
Chapter 6

Manifolds, Tangent Spaces, Cotangent
Spaces, Vector Fields, Flow, Integral
Curves

6.1 Manifolds

In a previous Chapter we defined the notion of a manifold
embedded in some ambient space, RN .

In order to maximize the range of applications of the the-
ory of manifolds it is necessary to generalize the concept
of a manifold to spaces that are not a priori embedded in
some RN .

The basic idea is still that, whatever a manifold is, it is
a topological space that can be covered by a collection of
open subsets, Uα, where each Uα is isomorphic to some
“standard model”, e.g., some open subset of Euclidean
space, Rn.
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Of course, manifolds would be very dull without functions
defined on them and between them.

This is a general fact learned from experience: Geometry
arises not just from spaces but from spaces and interesting
classes of functions between them.

In particular, we still would like to “do calculus” on our
manifold and have good notions of curves, tangent vec-
tors, differential forms, etc.

The small drawback with the more general approach is
that the definition of a tangent vector is more abstract.

We can still define the notion of a curve on a manifold,
but such a curve does not live in any given Rn, so it it
not possible to define tangent vectors in a simple-minded
way using derivatives.
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Instead, we have to resort to the notion of chart. This is
not such a strange idea.

For example, a geography atlas gives a set of maps of var-
ious portions of the earh and this provides a very good
description of what the earth is, without actually imag-
ining the earth embedded in 3-space.

Given Rn, recall that the projection functions,
pri: Rn → R, are defined by

pri(x1, . . . , xn) = xi, 1 ≤ i ≤ n.

For technical reasons, from now on, all topological spaces
under consideration will be assumed to be Hausdorff and
second-countable (which means that the topology has a
countable basis).



308 CHAPTER 6. MANIFOLDS, TANGENT SPACES, COTANGENT SPACES

Definition 6.1.1 Given a topological space,M , a chart
(or local coordinate map) is a pair, (U,ϕ), where U is
an open subset of M and ϕ:U → Ω is a homeomorphism
onto an open subset, Ω = ϕ(U), of Rnϕ (for some
nϕ ≥ 1).

For any p ∈M , a chart, (U,ϕ), is a chart at p iff p ∈ U .
If (U,ϕ) is a chart, then the functions xi = pri ◦ ϕ are
called local coordinates and for every p ∈ U , the tuple
(x1(p), . . . , xn(p)) is the set of coordinates of p w.r.t. the
chart.

The inverse, (Ω, ϕ−1), of a chart is called a
local parametrization.

Given any two charts, (U1, ϕ1) and (U2, ϕ2), if
U1 ∩ U2 6= ∅, we have the transition maps ,
ϕji :ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) and
ϕij:ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj), defined by

ϕji = ϕj ◦ ϕ−1
i and ϕij = ϕi ◦ ϕ−1

j .
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Clearly, ϕij = (ϕji )
−1.

Observe that the transition maps ϕji (resp. ϕij) are maps
between open subsets of Rn.

This is good news! Indeed, the whole arsenal of calculus
is available for functions on Rn, and we will be able to
promote many of these results to manifolds by imposing
suitable conditions on transition functions.

Definition 6.1.2 Given a topological space, M , and
any two integers, n ≥ 1 and k ≥ 1, a Ck n-atlas (or
n-atlas of class Ck), A, is a family of charts, {(Ui, ϕi)},
such that

(1) ϕi(Ui) ⊆ Rn for all i;

(2) The Ui cover M , i.e.,

M =
⋃
i

Ui;

(3) Whenever Ui ∩ Uj 6= ∅, the transition map ϕji (and
ϕij) is a Ck-diffeomorphism.
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We must insure that we have enough charts in order to
carry out our program of generalizing calculus on Rn to
manifolds.

For this, we must be able to add new charts whenever
necessary, provided that they are consistent with the pre-
vious charts in an existing atlas.

Technically, given a Ck n-atlas, A, on M , for any other
chart, (U,ϕ), we say that (U,ϕ) is compatible with the
altasA iff every map ϕi◦ϕ−1 and ϕ◦ϕ−1

i is Ck (whenever
U ∩ Ui 6= ∅).

Two atlases A and A′ on M are compatible iff every
chart of one is compatible with the other atlas.

This is equivalent to saying that the union of the two
atlases is still an atlas.



6.1. MANIFOLDS 311

It is immediately verified that compatibility induces an
equivalence relation on Ck n-atlases on M .

In fact, given an atlas, A, for M , the collection, Ã, of
all charts compatible with A is a maximal atlas in the
equivalence class of charts compatible with A.

Definition 6.1.3 Given any two integers, n ≥ 1 and
k ≥ 1, a Ck-manifold of dimension n consists of a topo-
logical space, M , together with an equivalence class, A,
of Ck n-atlases, on M . Any atlas, A, in the equivalence
class A is called a differentiable structure of class Ck

(and dimension n) on M . We say thatM is modeled on
Rn. When k = ∞, we say that M is a smooth manifold .

Remark: It might have been better to use the terminol-
ogy abstract manifold rather than manifold, to empha-
size the fact that the space M is not a priori a subspace
of RN , for some suitable N .
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We can allow k = 0 in the above definitions. Condition
(3) in Definition 6.1.2 is void, since a C0-diffeomorphism
is just a homeomorphism, but ϕji is always a homeomor-
phism.

In this case, M is called a topological manifold of di-
mension n.

We do not require a manifold to be connected but we
require all the components to have the same dimension,
n.

Actually, on every connected component of M , it can be
shown that the dimension, nϕ, of the range of every chart
is the same. This is quite easy to show if k ≥ 1 but for
k = 0, this requires a deep theorem of Brouwer.

What happens if n = 0? In this case, every one-point
subset of M is open, so every subset of M is open, i.e., M
is any (countable if we assumeM to be second-countable)
set with the discrete topology!
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Observe that since Rn is locally compact and locally con-
nected, so is every manifold.

Remark: In some cases, M does not come with a topol-
ogy in an obvious (or natural) way and a slight variation
of Definition 6.1.2 is more convenient in such a situation:

Definition 6.1.4 Given a set, M , and any two integers,
n ≥ 1 and k ≥ 1, a Ck n-atlas (or n-atlas of class Ck),
A, is a family of charts, {(Ui, ϕi)}, such that

(1) Each Ui is a subset of M and ϕi:Ui → ϕi(Ui) is a
bijection onto an open subset, ϕi(Ui) ⊆ Rn, for all i;

(2) The Ui cover M , i.e.,

M =
⋃
i

Ui;

(3) Whenever Ui ∩ Uj 6= ∅, the set ϕi(Ui ∩ Uj) is open

in Rn and the transition map ϕji (and ϕij) is a Ck-
diffeomorphism.

Then, the notion of a chart being compatible with an
atlas and of two atlases being compatible is just as before
and we get a new definition of a manifold, analogous to
Definition 6.1.3.
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But, this time, we give M the topology in which the
open sets are arbitrary unions of domains of charts, Ui,
more precisely, the Ui’s of the maximal atlas defining the
differentiable structure on M .

It is not difficult to verify that the axioms of a topology
are verified and M is indeed a topological space with this
topology.

It can also be shown that when M is equipped with the
above topology, then the maps ϕi:Ui → ϕi(Ui) are home-
omorphisms, so M is a manifold according to Definition
6.1.3. Thus, we are back to the original notion of a man-
ifold where it is assumed that M is already a topological
space.

