
Spring, 2006 CIS 610

Advanced Geometric Methods in Computer Science

Jean Gallier

Homework 1

January 23, 2006; Due February 8, 2006

“A problems” are for practice only, and should not be turned in.

Problem A1. (a) Given a tetrahedron (a, b, c, d), given any two distinct points x, y ∈
{a, b, c, d}, let let mx,y be the middle of the edge (x, y). Prove that the barycenter g of the
weighted points (a, 1/4), (b, 1/4), (c, 1/4), and (d, 1/4), is the common intersection of the line
segments (ma,b, mc,d), (ma,c, mb,d), and (ma,d, mb,c). Show that if gd is the barycenter of the
weighted points (a, 1/3), (b, 1/3), (c, 1/3) then g is the barycenter of (d, 1/4) and (gd, 3/4).

Problem A2. Given any two affine spaces E and F , for any affine map f : E → F , for any
convex set U in E and any convex set V in F , prove that f(U) is convex and that f−1(V )
is convex. Recall that

f(U) = {b ∈ F | ∃a ∈ U, b = f(a)}

is the direct image of U under f , and that

f−1(V ) = {a ∈ E | ∃b ∈ V, b = f(a)}

is the inverse image of V under f .

Problem A3. Let E be a nonempty set and
−→
E be a vector space and assume that there

is a function Φ: E × E →
−→
E , such that if we denote Φ(a, b) by ab, the following properties

hold:

(1) ab + bc = ac, for all a, b, c ∈ E;

(2) For every a ∈ E, the map Φa: E →
−→
E defined such that for every b ∈ E, Φa(b) = ab,

is a bijection.

Let Ψa:
−→
E → E be the inverse of Φa: E →

−→
E .

Prove that the function +: E ×
−→
E → E defined such that

a + u = Ψa(u)

1



for all a ∈ E and all u ∈
−→
E makes (E,

−→
E , +) into an affine space.

Note: We showed in class that an affine space (E,
−→
E , +) satisfies the properties stated above.

Thus, we obtain an equivalent characterization of affine spaces.

“B problems” must be turned in.

Problem B1 (30 pts). Given any two distinct points a, b in A2 of barycentric coordinates
(a0, a1, a2) and (b0, b1, b2) with respect to any given affine frame, show that the equation of
the line 〈a, b〉 determined by a and b is∣∣∣∣∣∣

a0 b0 x
a1 b1 y
a2 b2 z

∣∣∣∣∣∣ = 0,

or equivalently
(a1b2 − a2b1)x + (a2b0 − a0b2)y + (a0b1 − a1b0)z = 0,

where (x, y, z) are the barycentric coordinates of the generic point on the line 〈a, b〉.
Prove that the equation of a line in barycentric coordinates is of the form

ux + vy + wz = 0,

where u 6= v, or v 6= w, or u 6= w. Show that two equations

ux + vy + wz = 0 and u′x + v′y + w′z = 0

represent the same line in barycentric coordinates iff (u′, v′, w′) = λ(u, v, w) for some λ ∈ R
(with λ 6= 0).

A triple (u, v, w) where u 6= v, or v 6= w, or u 6= w, is called a system of tangential
coordinates of the line defined by the equation

ux + vy + wz = 0.

Problem B2 (30 pts). Given two lines D and D′ in A2 defined by tangential coordinates
(u, v, w) and (u′, v′, w′) (as defined in problem B1), let

d =

∣∣∣∣∣∣
u v w
u′ v′ w′

1 1 1

∣∣∣∣∣∣ = vw′ − wv′ + wu′ − uw′ + uv′ − vu′.

(a) Prove that D and D′ have a unique intersection point iff d 6= 0, and that when it
exists, the barycentric coordinates of this intersection point are

1

d
(vw′ − wv′, wu′ − uw′, uv′ − vu′).
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(b) Letting (O, i, j) be any affine frame for A2, recall that when x + y + z = 0, for any
point a, the vector

xaO + yai + zaj

is independent of a and equal to

yOi + zOj = (y, z).

The triple (x, y, z) such that x + y + z = 0 is called the barycentric coordinates of the vector
yOi + zOj w.r.t. the affine frame (O, i, j).

Given any affine frame (O, i, j), prove that for u 6= v, or v 6= w, or u 6= w, the line of
equation

ux + vy + wz = 0

in barycentric coordinates (x, y, z) (where x + y + z = 1) has for direction the set of vectors
of barycentric coordinates (x, y, z) such that

ux + vy + wz = 0

(where x + y + z = 0).

