positive hull of a finite set of vectors, that is,

\[
C = \text{cone}\{ u_1, \ldots, u_p \},
\]

for some vectors, \(u_1, \ldots, u_p \in \mathbb{R}^d \).

A cone, \(C \subseteq \mathbb{E}^d \), is an \(\mathcal{H} \)-cone iff it is equal to a finite intersection of closed half spaces cut out by hyperplanes through 0.

Say that \(C \) has 0 as an apex iff there is a hyperplane, \(H \), though 0, so that \(H \cap C = \{0\} \).

(ii) Let \(H \) and \(H' \) be parallel hyperplanes with \(0 \in H \). Prove that for any closed cone, \(C \), if \(C \cap H' \neq \emptyset \), then \(C \cap H = \{0\} \) iff \(C \cap H' \) is bounded.

Hint: If \(A \cap H' \) is not bounded, use problem B1 to construct a sequence of points, \(a_n \), along a ray in \(A \) and consider the sequence of unit vectors, \(u_n = \frac{a_n}{\|a_n\|} \). Show that the \(u_n \) converge to a vector, \(u \in C \cap H \), a contradiction.

(iii) Let \(C \) be a polyhedral cone of dimension \(d \geq 2 \). Prove that the following statements are equivalent:

(a) \(C \) has 0 as an apex.

(b) There is a hyperplane, \(H' \), not passing through 0 such that \(C \cap H' \) is a polytope.

(c) There is some polytope, \(P \), of dimension \(d - 1 \) such that \(C = \text{cone}(P) \).

(iv) Prove that every polyhedral cone with 0 as an apex is an intersection of closed half-spaces, \(\bigcap_{i=1}^n (H_i)_- \), with \(\bigcap_{i=1}^n H_i = \{0\} \).
If $C = \bigcap_{i=1}^{p}(H_i)_-$ with $\bigcap_{i=1}^{p} H_i = \{0\}$, is C is \mathcal{V}-cone with 0 as an apex?

Problem B3 (40 pts). Let $C \subseteq \mathbb{E}^d$ be any \mathcal{V}-cone with nonempty interior. Pick any Ω in the interior of C, and consider the polar dual, C^*, of C w.r.t. Ω.

(i) Prove that C^* is an \mathcal{H}-polytope, namely if $C = \text{cone} \{u_1, \ldots, u_p\}$, then

$$C^* = (0^\dagger)_- \cap \bigcap_{i=1}^{p}(u_i^\dagger)_-,$$

where $(0^\dagger)_-$ is the closed half-space containing Ω determined by the polar hyperplane, 0^\dagger, of 0 w.r.t. the center Ω and $(u_i^\dagger)_-$ is the closed half space defined as follows:

$$(u_i^\dagger)_- = \{x \in \mathbb{E}^d \mid \Omega x \cdot u_i \leq 0\}.$$

Note that $\{x \in \mathbb{E}^d \mid \Omega x \cdot u_i = 0\}$ is the hyperplane through Ω perpendicular to u_i, so $(u_i^\dagger)_-$ is the closed half-space on the side opposite to u_i and bounded by this hyperplane. Draw a few pictures in the case of the plane to understand what’s going on.

(ii) Use (i) and the equivalence of \mathcal{H}-polytopes and \mathcal{V}-polytopes to prove that $C = C^{**}$ is an \mathcal{H}-cone. Therefore, any \mathcal{V}-cone is an \mathcal{H}-cone.

(iii) Use a similar argument to prove that any polyhedral set (i.e., a \mathcal{V}-polyhedron) is an \mathcal{H}-polyhedron.