One can also define the topology on M in terms of any
the atlases, A, defining M (not only the maximal one) by
requiring U ⊆M to be open iff ϕi(U ∩Ui) is open in Rn,
for every chart, (Ui, ϕi), in the altas A. This topology is
the same as the topology induced by the maximal atlas.

We also require M to be Hausdorff and second-countable
with this topology. If M has a countable atlas, then it is
second-countable
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If the underlying topological space of a manifold is com-
pact, then M has some finite atlas.

Also, if A is some atlas for M and (U,ϕ) is a chart in A,
for any (nonempty) open subset, V ⊆ U , we get a chart,
(V, ϕ � V ), and it is obvious that this chart is compatible
with A.

Thus, (V, ϕ � V ) is also a chart for M . This observation
shows that if U is any open subset of a Ck-manifold,
M , then U is also a Ck-manifold whose charts are the
restrictions of charts on M to U .

Example 1. The sphere Sn.

Using the stereographic projections (from the north pole
and the south pole), we can define two charts on Sn and
show that Sn is a smooth manifold. Let
σN :Sn − {N} → Rn and σS:S

n − {S} → Rn, where
N = (0, · · · , 0, 1) ∈ Rn+1 (the north pole) and
S = (0, · · · , 0,−1) ∈ Rn+1 (the south pole) be the maps
called respectively stereographic projection from the north
pole and stereographic projection from the south pole
given by
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σN(x1, . . . , xn+1) =
1

1− xn+1
(x1, . . . , xn)

and

σS(x1, . . . , xn+1) =
1

1 + xn+1
(x1, . . . , xn).

The inverse stereographic projections are given by

σ−1
N (x1, . . . , xn) =

1

(
∑n

i=1 x
2
i ) + 1

(2x1, . . . , 2xn, (
n∑
i=1

x2
i )− 1)

and

σ−1
S (x1, . . . , xn) =

1

(
∑n

i=1 x
2
i ) + 1

(2x1, . . . , 2xn,−(

n∑
i=1

x2
i ) + 1).

Thus, if we let UN = Sn − {N} and US = Sn − {S},
we see that UN and US are two open subsets covering Sn,
both homeomorphic to Rn.
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Furthermore, it is easily checked that on the overlap,
UN ∩ US = Sn − {N,S}, the transition maps

σS ◦ σ−1
N = σN ◦ σ−1

S

are given by

(x1, . . . , xn) 7→
1∑n
i=1 x

2
i

(x1, . . . , xn),

that is, the inversion of center O = (0, . . . , 0) and power
1. Clearly, this map is smooth on Rn − {O}, so we con-
clude that (UN , σN) and (US, σS) form a smooth atlas for
Sn.

Example 2. The projective space RPn.

To define an atlas on RPn it is convenient to view RPn
as the set of equivalence classes of vectors in Rn+1 − {0}
modulo the equivalence relation,

u ∼ v iff v = λu, for some λ 6= 0 ∈ R.

Given any p = [x1, . . . , xn+1] ∈ RPn, we call (x1, . . . , xn+1)
the homogeneous coordinates of p.
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It is customary to write (x1: · · · :xn+1) instead of
[x1, . . . , xn+1]. (Actually, in most books, the indexing
starts with 0, i.e., homogeneous coordinates for RPn are
written as (x0: · · · :xn).)

For any i, with 1 ≤ i ≤ n + 1, let

Ui = {(x1: · · · :xn+1) ∈ RPn | xi 6= 0}.

Observe that Ui is well defined, because if
(y1: · · · : yn+1) = (x1: · · · :xn+1), then there is some λ 6= 0
so that yi = λxi, for i = 1, . . . , n + 1.

We can define a homeomorphism, ϕi, of Ui onto Rn, as
follows:

ϕi(x1: · · · :xn+1) =

(
x1

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn+1

xi

)
,

where the ith component is omitted. Again, it is clear
that this map is well defined since it only involves ratios.
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We can also define the maps, ψi, from Rn to Ui ⊆ RPn,
given by

ψi(x1, . . . , xn) = (x1: · · · :xi−1: 1:xi: · · · :xn),

where the 1 goes in the ith slot, for i = 1, . . . , n + 1.

One easily checks that ϕi and ψi are mutual inverses, so
the ϕi are homeomorphisms. On the overlap, Ui ∩ Uj,
(where i 6= j), as xj 6= 0, we have

(ϕj ◦ ϕ−1
i )(x1, . . . , xn) =(
x1

xj
, . . . ,

xi−1

xj
,

1

xj
,
xi
xj
, . . . ,

xj−1

xj
,
xj+1

xj
, . . . ,

xn
xj

)
.

(We assumed that i < j; the case j < i is similar.) This is
clearly a smooth function from ϕi(Ui∩Uj) to ϕj(Ui∩Uj).

As the Ui cover RPn, see conclude that the (Ui, ϕi) are
n + 1 charts making a smooth atlas for RPn.

Intuitively, the space RPn is obtained by glueing the open
subsets Ui on their overlaps. Even for n = 3, this is not
easy to visualize!
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Example 3. The Grassmannian G(k, n).

Recall that G(k, n) is the set of all k-dimensional linear
subspaces of Rn, also called k-planes.

Every k-plane,W , is the linear span of k linearly indepen-
dent vectors, u1, . . . , uk, in Rn; furthermore, u1, . . . , uk
and v1, . . . , vk both spanW iff there is an invertible k×k-
matrix, Λ = (λij), such that

vi =

k∑
j=1

λijuj, 1 ≤ i ≤ k.

Obviously, there is a bijection between the collection of
k linearly independent vectors, u1, . . . , uk, in Rn and the
collection of n× k matrices of rank k.

Furthermore, two n × k matrices A and B of rank k
represent the same k-plane iff

B = AΛ, for some invertible k × k matrix, Λ.
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(Note the analogy with projective spaces where two vec-
tors u, v represent the same point iff v = λu for some
invertible λ ∈ R.)

We can define the domain of charts (according to Def-
inition 6.1.4) on G(k, n) as follows: For every subset,
S = {i1, . . . , ik} of {1, . . . , n}, let US be the subset of
n × k matrices, A, of rank k whose rows of index in
S = {i1, . . . , ik} forms an invertible k × k matrix de-
noted AS.

Observe that the k × k matrix consisting of the rows of
the matrix AA−1

S whose index belong to S is the identity
matrix, Ik.

Therefore, we can define a map, ϕS:US → R(n−k)×k,
where ϕS(A) = the (n−k)×k matrix obtained by delet-
ing the rows of index in S from AA−1

S .
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We need to check that this map is well defined, i.e., that
it does not depend on the matrix, A, representing W .

Let us do this in the case where S = {1, . . . , k}, which
is notationally simpler. The general case can be reduced
to this one using a suitable permutation.

If B = AΛ, with Λ invertible, if we write

A =

(
A1

A2

)
and B =

(
B1

B2

)
,

as B = AΛ, we get B1 = A1Λ and B2 = A2Λ, from
which we deduce that(
B1

B2

)
B−1

1 =

(
Ik

B2B
−1
1

)
=(

Ik
A2ΛΛ−1A−1

1

)
=

(
Ik

A2A
−1
1

)
=

(
A1

A2

)
A−1

1 .