Prove that D and D′ are parallel iff d = 0. In this case, if D 6= D′, show that the common
direction of D and D′ is defined by the vector of barycentric coordinates

(vw′ − wv′, wu′ − uw′, uv′ − vu′).

(c) Given three lines D, D′, and D′′, at least two of which are distinct, and defined by
tangential coordinates (u, v, w), (u′, v′, w′), and (u′′, v′′, w′′), prove that D, D′, and D′′ are
parallel or have a unique intersection point iff∣∣∣∣∣∣

u v w
u′ v′ w′

u′′ v′′ w′′

∣∣∣∣∣∣ = 0.

Problem B3 (40 pts). This problem uses notions and results from Problems B1 and
B2. In view of (a) and (b) of Problem B2, it is natural to extend the notion of barycentric
coordinates of a point in A2 as follows. Given any affine frame (a, b, c) in A2, we will say that
the barycentric coordinates (x, y, z) of a point M , where x + y + z = 1, are the normalized
barycentric coordinates of M . Then, any triple (x, y, z) such that x + y + z 6= 0 is also called
a system of barycentric coordinates for the point of normalized barycentric coordinates

1

x + y + z
(x, y, z).
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With this convention, the intersection of the two lines D and D′ is either a point or a vector,
in both cases of barycentric coordinates

(vw′ − wv′, wu′ − uw′, uv′ − vu′).

When the above is a vector, we can think of it as a point at infinity (in the direction of the
line defined by that vector).

Let (D0, D
′
0), (D1, D

′
1), and (D2, D

′
2) be three pairs of six distinct lines, such that the

four lines belonging to any union of two of the above pairs are neither parallel nor concurrent
(have a common intersection point). If D0 and D′

0 have a unique intersection point, let M be
this point, and if D0 and D′

0 are parallel, let M denote a nonnull vector defining the common
direction of D0 and D′

0. In either case, let (m, m′, m′′) be the barycentric coordinates of M ,
as explained at the beginning of the problem. We call M the intersection of D0 and D′

0.
Similarly, define N = (n, n′, n′′) as the intersection of D1 and D′

1, and P = (p, p′, p′′) as the
intersection of D2 and D′

2.

Prove that ∣∣∣∣∣∣
m n p
m′ n′ p′

m′′ n′′ p′′

∣∣∣∣∣∣ = 0

iff either

(i) (D0, D
′
0), (D1, D

′
1), and (D2, D

′
2) are pairs of parallel lines; or

(ii) the lines of some pair (Di, D
′
i) are parallel, each pair (Dj, D

′
j) (with j 6= i) has a unique

intersection point, and these two intersection points are distinct and determine a line
parallel to the lines of the pair (Di, D

′
i); or

(iii) each pair (Di, D
′
i) (i = 0, 1, 2) has a unique intersection point, and these points M, N, P

are distinct and collinear.

Problem B4 (40 pts). The purpose of this problem is to prove Pascal’s Theorem for the
nondegenerate conics. In the affine plane A2, a conic is the set of points of coordinates (x, y)
such that

αx2 + βy2 + 2γxy + 2δx + 2λy + µ = 0,

where α 6= 0 or β 6= 0 or γ 6= 0. We can write the equation of the conic as

(x, y, 1)

 α γ δ
γ β λ
δ λ µ

  x
y
1

 = 0.

If we now use barycentric coordinates (x, y, z) (where x + y + z = 1), we can write x
y
1

 =

 1 0 0
0 1 0
1 1 1

  x
y
z

 .
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Let

B =

 α γ δ
γ β λ
δ λ µ

 , C =

 1 0 0
0 1 0
1 1 1

 , X =

 x
y
z

 .

(a) Letting A = C>BC, prove that the equation of the conic becomes

X>AX = 0.

Prove that A is symmetric, that det(A) = det(B), and that X>AX is homogeneous of degree
2. The equation X>AX = 0 is called the homogeneous equation of the conic.

We say that a conic of homogeneous equation X>AX = 0 is nondegenerate if det(A) 6= 0,
and degenerate if det(A) = 0. Show that this condition does not depend on the choice of the
affine frame.

(b) Given an affine frame (A, B, C), prove that any conic passing through A, B, C has
an equation of the form

ayz + bxz + cxy = 0.

Prove that a conic containing more than one point is degenerate iff it contains three distinct
collinear points. In this case, the conic is the union of two lines.