Problem B4 (20 pts). Let $P \subseteq \mathbb{E}^d$ be a \mathcal{V}-polyhedron, $P = \text{conv}(Y) + \text{cone}(V)$, where $Y = \{y_1, \ldots, y_p\}$ and $V = \{v_1, \ldots, v_q\}$. Define $\hat{Y} = \{\hat{y}_1, \ldots, \hat{y}_p\} \subseteq \mathbb{E}^{d+1}$, and $\hat{V} = \{\hat{v}_1, \ldots, \hat{v}_q\} \subseteq \mathbb{E}^{d+1}$, by

$$\hat{y}_i = \begin{pmatrix} y_i \\ 1 \end{pmatrix}, \quad \hat{v}_j = \begin{pmatrix} v_j \\ 0 \end{pmatrix}.$$

(i) Check that

$$C(P) = \text{cone} \{\hat{Y} \cup \hat{V}\}$$

is a \mathcal{V}-cone in \mathbb{E}^{d+1} such that

$$P = C(P) \cap H_{d+1},$$

where H_{d+1} is the hyperplane of equation $x_{d+1} = 1$.

Conversely, prove that if $C = \text{cone}(W)$ is a \mathcal{V}-cone in \mathbb{E}^{d+1}, with $w_{i(d+1)} \geq 0$ for every $w_i \in W$, then $P = C \cap H_{d+1}$ is a \mathcal{V}-polyhedron.

(ii) Now, let $P \subseteq \mathbb{E}^d$ be an \mathcal{H}-polyhedron. Then, P is cut out by m hyperplanes, H_i, and for each H_i, there is a nonzero vector, u_i, and some $b_i \in \mathbb{R}$ so that

$$H_i = \{x \in \mathbb{E}^d \mid u_i \cdot x = b_i\}.$$
and P is given by

$$P = \bigcap_{i=1}^{m} \{ x \in \mathbb{E}^d \mid u_i \cdot x \leq b_i \}.$$

If A denotes the $m \times d$ matrix whose i-th row is u_i and b is the vector $b = (b_1, \ldots, b_m)$, then we can write

$$P = P(A, b) = \{ x \in \mathbb{E}^d \mid Ax \leq b \}.$$

We “homogenize” $P(A, b)$ as follows: Let $C(P)$ be the subset of \mathbb{E}^{d+1} defined by

$$C(P) = \left\{ \begin{pmatrix} x \\ x_{d+1} \end{pmatrix} \mid Ax \leq x_{d+1}b, x_{d+1} \geq 0 \right\} = \left\{ \begin{pmatrix} x \\ x_{d+1} \end{pmatrix} \in \mathbb{R}^{d+1} \mid Ax - x_{d+1}b \leq 0, -x_{d+1} \leq 0 \right\}.$$

Thus, we see that $C(P)$ is the \mathcal{H}-cone given by the system of inequalities

$$\begin{pmatrix} A & -b \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ x_{d+1} \end{pmatrix} \leq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

and that

$$P = C(P) \cap H_{d+1}.$$

Conversely, if Q is any \mathcal{H}-cone in \mathbb{E}^{d+1} (in fact, any \mathcal{H}-polyhedron), it is clear that $P = Q \cap H_{d+1}$ is an \mathcal{H}-polyhedron in \mathbb{E}^d.

Problem B4 shows that the equivalence of \mathcal{V}-polyhedra and \mathcal{H}-polyhedra reduces to the equivalence of \mathcal{V}-cones and \mathcal{H}-cones, constructively (i.e. we can go from cones to polyhedra and back algorithmically).

Problem B5 (40 pts). Let $C \subseteq \mathbb{E}^d$ be an \mathcal{H}-cone. Then, C is cut out by m hyperplanes, H_i, through 0. For each H_i, there is a nonzero vector, u_i, so that

$$H_i = \{ x \in \mathbb{E}^d \mid u_i \cdot x = 0 \}$$

and C is given by

$$C = \bigcap_{i=1}^{m} \{ x \in \mathbb{E}^d \mid u_i \cdot x \leq 0 \}.$$

If A denotes the $m \times d$ matrix whose i-th row is u_i, then we can write

$$C = P(A, 0) = \{ x \in \mathbb{E}^d \mid Ax \leq 0 \}.$$

Observe that $C = C_0(A) \cap H_w$, where

$$C_0(A) = \left\{ \begin{pmatrix} x \\ w \end{pmatrix} \in \mathbb{R}^{d+m} \mid Ax \leq w \right\}.$$
is an H-cone in \mathbb{E}^{d+m} and
\[H_w = \left\{ \begin{pmatrix} x \\ w \end{pmatrix} \in \mathbb{R}^{d+m} \mid w = 0 \right\} \]
is a hyperplane in \mathbb{E}^{d+m}.

