
Spring, 2006 CIS 610

Advanced Geometric Methods in Computer Science

Jean Gallier

Homework 2

February 20, 2006; Due March 13, 2006

“A problems” are for practice only, and should not be turned in.

Problem A1. Let (e1, . . . , en) be an orthonormal basis for E. If X and Y are arbitrary
n×n matrices, denoting as usual the jth column of X by Xj, and similarly for Y , show that

X>Y = (Xi · Yj)1≤i,j≤n.

Use this to prove that
A>A = A A> = In

iff the column vectors (A1, . . . , An) form an orthonormal basis. Show that the conditions
A A> = In, A>A = In, and A−1 = A> are equivalent.

Problem A2. Compute the real Fourier coefficients of the function id(x) = x over [−π, π]
and prove that

x = 2

(
sin x

1
− sin 2x

2
+

sin 3x

3
− · · ·

)
.

What is the value of the Fourier series at ±π? What is the value of the Fourier near ±π?
Do you find this surprising?

Problem A3. Prove Lemma 6.2.2 from my book.

“B problems” must be turned in.

Problem B1 (30 pts). (a) Prove that the dual C∗ of the cube C = [−1, 1]n is the convex
hull of the 2n points {ei,−ei | 1 ≤ i ≤ n}, where ei = (0, . . . , 0, 1, 0, . . . , 0), the ith vector
in the standard basis. The dual of a cube is called a cross-polytope. Check that the cube C
has 2n vertices and 2n faces, whereas its dual C∗ has 2n vertices and 2n faces. Draw C∗ for
n = 3.

What is the dual of an n-simplex?
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(b) Consider in E3 the polyhedron I defined as follows. If τ = (
√

5 + 1)/2, then the
vertices of I are the twelve points

(0, ±τ, ±1), (±1, 0, ±τ), (±τ, ±1, 0).

This polyhedron is called an icosahedron. Check that the icosahedron has 20 faces. Draw
an icosahedron (or better, make a cardboard model).

Prove that the dual D of the icosahedron is a convex polyhedron whose twenty vertices
are

(±1, ±1, ±1), (0, ±1/τ, ±τ), (±τ, 0, ±1/τ), (±1/τ, ±τ, 0).

This polyhedron D is called a dodecahedron. Observe that it is “built up” on the cube [−1, 1]3.
Can you explain how? Check that the dodecahedron has 12 faces. Draw a dodecahedron (or
better, make a cardboard model).

Problem B2 (40 pts). Let A be a nonempty convex subset of An. A function f : A → R
is convex if

f((1− λ)a + λb) ≤ (1− λ)f(a) + λf(b)

for all a, b ∈ A and for all λ ∈ [0, 1].

(a) If f is convex, prove that

f
(∑

i∈I

λiai

)
≤

∑
i∈I

λif(ai)

for every finite convex combination in A, i.e., any finite family (ai)i∈I of points in A and any
family (λi)i∈I with

∑
i∈I λi = 1 and λi ≥ 0 for all i ∈ I.

(b) Let f : A → R be a convex function and assume that A is convex and compact and
that f is continuous. Prove that f achieves its maximum in some extremal point of A.

Problem B3 (30 pts). Let ϕ: E × E → R be a bilinear form on a real vector space E of
finite dimension n. Given any basis (e1, . . . , en) of E, let A = (αi j) be the matrix defined
such that

αi j = ϕ(ei, ej),

1 ≤ i, j ≤ n. We call A the matrix of ϕ w.r.t. the basis (e1, . . . , en).

(a) For any two vectors x and y, if X and Y denote the column vectors of coordinates of
x and y w.r.t. the basis (e1, . . . , en), prove that

ϕ(x, y) = X>AY.

(b) Recall that A is a symmetric matrix if A = A>. Prove that ϕ is symmetric if A is a
symmetric matrix.
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(c) If (f1, . . . , fn) is another basis of E and P is the change of basis matrix from (e1, . . . , en)
to (f1, . . . , fn), prove that the matrix of ϕ w.r.t. the basis (f1, . . . , fn) is

P>AP.

The common rank of all matrices representing ϕ is called the rank of ϕ.

Problem B4 (100 pts). (a) Let A be any subset of An. Prove that if A is compact, then
its convex hull C(A) is also compact.