(c) Prove Pascal’s Theorem. Given any six distinct points A, B, C, A′, B′, C ′, if no
three of the above points are collinear, then a nondegenerate conic passes through these six
points iff the intersection points M, N, P (in the sense of Problem B2) of the pairs of lines
(BC ′, CB′), (CA′, AC ′) and (AB′, BA′) are collinear in the sense of Problem B3.

Hint . Use the affine frame (A, B, C), and let (a, a′, a′′), (b, b′, b′′), and (c, c′, c′′) be the
barycentric coordinates of A′, B′, C ′ respectively, and show that M, N, P have barycentric
coordinates

(bc, cb′, c′′b), (c′a, c′a′, c′′a′), (ab′′, a′′b′, a′′b′′).

Problem B5 (20 pts). (a) Let E be an affine space over R, and let (a1, . . . , an) be any
n ≥ 3 points in E. Let (λ1, . . . , λn) be any n scalars in R, with λ1 + · · ·+λn = 1. Show that
there must be some i, 1 ≤ i ≤ n, such that λi 6= 1. To simplify the notation, assume that
λ1 6= 1. Show that the barycenter λ1a1 + · · ·+λnan can be obtained by first determining the
barycenter b of the n− 1 points a2, . . . , an assigned some appropriate weights, and then the
barycenter of a1 and b assigned the weights λ1 and λ2 + · · ·+ λn. From this, show that the
barycenter of any n ≥ 3 points can be determined by repeated computations of barycenters
of two points. Deduce from the above that a nonempty subset V of E is an affine subspace iff
whenever V contains any two points x, y ∈ V , then V contains the entire line (1− λ)x + λy,
λ ∈ R.

(b) Assume that K is a field such that 2 = 1 + 1 6= 0, and let E be an affine space over
K. In the case where λ1 + · · ·+ λn = 1 and λi = 1, for 1 ≤ i ≤ n and n ≥ 3, show that the
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barycenter a1 + a2 + · · ·+ an can still be computed by repeated computations of barycenters
of two points.

Finally, assume that the field K contains at least three elements (thus, there is some
µ ∈ K such that µ 6= 0 and µ 6= 1, but 2 = 1 + 1 = 0 is possible). Prove that the barycenter
of any n ≥ 3 points can be determined by repeated computations of barycenters of two
points. Prove that a nonempty subset V of E is an affine subspace iff whenever V contains
any two points x, y ∈ V , then V contains the entire line (1− λ)x + λy, λ ∈ K.

Hint . When 2 = 0, λ1 + · · · + λn = 1 and λi = 1, for 1 ≤ i ≤ n, show that n must be
odd, and that the problem reduces to computing the barycenter of three points in two steps
involving two barycenters. Since there is some µ ∈ K such that µ 6= 0 and µ 6= 1, note that
µ−1 and (1− µ)−1 both exist, and use the fact that

−µ

1− µ
+

1

1− µ
= 1.

Problem B6 (30 pts). (i) Let (a, b, c) be three points in A2, and assume that (a, b, c)
are not collinear. For any point x ∈ A2, if x = λ0a + λ1b + λ2c, where (λ0, λ1, λ2) are the
barycentric coordinates of x with respect to (a, b, c), show that

λ0 =
det(xb,bc)

det(ab, ac)
, λ1 =

det(ax, ac)

det(ab, ac)
, λ2 =

det(ab, ax)

det(ab, ac)
.

Conclude that λ0, λ1, λ2 are certain signed ratios of the areas of the triangles (a, b, c), (x, a, b),
(x, a, c), and (x, b, c).

(ii) Let (a, b, c) be three points in A3, and assume that (a, b, c) are not collinear. For any
point x in the plane determined by (a, b, c), if x = λ0a + λ1b + λ2c, where (λ0, λ1, λ2) are the
barycentric coordinates of x with respect to (a, b, c), show that

λ0 =
xb× bc

ab× ac
, λ1 =

ax× ac

ab× ac
, λ2 =

ab× ax

ab× ac
.

Given any point O not in the plane of the triangle (a, b, c), prove that

λ1 =
det(Oa,Ox,Oc)

det(Oa,Ob,Oc)
, λ2 =

det(Oa,Ob,Ox)

det(Oa,Ob,Oc)
,

and

λ0 =
det(Ox,Ob,Oc)

det(Oa,Ob,Oc)
.