Therefore, our map is indeed well-defined.
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It is clearly injective and we can define its inverse, ψS, as
follows: Let πS be the permutation of {1, . . . , n} swaping
{1, . . . , k} and S and leaving every other element fixed
(i.e., if S = {i1, . . . , ik}, then πS(j) = ij and πS(ij) = j,
for j = 1, . . . , k).

If PS is the permutation matrix associated with πS, for
any (n− k)× k matrix, M , let

ψS(M) = PS

(
Ik
M

)
.

The effect of ψS is to “insert into M” the rows of the
identity matrix Ik as the rows of index from S.

At this stage, we have charts that are bijections from
subsets, US, ofG(k, n) to open subsets, namely, R(n−k)×k.
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Then, the reader can check that the transition map
ϕT ◦ ϕ−1

S from ϕS(US ∩ UU) to ϕT (US ∩ UU) is given by

M 7→ (C +DM)(A +BM)−1,

where (
A B
C D

)
= PTPS,

is the matrix of the permutation πT ◦πS (this permutation
“shuffles” S and T ).

This map is smooth, as it is given by determinants, and
so, the charts (US, ϕS) form a smooth atlas for G(k, n).

Finally, one can check that the conditions of Definition
6.1.4 are satisfied, so the atlas just defined makes G(k, n)
into a topological space and a smooth manifold.

Remark: The reader should have no difficulty proving
that the collection of k-planes represented by matrices
in US is precisely set of k-planes, W , supplementary to
the (n − k)-plane spanned by the n − k canonical basis
vectors ejk+1

, . . . , ejn (i.e., span(W ∪ {ejk+1
, . . . , ejn}) =

Rn, where S = {i1, . . . , ik} and
{jk+1, . . . , jn} = {1, . . . , n} − S).
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Example 4. Product Manifolds.

LetM1 andM2 be two Ck-manifolds of dimension n1 and
n2, respectively.

The topological space, M1×M2, with the product topol-
ogy (the opens of M1×M2 are arbitrary unions of sets of
the form U × V , where U is open in M1 and V is open
in M2) can be given the structure of a Ck-manifold of
dimension n1 + n2 by defining charts as follows:

For any two charts, (Ui, ϕi) on M1 and (Vj, ψj) on M2,
we declare that (Ui×Vj, ϕi×ψj) is a chart on M1×M2,
where ϕi × ψj:Ui × Vj → Rn1+n2 is defined so that

ϕi × ψj(p, q) = (ϕi(p), ψj(q)), for all (p, q) ∈ Ui × Vj.

We define Ck-maps between manifolds as follows:
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Definition 6.1.5 Given any two Ck-manifolds, M and
N , of dimension m and n respectively, a Ck-map if a
continuous functions, h:M → N , so that for every
p ∈M , there is some chart, (U,ϕ), at p and some chart,
(V, ψ), at q = h(p), with f (U) ⊆ V and

ψ ◦ h ◦ ϕ−1:ϕ(U) −→ ψ(V )

a Ck-function.

It is easily shown that Definition 6.1.5 does not depend on
the choice of charts. In particular, if N = R, we obtain
a Ck-function on M .

One checks immediately that a function, f :M → R, is a
Ck-map iff for every p ∈ M , there is some chart, (U,ϕ),
at p so that

f ◦ ϕ−1:ϕ(U) −→ R
is a Ck-function.
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If U is an open subset of M , set of Ck-functions on U is
denoted by Ck(U). In particular, Ck(M) denotes the set
of Ck-functions on the manifold, M . Observe that Ck(U)
is a ring.

On the other hand, if M is an open interval of R, say
M =]a, b[ , then γ: ]a, b[→ N is called a Ck-curve in N .
One checks immediately that a function, γ: ]a, b[→ N , is
a Ck-map iff for every q ∈ N , there is some chart, (V, ψ),
at q so that

ψ ◦ γ: ]a, b[−→ ψ(V )

is a Ck-function.

It is clear that the composition of Ck-maps is a Ck-map.
A Ck-map, h:M → N , between two manifolds is a Ck-
diffeomorphism iff h has an inverse, h−1:N → M (i.e.,
h−1◦h = idM and h◦h−1 = idN), and both h and h−1 are
Ck-maps (in particular, h and h−1 are homeomorphisms).
Next, we define tangent vectors.
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6.2 Tangent Vectors, Tangent Spaces,

Cotangent Spaces

Let M be a Ck manifold of dimension n, with k ≥ 1.
The most intuitive method to define tangent vectors is to
use curves. Let p ∈M be any point on M and let
γ: ] − ε, ε[ → M be a C1-curve passing through p, that
is, with γ(0) = p. Unfortunately, if M is not embed-
ded in any RN , the derivative γ′(0) does not make sense.
However, for any chart, (U,ϕ), at p, the map ϕ ◦ γ is a
C1-curve in Rn and the tangent vector v = (ϕ ◦ γ)′(0)
is well defined. The trouble is that different curves may
yield the same v!

To remedy this problem, we define an equivalence relation
on curves through p as follows:
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Definition 6.2.1 Given a Ck manifold, M , of dimen-
sion n, for any p ∈M , two C1-curves, γ1: ]− ε1, ε1[→M
and γ2: ]−ε2, ε2[→M , through p (i.e., γ1(0) = γ2(0) = p)
are equivalent iff there is some chart, (U,ϕ), at p so that

(ϕ ◦ γ1)
′(0) = (ϕ ◦ γ2)

′(0).

Now, the problem is that this definition seems to depend
on the choice of the chart. Fortunately, this is not the
case.

This leads us to the first definition of a tangent vector.

Definition 6.2.2 (Tangent Vectors, Version 1) Given
any Ck-manifold, M , of dimension n, with k ≥ 1, for any
p ∈ M , a tangent vector to M at p is any equivalence
class of C1-curves through p on M , modulo the equiva-
lence relation defined in Definition 6.2.1. The set of all
tangent vectors at p is denoted by Tp(M).
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It is obvious that Tp(M) is a vector space.

We will show that Tp(M) is a vector space of dimension
n = dimension of M .

One should observe that unless M = Rn, in which case,
for any p, q ∈ Rn, the tangent space Tq(M) is naturally
isomorphic to the tangent space Tp(M) by the translation
q − p, for an arbitrary manifold, there is no relationship
between Tp(M) and Tq(M) when p 6= q.

One of the defects of the above definition of a tangent
vector is that it has no clear relation to the Ck-differential
structure of M .

In particular, the definition does not seem to have any-
thing to do with the functions defined locally at p.



6.2. TANGENT VECTORS, TANGENT SPACES, COTANGENT SPACES 331

There is another way to define tangent vectors that re-
veals this connection more clearly. Moreover, such a def-
inition is more intrinsic, i.e., does not refer explicitly to
charts.

As a first step, consider the following: Let (U,ϕ) be a
chart at p ∈ M (where M is a Ck-manifold of dimen-
sion n, with k ≥ 1) and let xi = pri ◦ ϕ, the ith local
coordinate (1 ≤ i ≤ n).

For any function, f , defined on U 3 p, set(
∂

∂xi

)
p

f =
∂(f ◦ ϕ−1)

∂Xi

∣∣∣∣
ϕ(p)

, 1 ≤ i ≤ n.

(Here, (∂g/∂Xi)|y denotes the partial derivative of a func-
tion g: Rn → R with respect to the ith coordinate, eval-
uated at y.)
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We would expect that the function that maps f to the
above value is a linear map on the set of functions defined
locally at p, but there is technical difficulty:

The set of functions defined locally at p is not a vector
space!