(i) Prove that $C_0(A)$ is a V-cone by observing that if we write
\[
\begin{pmatrix} x \\ w \end{pmatrix} = \sum_{i=1}^{d} |x_i| (\text{sign}(x_i)) \begin{pmatrix} e_i \\ Ae_i \end{pmatrix} + \sum_{j=1}^{m} (w_j - (Ax)_j) \begin{pmatrix} 0 \\ e_j \end{pmatrix},
\]
then
\[C_0(A) = \text{cone} \left(\left\{ \pm \begin{pmatrix} e_i \\ Ae_i \end{pmatrix} \mid 1 \leq i \leq d \right\} \cup \left\{ \begin{pmatrix} 0 \\ e_j \end{pmatrix} \mid 1 \leq j \leq m \right\} \right). \]

(ii) Since $C = C_0(A) \cap H_w$ is now the intersection of a V-cone with a hyperplane, to prove that C is a V-cone it is enough to prove that the intersection of a V-cone with a hyperplane is also a V-cone. For this, we use Fourier-Motzkin elimination. It suffices to prove the result for a hyperplane, H_k, in \mathbb{E}^{d+m} of equation $y_k = 0$ ($1 \leq k \leq d + m$).

Say $C = \text{cone}(Y) \subseteq \mathbb{R}^d$ is a V-cone. Then, the intersection $C \cap H_k$ (where H_k is the hyperplane of equation $y_k = 0$) is a V-cone, $C \cap H_k = \text{cone}(Y^*/k)$, with $Y^*/k = \{ y_i \mid y_{ik} = 0 \} \cup \{ y_{ik}y_j - y_{jk}y_i \mid y_{ik} > 0, y_{jk} < 0 \}$, the set of vectors obtained from Y by “eliminating the k-th coordinate”. Here, each y_i is a vector in \mathbb{R}^d.

Hint. The only nontrivial direction is to prove that $C \cap H_k \subseteq \text{cone}(Y^*/k)$. For this, consider any $v = \sum_{i=1}^{d} t_i y_i \in C \cap H_k$, with $t_i \geq 0$ and $v_k = 0$. Such a v can be written
\[
v = \sum_{i \mid y_{ik} = 0} t_i y_i + \sum_{i \mid y_{ik} > 0} t_i y_i + \sum_{j \mid y_{jk} < 0} t_j y_j
\]
and as $v_k = 0$, we have
\[
\sum_{i \mid y_{ik} > 0} t_i y_{ik} + \sum_{j \mid y_{jk} < 0} t_j y_{jk} = 0.
\]
If $t_i y_{ik} = 0$ for $i = 1, \ldots, d$, we are done. Otherwise, we can write
\[
\Lambda = \sum_{i \mid y_{ik} > 0} t_i y_{ik} = \sum_{j \mid y_{jk} < 0} -t_j y_{jk} > 0.
\]
Then,
\[
v = \sum_{i \mid y_{ik} = 0} t_i y_i + \frac{1}{\Lambda} \sum_{i \mid y_{ik} > 0} \left(\sum_{j \mid y_{jk} < 0} -t_j y_{jk} \right) t_i y_i + \frac{1}{\Lambda} \sum_{j \mid y_{jk} < 0} \left(\sum_{i \mid y_{ik} > 0} t_i y_{ik} \right) t_j y_j.
\]
Conclude that every \mathcal{H}-cone is a \mathcal{V}-cone.

(iii) Use Problem B4 to prove that if P is an \mathcal{H}-polyhedron then it is a \mathcal{V}-polyhedron.

Problem B6 (20 pts). Prove that Farkas Lemma, version III implies Farkas Lemma, version II (from the notes).

TOTAL: 190 points.