(iii) Let (a, b, c, d) be four points in A3, and assume that (a, b, c, d) are not coplanar. For
any point x ∈ A3, if x = λ0a + λ1b + λ2c + λ3d, where (λ0, λ1, λ2, λ3) are the barycentric
coordinates of x with respect to (a, b, c, d), show that

λ1 =
det(ax, ac, ad)

det(ab, ac, ad)
, λ2 =

det(ab, ax, ad)

det(ab, ac, ad)
, λ3 =

det(ab, ac, ax)

det(ab, ac, ad)
,
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and

λ0 =
det(xb,bc,bd)

det(ab, ac, ad)
.

Conclude that λ0, λ1, λ2, λ3 are certain signed ratios of the volumes of the five tetrahedra
(a, b, c, d), (x, a, b, c), (x, a, b, d), (x, a, c, d), and (x, b, c, d).

(iv) Let (a0, . . . , am) be m+1 points in Am, and assume that they are affinely independent.
For any point x ∈ Am, if x = λ0a0 + · · · + λmam, where (λ0, . . . , λm) are the barycentric
coordinates of x with respect to (a0, . . . , am), show that

λi =
det(a0a1, . . . , a0ai−1, a0x, a0ai+1, . . . , a0am)

det(a0a1, . . . , a0ai−1, a0ai, a0ai+1, . . . , a0am)

for every i, 1 ≤ i ≤ m, and

λ0 =
det(xa1, a1a2, . . . , a1am)

det(a0a1, . . . , a0ai, . . . , a0am)
.

Conclude that λi is the signed ratio of the volumes of the simplexes (a0, . . ., x, . . . am) and
(a0, . . . , ai, . . . am), where 0 ≤ i ≤ m.

Problem B7 (20 pts). Let S be any nonempty subset of an affine space E. Given some
point a ∈ S, we say that S is star-shaped with respect to a iff the line segment [a, x] is
contained in S for every x ∈ S, i.e. (1− λ)a + λx ∈ S for all λ such that 0 ≤ λ ≤ 1. We say
that S is star-shaped iff it is star-shaped w.r.t. to some point a ∈ S.

(1) Prove that every nonempty convex set is star-shaped.

(2) Show that there are star-shaped subsets that are not convex. Show that there are
nonempty subsets that are not star-shaped (give an example in An, n = 1, 2, 3).

(3) Given a star-shaped subset S of E, let N(S) be the set of all points a ∈ S such that
S is star-shaped with respect to a. Prove that N(S) is convex.

Problem B8 (50 pts). (a) Let E be a vector space, and let U and V be two subspaces
of E so that they form a direct sum E = U ⊕ V . Recall that this means that every vector
x ∈ E can be written as x = u + v, for some unique u ∈ U and some unique v ∈ V . Define
the function pU : E → U (resp. pV : E → V ) so that pU(x) = u (resp. pV (x) = v), where
x = u + v, as explained above. Check that that pU and pV are linear.

(b) Now assume that E is an affine space (nontrivial), and let U and V be affine subspaces

such that
−→
E =

−→
U ⊕

−→
V . Pick any Ω ∈ V , and define qU : E →

−→
U (resp. qV : E →

−→
V , with

Ω ∈ U) so that

qU(a) = p−→
U

(Ωa) (resp. qV (a) = p−→
V

(Ωa)), for every a ∈ E.

7



Prove that qU does not depend on the choice of Ω ∈ V (resp. qV does not depend on the
choice of Ω ∈ U). Define the map pU : E → U (resp. pV : E → V ) so that

pU(a) = a− qV (a) (resp. pV (a) = a− qU(a)), for every a ∈ E.

Prove that pU (resp. pV ) is affine.

The map pU (resp. pV ) is called the projection onto U parallel to V (resp. projection
onto V parallel to U).

(c) Let (a0, . . . , an) be n + 1 affinely independent points in An, and let ∆(a0, . . . , an)
denote the convex hull of (a0, . . . , an) (an n-simplex). Prove that if f : An → An is an affine
map sending ∆(a0, . . . , an) inside itself, i.e.,

f(∆(a0, . . . , an)) ⊆ ∆(a0, . . . , an),

then, f has some fixed point b ∈ ∆(a0, . . . , an), i.e.,

f(b) = b.

Hint : Proceed by induction on n. First, treat the case n = 1. The affine map is determined
by f(a0) and f(a1), which are affine combinations of a0 and a1. There is an explicit formula
for some fixed point of f . For the induction step, compose f with some suitable projections.

TOTAL: 260 points.
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