To see this, observe that if f is defined on an open U 3 p
and g is defined on a different open V 3 p, then we do
know how to define f + g.

The problem is that we need to identify functions that
agree on a smaller open. This leads to the notion of
germs .
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Definition 6.2.3 Given anyCk-manifold,M , of dimen-
sion n, with k ≥ 1, for any p ∈ M , a locally defined
function at p is a pair, (U, f ), where U is an open sub-
set of M containing p and f is a function defined on U .
Two locally defined functions, (U, f ) and (V, g), at p are
equivalent iff there is some open subset, W ⊆ U ∩ V ,
containing p so that

f � W = g � W.

The equivalence class of a locally defined function at p,
denoted [f ] or f , is called a germ at p.

One should check that the relation of Definition 6.2.3 is
indeed an equivalence relation.

Of course, the value at p of all the functions, f , in any
germ, f , is f (p). Thus, we set f(p) = f (p).
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One should also check that we can define addition of
germs, multiplication of a germ by a scalar and multi-
plication of germs, in the obvious way:

If f and g are two germs at p, and λ ∈ R, then

[f ] + [g] = [f + g]

λ[f ] = [λf ]

[f ][g] = [fg].

(Of course, f + g is the function locally defined so that
(f +g)(x) = f (x)+g(x) and similarly, (λf )(x) = λf (x)
and (fg)(x) = f (x)g(x).)

Therefore, the germs at p form a ring. The ring of germs

of Ck-functions at p is denoted O(k)
M,p. When k = ∞, we

usually drop the superscript ∞.

Remark: Most readers will most likely be puzzled by

the notation O(k)
M,p.

In fact, it is standard in algebraic geometry, but it is not
as commonly used in differential geometry.
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For any open subset, U , of a manifold, M , the ring,

Ck(U), of Ck-functions on U is also denotedO(k)
M (U) (cer-

tainly by people with an algebraic geometry bent!).

Then, it turns out that the map U 7→ O(k)
M (U) is a sheaf ,

denoted O(k)
M , and the ring O(k)

M,p is the stalk of the sheaf

O(k)
M at p.

Such rings are called local rings . Roughly speaking, all
the “local” information about M at p is contained in the

local ring O(k)
M,p. (This is to be taken with a grain of

salt. In the Ck-case where k < ∞, we also need the
“stationary germs”, as we will see shortly.)

Now that we have a rigorous way of dealing with functions
locally defined at p, observe that the map

vi: f 7→
(
∂

∂xi

)
p

f

yields the same value for all functions f in a germ f at p.
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Furthermore, the above map is linear on O(k)
M,p. More is

true.

Firstly for any two functions f, g locally defined at p, we
have(

∂

∂xi

)
p

(fg) = f (p)

(
∂

∂xi

)
p

g + g(p)

(
∂

∂xi

)
p

f.

Secondly, if (f ◦ ϕ−1)′(ϕ(p)) = 0, then(
∂

∂xi

)
p

f = 0.

The first property says that vi is a derivation . As to the
second property, when (f ◦ ϕ−1)′(ϕ(p)) = 0, we say that
f is stationary at p.

It is easy to check (using the chain rule) that being sta-
tionary at p does not depend on the chart, (U,ϕ), at p
or on the function chosen in a germ, f . Therefore, the
notion of a stationary germ makes sense:
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We say that f is a stationary germ iff
(f ◦ ϕ−1)′(ϕ(p)) = 0 for some chart, (U,ϕ), at p and
some function, f , in the germ, f .

The Ck-stationary germs form a subring ofO(k)
M,p (but not

an ideal!) denoted S(k)
M,p.

Remarkably, it turns out that the dual of the vector space,

O(k)
M,p/S

(k)
M,p, is isomorphic to the tangent space, Tp(M).

First, we prove that the subspace of linear forms on O(k)
M,p

that vanish on S(k)
M,p has

(
∂
∂x1

)
p
, . . . ,

(
∂
∂xn

)
p

as a basis.



338 CHAPTER 6. MANIFOLDS, TANGENT SPACES, COTANGENT SPACES

Proposition 6.2.4 Given any Ck-manifold, M , of di-
mension n, with k ≥ 1, for any p ∈M and any chart

(U,ϕ) at p, the n functions,
(

∂
∂x1

)
p
, . . . ,

(
∂
∂xn

)
p
, de-

fined on O(k)
M,p by(

∂

∂xi

)
p

f =
∂(f ◦ ϕ−1)

∂Xi

∣∣∣∣
ϕ(p)

, 1 ≤ i ≤ n

are linear forms that vanish on S(k)
M,p. Every linear

form, L, on O(k)
M,p that vanishes on S(k)

M,p can be ex-
pressed in a unique way as

L =

n∑
i=1

λi

(
∂

∂xi

)
p

,

where λi ∈ R. Therefore, the(
∂

∂xi

)
p

, i = 1, . . . , n

form a basis of the vector space of linear forms on

O(k)
M,p that vanish on S(k)

M,p.
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As the subspace of linear forms on O(k)
M,p that vanish on

S(k)
M,p is isomorphic to the dual, (O(k)

M,p/S
(k)
M,p)

∗, of the space

O(k)
M,p/S

(k)
M,p, we see that the(

∂

∂xi

)
p

, i = 1, . . . , n

also form a basis of (O(k)
M,p/S

(k)
M,p)

∗.

To define our second version of tangent vectors, we need
to define linear derivations.

Definition 6.2.5 Given anyCk-manifold,M , of dimen-
sion n, with k ≥ 1, for any p ∈ M , a linear derivation

at p is a linear form, v, on O(k)
M,p, such that

v(fg) = f (p)v(g) + g(p)v(f),

for all germs f ,g ∈ O(k)
M,p. The above is called the Leib-

nitz property .
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Recall that we observed earlier that the
(

∂
∂xi

)
p

are linear

derivations at p. Therefore, we have

Proposition 6.2.6 Given any Ck-manifold, M , of di-
mension n, with k ≥ 1, for any p ∈ M , the linear

forms on O(k)
M,p that vanish on S(k)

M,p are exactly the

linear derivations on O(k)
M,p that vanish on S(k)

M,p.

Here is now our second definition of a tangent vector.

Definition 6.2.7 (Tangent Vectors, Version 2) Given
any Ck-manifold, M , of dimension n, with k ≥ 1, for
any p ∈ M , a tangent vector to M at p is any linear

derivation on O(k)
M,p that vanishes on S(k)

M,p, the subspace
of stationary germs.

Let us consider the simple case where M = R. In this
case, for every x ∈ R, the tangent space, Tx(R), is a one-
dimensional vector space isomorphic to R and(
∂
∂t

)
x

= d
dt

∣∣
x

is a basis vector of Tx(R).
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For every Ck-function, f , locally defined at x, we have(
∂

∂t

)
x

f =
df

dt

∣∣∣∣
x

= f ′(x).

Thus,
(
∂
∂t

)
x

is: compute the derivative of a function at x.

We now prove the equivalence of the two Definitions of a
tangent vector.