(b) Give a proof of the following version of Helly’s theorem using Corollary 1.10 of the
notes on convex sets (Convex sets: A deeper look):

Given any affine space E of dimension m, for every family {K1, . . . , Kn} of n convex and
compact subsets of E, if n ≥ m + 2 and the intersection

⋂
i∈I Ki of any m + 1 of the Ki is

nonempty (where I ⊆ {1, . . . , n}, |I| = m + 1), then
⋂n

i=1 Ki is nonempty.

Hint : First, prove that the general case can be reduced to the case where n = m + 2.

(c) Use (b) to prove Helly’s theorem without the assumption that the Ki are compact.

You will need to construct some nonempty compacts Ci ⊆ Ki. For this, you will need to
prove that the convex hull of finitely many points is compact.

(d) Prove that Helly’s theorem holds even if the family (Ki)I∈I is infinite, provided that
the Ki are convex and compact.

Problem B5 (30 pts). In E3, consider the closed convex set (cone), A, defined by the
inequalities

x ≥ 0, y ≥ 0, z ≥ 0, z2 ≤ xy,

and let D be the line given by x = 0, z = 1. Prove that D∩A = ∅, both A and D are convex
and closed, yet every plane containing D meets A. Therefore, A and D give another counter-
example to the Hahn-Banach theorem where A is closed (one cannot relax the hypothesis
that A is open).

Problem B6 (50 pts). (a) Let C be a circle of radius R and center O, and let P be any
point in the Euclidean plane E2. Consider the lines ∆ through P that intersect the circle C,
generally in two points A and B. Prove that for all such lines,

PA ·PB = ‖PO‖2 −R2.

Hint . If P is not on C, let B′ be the antipodal of B (i.e., OB′ = −OB). Then AB ·AB′ = 0
and

PA ·PB = PB′ ·PB = (PO−OB) · (PO + OB) = ‖PO‖2 −R2.

The quantity ‖PO‖2−R2 is called the power of P w.r.t. C, and it is denoted by P(P, C).
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Show that if ∆ is tangent to C, then A = B and

‖PA‖2 = ‖PO‖2 −R2.

Show that P is inside C iff P(P, C) < 0, on C iff P(P, C) = 0, outside C if P(P, C) > 0.
If the equation of C is

x2 + y2 − 2ax− 2by + c = 0,

prove that the power of P = (x, y) w.r.t. C is given by

P(P, C) = x2 + y2 − 2ax− 2by + c.

(b) Given two nonconcentric circles C and C ′, show that the set of points having equal
power w.r.t. C and C ′ is a line orthogonal to the line through the centers of C and C ′. If
the equations of C and C ′ are

x2 + y2 − 2ax− 2by + c = 0 and x2 + y2 − 2a′x− 2b′y + c′ = 0,

show that the equation of this line is

2(a− a′)x + 2(b− b′)y + c′ − c = 0.

This line is called the radical axis of C and C ′.
(c) Given three distinct nonconcentric circles C, C ′, and C ′′, prove that either the three

pairwise radical axes of these circles are parallel or that they intersect in a single point ω
that has equal power w.r.t. C, C ′, and C ′′. In the first case, the centers of C, C ′, and C ′′

are collinear. In the second case, if the power of ω is positive, prove that ω is the center of
a circle Γ orthogonal to C, C ′, and C ′′, and if the power of ω is negative, ω is inside C, C ′,
and C ′′.

(d) Given any k ∈ R with k 6= 0 and any point a, recall that an inversion of pole a and
power k is a map h: (En − {a}) → En defined such that for every x ∈ En − {a},

h(x) = a + k
ax

‖ax‖2
.

For example, when n = 2, chosing any orthonormal frame with origin a, h is defined by the
map

(x, y) 7→
(

kx

x2 + y2
,

ky

x2 + y2

)
.

When the centers of C, C ′ and C ′′ are not collinear and the power of ω is positive, prove
that by a suitable inversion, C, C ′ and C ′′ are mapped to three circles whose centers are
collinear.

Prove that if three distinct nonconcentric circles C, C ′, and C ′′ have collinear centers,
then there are at most eight circles simultaneously tangent to C, C ′, and C ′′, and at most
two for those exterior to C, C ′, and C ′′.

(e) Prove that an inversion in E3 maps a sphere to a sphere or to a plane. Prove that
inversions preserve tangency and orthogonality of planes and spheres.

TOTAL: 280 points.
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