Proposition 6.2.8 Let M be any Ck-manifold of di-
mension n, with k ≥ 1. For any p ∈ M , let u be any
tangent vector (version 1) given by some equivalence
class of C1-curves, γ: ]− ε,+ε[→ M , through p (i.e.,

p = γ(0)). Then, the map Lu defined on O(k)
M,p by

Lu(f) = (f ◦ γ)′(0)

is a linear derivation that vanishes on S(k)
M,p. Further-

more, the map u 7→ Lu defined above is an isomor-

phism between Tp(M) and (O(k)
M,p/S

(k)
M,p)

∗, the space of

linear forms on O(k)
M,p that vanish on S(k)

M,p.
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In view of Proposition 6.2.8, we can identify Tp(M) with

(O(k)
M,p/S

(k)
M,p)

∗.

As the space O(k)
M,p/S

(k)
M,p is finite dimensional,

(O(k)
M,p/S

(k)
M,p)

∗∗ is canonically isomorphic to O(k)
M,p/S

(k)
M,p,

so we can identify T ∗p (M) with O(k)
M,p/S

(k)
M,p.

(Recall that if E is a finite dimensional space, the map
iE:E → E∗∗ defined so that, for any v ∈ E,

v 7→ ṽ, where ṽ(f ) = f (v), for all f ∈ E∗

is a linear isomorphism.) This also suggests the following
definition:

Definition 6.2.9 Given anyCk-manifold,M , of dimen-
sion n, with k ≥ 1, for any p ∈ M , the tangent space
at p, denoted Tp(M), is the space of linear derivations on

O(k)
M,p that vanish on S(k)

M,p. Thus, Tp(M) can be identi-

fied with (O(k)
M,p/S

(k)
M,p)

∗. The space O(k)
M,p/S

(k)
M,p is called

the cotangent space at p; it is isomorphic to the dual,
T ∗p (M), of Tp(M).
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Observe that if xi = pri ◦ ϕ, as(
∂

∂xi

)
p

xj = δi,j,

the images of x1, . . . , xn in O(k)
M,p/S

(k)
M,p are the dual of the

basis
(

∂
∂x1

)
p
, . . . ,

(
∂
∂xn

)
p

of Tp(M).

Given any Ck-function, f , on M , we denote the image of

f in T ∗p (M) = O(k)
M,p/S

(k)
M,p by dfp.

This is the differential of f at p.

Using the isomorphism between O(k)
M,p/S

(k)
M,p and

(O(k)
M,p/S

(k)
M,p)

∗∗ described above, dfp corresponds to the
linear map in T ∗p (M) defined by dfp(v) = v(f), for all
v ∈ Tp(M).

With this notation, we see that (dx1)p, . . . , (dxn)p is a
basis of T ∗p (M), and this basis is dual to the basis(

∂
∂x1

)
p
, . . . ,

(
∂
∂xn

)
p

of Tp(M).
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For simplicity of notation, we often omit the subscript p
unless confusion arises.

Remark: Strictly speaking, a tangent vector, v ∈ Tp(M),

is defined on the space of germs, O(k)
M,p at p. However, it is

often convenient to define v on Ck-functions f ∈ Ck(U),
where U is some open subset containing p. This is easy:
Set

v(f ) = v(f).

Given any chart, (U,ϕ), at p, since v can be written in a
unique way as

v =

n∑
i=1

λi

(
∂

∂xi

)
p

,

we get

v(f ) =

n∑
i=1

λi

(
∂

∂xi

)
p

f.

This shows that v(f ) is the directional derivative of f
in the direction v.
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When M is a smooth manifold, things get a little sim-
pler. Indeed, it turns out that in this case, every linear
derivation vanishes on stationary germs.

To prove this, we recall the following result from calculus
(see Warner [?]):

Proposition 6.2.10 If g: Rn → R is a Ck-function
(k ≥ 2) on a convex open, U , about p ∈ Rn, then for
every q ∈ U , we have

g(q) = g(p) +

n∑
i=1

∂g

∂Xi

∣∣∣∣
p

(qi − pi)

+

n∑
i,j=1

(qi − pi)(qj − pj)

∫ 1

0

(1− t)
∂2g

∂Xi∂Xj

∣∣∣∣
(1−t)p+tq

dt.

In particular, if g ∈ C∞(U), then the integral as a
function of q is C∞.

Proposition 6.2.11 Let M be any C∞-manifold of
dimension n. For any p ∈ M , any linear derivation

on O(∞)
M,p vanishes on stationary germs.
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Proposition 6.2.11 shows that in the case of a smooth
manifold, in Definition 6.2.7, we can omit the requirement
that linear derivations vanish on stationary germs, since
this is automatic.

It is also possible to define Tp(M) just in terms of O(∞)
M,p.

Let mM,p ⊆ O(∞)
M,p be the ideal of germs that vanish at

p. Then, we also have the ideal m2
M,p, which consists of

all finite sums of products of two elements in mM,p, and
it can be shown that T ∗p (M) is isomorphic to mM,p/m

2
M,p

(see Warner [?], Lemma 1.16).

Actually, if we let m
(k)
M,p denote the Ck germs that vanish

at p and s
(k)
M,p denote the stationary Ck-germs that vanish

at p, it is easy to show that

O(k)
M,p/S

(k)
M,p

∼= m
(k)
M,p/s

(k)
M,p.

(Given any f ∈ O(k)
M,p, send it to f − f(p) ∈ m

(k)
M,p.)
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Clearly, (m
(k)
M,p)

2 consists of stationary germs (by the deriva-
tion property) and when k = ∞, Proposition 6.2.10
shows that every stationary germ that vanishes at p be-
longs to m2

M,p. Therefore, when k = ∞, we have

s
(∞)
M,p = m2

M,p and so,

T ∗p (M) = O(∞)
M,p/S

(∞)
M,p

∼= mM,p/m
2
M,p.

Remark: The ideal m
(k)
M,p is in fact the unique maximal

ideal of O(k)
M,p.

Thus, O(k)
M,p is a local ring (in the sense of commutative

algebra) called the local ring of germs of Ck-functions
at p. These rings play a crucial role in algebraic geometry.

Yet one more way of defining tangent vectors will make
it a little easier to define tangent bundles.
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Definition 6.2.12 (Tangent Vectors, Version 3) Given
any Ck-manifold, M , of dimension n, with k ≥ 1, for any
p ∈M , consider the triples, (U,ϕ, u), where (U,ϕ) is any
chart at p and u is any vector in Rn. Say that two such
triples (U,ϕ, u) and (V, ψ, v) are equivalent iff

(ψ ◦ ϕ−1)′ϕ(p)(u) = v.

A tangent vector to M at p is an equivalence class of
triples, [(U,ϕ, u)], for the above equivalence relation.

The intuition behind Definition 6.2.12 is quite clear: The
vector u is considered as a tangent vector to Rn at ϕ(p).

If (U,ϕ) is a chart on M at p, we can define a natural iso-
morphism, θU,ϕ,p: Rn → Tp(M), between Rn and Tp(M),
as follows: For any u ∈ Rn,

θU,ϕ,p:u 7→ [(U,ϕ, u)].

One immediately check that the above map is indeed lin-
ear and a bijection.
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The equivalence of this definition with the definition in
terms of curves (Definition 6.2.2) is easy to prove.

Proposition 6.2.13 Let M be any Ck-manifold of
dimension n, with k ≥ 1. For any p ∈M , let x be any
tangent vector (version 1) given by some equivalence
class of C1-curves, γ: ]− ε,+ε[→ M , through p (i.e.,
p = γ(0)). The map

x 7→ [(U,ϕ, (ϕ ◦ γ)′(0))]

is an isomorphism between Tp(M)-version 1 and Tp(M)-
version 3.

For simplicity of notation, we also use the notation TpM
for Tp(M) (resp. T ∗pM for T ∗p (M)).

After having explored thorougly the notion of tangent
vector, we show how a Ck-map, h:M → N , between Ck

manifolds, induces a linear map, dhp:Tp(M) → Th(p)(N),
for every p ∈M .
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We find it convenient to use Version 2 of the definition of
a tangent vector. So, let u ∈ Tp(M) be a linear derivation

on O(k)
M,p that vanishes on S(k)

M,p.

We would like dhp(u) to be a linear derivation on O(k)
N,h(p)

that vanishes on S(k)
N,h(p).

So, for every germ, g ∈ O(k)
N,h(p), set

dhp(u)(g) = u(g ◦ h).

For any locally defined function, g, at h(p) in the germ,
g (at h(p)), it is clear that g ◦ h is locally defined at p
and is Ck, so g ◦ h is indeed a Ck-germ at p.
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Moreover, if g is a stationary germ at h(p), then for some
chart, (V, ψ) on N at q = h(p), we have
(g ◦ ψ−1)′(ψ(q)) = 0 and, for some chart (U,ϕ) at p on
M , we get

(g◦h◦ϕ−1)′(ϕ(p)) = (g◦ψ−1)(ψ(q))((ψ◦h◦ϕ−1)′(ϕ(p)))

= 0,

which means that g ◦ h is stationary at p.

Therefore, dhp(u) ∈ Th(p)(M). It is also clear that dhp
is a linear map. We summarize all this in the following
definition:

Definition 6.2.14 Given any twoCk-manifolds,M and
N , of dimension m and n, respectively, for any Ck-map,
h:M → N , and for every p ∈ M , the differential of
h at p or tangent map, dhp:Tp(M) → Th(p)(N), is the
linear map defined so that

dhp(u)(g) = u(g ◦ h),

for every u ∈ Tp(M) and every germ, g ∈ O(k)
N,h(p). The

linear map dhp is also denoted Tph (and sometimes, h′p
or Dph).
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The chain rule is easily generalized to manifolds.

Proposition 6.2.15 Given any two Ck-maps
f :M → N and g:N → P between smooth Ck-manifolds,
for any p ∈M , we have

d(g ◦ f )p = dgf(p) ◦ dfp.

In the special case where N = R, a Ck-map between the
manifolds M and R is just a Ck-function on M .

It is interesting to see what dfp is explicitly. SinceN = R,
germs (of functions on R) at t0 = f (p) are just germs of
Ck-functions, g: R → R, locally defined at t0.

Then, for any u ∈ Tp(M) and every germ g at t0,

dfp(u)(g) = u(g ◦ f).

If we pick a chart, (U,ϕ), on M at p, we know that the(
∂
∂xi

)
p

form a basis of Tp(M), with 1 ≤ i ≤ n.
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Therefore, it is enough to figure out what dfp(u)(g) is

when u =
(

∂
∂xi

)
p
. In this case,

dfp

((
∂

∂xi

)
p

)
(g) =

∂(g ◦ f ◦ ϕ−1)

∂Xi

∣∣∣∣
ϕ(p)

.

Using the chain rule, we find that

dfp

((
∂

∂xi

)
p

)
(g) =

(
∂

∂xi

)
p

f
dg

dt

∣∣∣∣
t0

.

Therefore, we have

dfp(u) = u(f)
d

dt

∣∣∣∣
t0

.

This shows that we can identify dfp with the linear form
in T ∗p (M) defined by

dfp(v) = v(f).

This is consistent with our previous definition of dfp as

the image of f in T ∗p (M) = O(k)
M,p/S

(k)
M,p (as Tp(M) is

isomorphic to (O(k)
M,p/S

(k)
M,p)

∗).
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In preparation for the definition of the flow of a vector
field (which will be needed to define the exponential map
in Lie group theory), we need to define the tangent vector
to a curve on a manifold.

Given a Ck-curve, γ: ]a, b[ → M , on a Ck-manifold, M ,
for any t0 ∈]a, b[ , we would like to define the tangent
vector to the curve γ at t0 as a tangent vector to M at
p = γ(t0).

We do this as follows: Recall that d
dt

∣∣
t0

is a basis vector

of Tt0(R) = R.

So, define the tangent vector to the curve γ at t, denoted
γ̇(t0) (or γ′(t), or dγ

dt (t0)) by

γ̇(t) = dγt

(
d

dt

∣∣∣∣
t0

)
.
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Sometime, it is necessary to define curves (in a manifold)
whose domain is not an open interval.

A map, γ: [a, b] → M , is a Ck-curve in M if it is the
restriction of some Ck-curve, γ̃: ]a − ε, b + ε[ → M , for
some (small) ε > 0.

Note that for such a curve (if k ≥ 1) the tangent vector,
γ̇(t), is defined for all t ∈ [a, b],

A curve, γ: [a, b] → M , is piecewise Ck iff there a se-
quence, a0 = a, a1, . . . , am = b, so that the restriction of
γ to each [ai, ai+1] is a Ck-curve, for i = 0, . . . ,m− 1.
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6.3 Tangent and Cotangent Bundles, Vector Fields

LetM be aCk-manifold (with k ≥ 2). Roughly speaking,
a vector field on M is the assignment, p 7→ ξ(p), of a
tangent vector, ξ(p) ∈ Tp(M), to a point p ∈M .

Generally, we would like such assignments to have some
smoothness properties when p varies in M , for example,
to be C l, for some l related to k.

Now, if the collection, T (M), of all tangent spaces, Tp(M),
was a C l-manifold, then it would be very easy to define
what we mean by a C l-vector field: We would simply
require the maps, ξ:M → T (M), to be C l.

IfM is a Ck-manifold of dimension n, then we can indeed
define make T (M) into a Ck−1-manifold of dimension 2n
and we now sketch this construction.
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We find it most convenient to use Version 3 of the def-
inition of tangent vectors, i.e., as equivalence classes of
triple (U,ϕ, u).

First, we let T (M) be the disjoint union of the tangent
spaces Tp(M), for all p ∈M . There is a natural projec-
tion,

π:T (M) →M, where π(v) = p if v ∈ Tp(M).

We still have to give T (M) a topology and to define a
Ck−1-atlas.

For every chart, (U,ϕ), of M (with U open in M) we
define the function ϕ̃:π−1(U) → R2n by

ϕ̃(v) = (ϕ ◦ π(v), θ−1
U,ϕ,π(v)(v)),

where v ∈ π−1(U) and θU,ϕ,p is the isomorphism between
Rn and Tp(M) described just after Definition 6.2.12.

It is obvious that ϕ̃ is a bijection between π−1(U) and
ϕ(U)× Rn, an open subset of R2n.
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We give T (M) the weakest topology that makes all the
ϕ̃ continuous, i.e., we take the collection of subsets of the
form ϕ̃−1(W ), where W is any open subset of ϕ(U)×Rn,
as a basis of the topology of T (M).

One easily checks that T (M) is Hausdorff and second-
countable in this topology. If (U,ϕ) and (V, ψ) are over-
lapping charts, then the transition function

ψ̃ ◦ ϕ̃−1:ϕ(U ∩ V )× Rn −→ ψ(U ∩ V )× Rn

is given by

ψ̃ ◦ ϕ̃−1(p, u) = (ψ ◦ ϕ−1(p), (ψ ◦ ϕ−1)′(u)).

It is clear that ψ̃ ◦ ϕ̃−1 is a Ck−1-map. Therefore, T (M)
is indeed a Ck−1-manifold of dimension 2n, called the
tangent bundle.

Remark: Even if the manifold M is naturally embed-
ded in RN (for some N ≥ n = dim(M)), it is not at all
obvious how to view the tangent bundle, T (M), as em-
bedded in RN ′

, for sone suitable N ′. Hence, we see that
the definition of an abtract manifold is unavoidable.
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A similar construction can be carried out for the cotan-
gent bundle.

In this case, we let T ∗(M) be the disjoint union of the
cotangent spaces T ∗p (M).

We also have a natural projection, π:T ∗(M) → M , and
we can define charts as follows: For any chart, (U,ϕ), on
M , we define the function ϕ̃:π−1(U) → R2n by

ϕ̃(τ ) =(
ϕ ◦ π(τ ), τ

((
∂

∂x1

)
π(τ)

)
, . . . , τ

((
∂

∂xn

)
π(τ)

))
,

where τ ∈ π−1(U) and the
(

∂
∂xi

)
p

are the basis of Tp(M)

associated with the chart (U,ϕ).

Again, one can make T ∗(M) into a Ck−1-manifold of di-
mension 2n, called the cotangent bundle.
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Observe that for every chart, (U,ϕ), on M , there is a
bijection

τU :π−1(U) → U × Rn,

given by
τU(v) = (π(v), θ−1

U,ϕ,π(v)(v)).

Clearly, pr1 ◦ τU = π, on π−1(U).

Thus, locally, that is, over U , the bundle T (M) looks like
the product U × Rn.

We say that T (M) is locally trivial (over U) and we call
τU a trivializing map.

For any p ∈ M , the vector space π−1(p) = Tp(M) is
called the fibre above p.

Observe that the restriction of τU to π−1(p) is an iso-
morphism between Tp(M) and {p} × Rn ∼= Rn, for any
p ∈M .
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All these ingredients are part of being a vector bundle
(but a little more is required of the maps τU). For more
on bundles, see Lang [?], Gallot, Hulin and Lafontaine
[?], Lafontaine [?] or Bott and Tu [?].

When M = Rn, observe that
T (M) = M × Rn = Rn × Rn, i.e., the bundle T (M) is
(globally) trivial.

Given a Ck-map, h:M → N , between two Ck-manifolds,
we can define the function, dh:T (M) → T (N), (also
denoted Th, or h∗, or Dh) by setting

dh(u) = dhp(u), iff u ∈ Tp(M).

We leave the next proposition as an exercise to the reader
(A proof can be found in Berger and Gostiaux [?]).
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Proposition 6.3.1 Given a Ck-map, h:M → N , be-
tween two Ck-manifolds M and N (with k ≥ 1), the
map dh:T (M) → T (N) is a Ck−1-map.

We are now ready to define vector fields.

Definition 6.3.2 Let M be a Ck+1 manifold, with
k ≥ 1. For any open subset, U of M , a vector field on
U is any section, ξ, of T (M) over U , i.e., any function,
ξ:U → T (M), such that π ◦ξ = idU (i.e., ξ(p) ∈ Tp(M),
for every p ∈ U). We also say that ξ is a lifting of U
into T (M).

We say that ξ is a Ch-vector field on U iff ξ is a section
over U and a Ch-map, where 0 ≤ h ≤ k.

The set ofCk-vector fields overU is denoted Γ(k)(U, T (M)).
Given a curve, γ: [a, b] → M , a vector field, ξ, along
γ is any section of T (M) over γ, i.e., a Ck-function,
ξ: [a, b] → T (M), such that π ◦ ξ = γ. We also say
that ξ lifts γ into T (M).
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The above definition gives a precise meaning to the idea
that a Ck-vector field on M is an assignment, p 7→ ξ(p),
of a tangent vector, ξ(p) ∈ Tp(M), to a point, p ∈M , so
that ξ(p) varies in a Ck-fashion in terms of p.

Clearly, Γ(k)(U, T (M)) is a real vector space. For short,
the space Γ(k)(M,T (M)) is also denoted by Γ(k)(T (M))
(or X(k)(M) or even Γ(T (M)) or X(M)).

If M = Rn and U is an open subset of M , then
T (M) = Rn×Rn and a section of T (M) over U is simply
a function, ξ, such that

ξ(p) = (p, u), with u ∈ Rn,

for all p ∈ U . In other words, ξ is defined by a function,
f :U → Rn (namely, f (p) = u).

This corresponds to the “old” definition of a vector field
in the more basic case where the manifold, M , is just Rn.

Given any Ck-function, f ∈ Ck(U), and a vector field,
ξ ∈ Γ(k)(U, T (M)), we define the vector field, fξ, by

(fξ)(p) = f (p)ξ(p), p ∈ U.
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Obviously, fξ ∈ Γ(k)(U, T (M)), which shows that
Γ(k)(U, T (M)) is also a Ck(U)-module. We also denote
ξ(p) by ξp.

For any chart, (U,ϕ), on M it is easy to check that the
map

p 7→
(
∂

∂xi

)
p

, p ∈ U,

is a Ck-vector field on U (with 1 ≤ i ≤ n). This vector

field is denoted
(

∂
∂xi

)
or ∂

∂xi
.

If U is any open subset of M and f is any function in
Ck(U), then ξ(f ) is the function on U given by

ξ(f )(p) = ξp(f ) = ξp(f).
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As a special case, when (U,ϕ) is a chart on M , the vector
field, ∂

∂xi
, just defined above induces the function

p 7→
(
∂

∂xi

)
p

f, p ∈ U,

denoted ∂
∂xi

(f ) or
(

∂
∂xi

)
f .

It is easy to check that ξ(f ) ∈ Ck−1(U). As a conse-
quence, every vector field ξ ∈ Γ(k)(U, T (M)) induces a
linear map,

Lξ: Ck(U) −→ Ck−1(U),

given by f 7→ ξ(f ).

It is immediate to check that Lξ has the Leibnitz property,
i.e.,

Lξ(fg) = Lξ(f )g + fLξ(g).
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Linear maps with this property are called derivations .

Thus, we see that every vector field induces some kind of
differential operator, namely, a linear derivation.

Unfortunately, not every linear derivation of the above
type arises from a vector field, although this turns out to
be true in the smooth case i.e., when k = ∞ (for a proof,
see Gallot, Hulin and Lafontaine [?] or Lafontaine [?]).

In the rest of this section, unless stated otherwise, we
assume that k ≥ 1. The following easy proposition holds
(c.f. Warner [?]):
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Proposition 6.3.3 Let ξ be a vector field on the Ck+1-
manifold, M , of dimension n. Then, the following are
equivalent:

(a) ξ is Ck.

(b) If (U,ϕ) is a chart on M and if f1, . . . , fn are the
functions on U uniquely defined by

ξ � U =

n∑
i=1

fi
∂

∂xi
,

then each fi is a Ck-map.

(c) Whenever U is open in M and f ∈ Ck(U), then
ξ(f ) ∈ Ck−1(U).

Given any two Ck-vector field, ξ, η, on M , for any func-
tion, f ∈ Ck(M), we defined above the function ξ(f ) and
η(f ).

Thus, we can form ξ(η(f )) (resp. η(ξ(f ))), which are in
Ck−2(M).
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Unfortunately, even in the smooth case, there is generally
no vector field, ζ , such that

ζ(f ) = ξ(η(f )), for all f ∈ Ck(M).

This is because ξ(η(f )) (and η(ξ(f ))) involve second-
order derivatives.

However, if we consider ξ(η(f )) − η(ξ(f )), then second-
order derivatives cancel out and there is a unique vector
field inducing the above differential operator.

Intuitively, ξη − ηξ measures the “failure of ξ and η to
commute”.

Proposition 6.3.4 Given any Ck+1-manifold, M , of
dimension n, for any two Ck-vector fields, ξ, η, on M ,
there is a unique Ck−1-vector field, [ξ, η], such that

[ξ, η](f ) = ξ(η(f ))− η(ξ(f )), for all f ∈ Ck−1(M).
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Definition 6.3.5 Given any Ck+1-manifold, M , of di-
mension n, for any two Ck-vector fields, ξ, η, on M , the
Lie bracket , [ξ, η], of ξ and η, is the Ck−1 vector field
defined so that

[ξ, η](f ) = ξ(η(f ))− η(ξ(f )), for all f ∈ Ck−1(M).

We also have the following simple proposition whose proof
is left as an exercise (or, see Do Carmo [?]):

Proposition 6.3.6 Given any Ck+1-manifold, M , of
dimension n, for any Ck-vector fields, ξ, η, ζ, on M ,
for all f, g ∈ Ck(M), we have:

(a) [[ξ, η], ζ] + [[η, ζ], ξ] + [[ζ, ξ], η] = 0 (Jacobi iden-
tity).

(b) [ξ, ξ] = 0.

(c) [fξ, gη] = fg[ξ, η] + fξ(g)η − gη(f )ξ.

(d) [−,−] is bilinear.



370 CHAPTER 6. MANIFOLDS, TANGENT SPACES, COTANGENT SPACES

Consequently, for smooth manifolds (k = ∞), the space
of vector fields, Γ(∞)(T (M)), is a vector space equipped
with a bilinear operation, [−,−], that satisfies the Jacobi
identity.

This makes Γ(∞)(T (M)) a Lie algebra.

One more notion will be needed when we deal with Lie
algebras.

Definition 6.3.7 Let ϕ:M → N be a Ck+1-map of
manifolds. If ξ is a Ck vector field on M and η is a Ck

vector field on N , we say that ξ and η are ϕ-related iff

dϕ ◦ ξ = η ◦ ϕ.

Proposition 6.3.8 Let ϕ:M → N be a Ck+1-map of
manifolds, let ξ and ξ1 be Ck vector fields on M and
let η, η1 be Ck vector fields on N . If ξ is ϕ-related to
ξ1 and η is ϕ-related to η1, then [ξ, η] is ϕ-related to
[ξ1, η1].
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6.4 Submanifolds, Immersions, Embeddings

Although the notion of submanifold is intuitively rather
clear, technically, it is a bit tricky.

In fact, the reader may have noticed that many different
definitions appear in books and that it is not obvious at
first glance that these definitions are equivalent.

What is important is that a submanifold, N of a given
manifold, M , not only have the topology induced M but
also that the charts of N be somewhow induced by those
of M .

(Recall that ifX is a topological space and Y is a subset of
X , then the subspace topology on Y or topology induced
by X on Y has for its open sets all subsets of the form
Y ∩ U , where U is an arbitary subset of X .).
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Given m,n, with 0 ≤ m ≤ n, we can view Rm as a
subspace of Rn using the inclusion

Rm ∼= Rm × {(0, . . . , 0)︸ ︷︷ ︸
n−m

} ↪→ Rm × Rn−m = Rn,

given by

(x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0︸ ︷︷ ︸
n−m

).

Definition 6.4.1 Given a Ck-manifold, M , of dimen-
sion n, a subset, N , of M is an m-dimensional subman-
ifold of M (where 0 ≤ m ≤ n) iff for every point, p ∈ N ,
there is a chart, (U,ϕ), of M , with p ∈ U , so that

ϕ(U ∩N) = ϕ(U) ∩ (Rm × {0n−m}).

(We write 0n−m = (0, . . . , 0)︸ ︷︷ ︸
n−m

.)

The subset, U ∩N , of Definition 6.4.1 is sometimes called
a slice of (U,ϕ) and we say that (U,ϕ) is adapted to N
(See O’Neill [?] or Warner [?]).
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� Other authors, including Warner [?], use the term sub-
manifold in a broader sense than us and they use the

word embedded submanifold for what is defined in Defi-
nition 6.4.1.

The following proposition has an almost trivial proof but
it justifies the use of the word submanifold:

Proposition 6.4.2 Given a Ck-manifold, M , of di-
mension n, for any submanifold, N , of M of dimen-
sion m ≤ n, the family of pairs (U ∩ N,ϕ � U ∩ N),
where (U,ϕ) ranges over the charts over any atlas for
M , is an atlas for N , where N is given the subspace
topology. Therefore, N inherits the structure of a Ck-
manifold.

In fact, every chart on N arises from a chart on M in the
following precise sense:
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Proposition 6.4.3 Given a Ck-manifold, M , of di-
mension n and a submanifold, N , of M of dimension
m ≤ n, for any p ∈ N and any chart, (W, η), of N at
p, there is some chart, (U,ϕ), of M at p so that

ϕ(U ∩N) = ϕ(U) ∩ (Rm × {0n−m})

and
ϕ � U ∩N = η � U ∩N,

where p ∈ U ∩N ⊆ W .

It is also useful to define more general kinds of “subman-
ifolds”.

Definition 6.4.4 Let ϕ:N →M be a Ck-map of man-
ifolds.

(a) The map ϕ is an immersion of N into M iff dϕp is
injective for all p ∈ N .

(b) The set ϕ(N) is an immersed submanifold of M iff
ϕ is an injective immersion.
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(c) The map ϕ is an embedding of N into M iff ϕ is
an injective immersion such that the induced map,
N −→ ϕ(N), is a homeomorphism, where ϕ(N)
is given the subspace topology (equivalently, ϕ is an
open map from N into ϕ(N) with the subspace topol-
ogy). We say that ϕ(N) (with the subspace topology)
is an embedded submanifold of M .

(d) The map ϕ is a submersion of N into M iff dϕp is
surjective for all p ∈ N .

� Again, we warn our readers that certain authors (such
as Warner [?]) call ϕ(N), in (b), a submanifold of M !

We prefer the terminology immersed submanifold .
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The notion of immersed submanifold arises naturally in
the framewok of Lie groups.

Indeed, the fundamental correspondence between Lie groups
and Lie algebras involves Lie subgroups that are not nec-
essarily closed.

But, as we will see later, subgroups of Lie groups that are
also submanifolds are always closed.

It is thus necessary to have a more inclusive notion of
submanifold for Lie groups and the concept of immersed
submanifold is just what’s needed.

Immersions of R into R3 are parametric curves and im-
mersions of R2 into R3 are parametric surfaces. These
have been extensively studied, for example, see DoCarmo
[?], Berger and Gostiaux [?] or Gallier [?].
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Immersions (i.e., subsets of the form ϕ(N), where N is
an immersion) are generally neither injective immersions
(i.e., subsets of the form ϕ(N), where N is an injective
immersion) nor embeddings (or submanifolds).

For example, immersions can have self-intersections, as
the plane curve (nodal cubic): x = t2 − 1; y = t(t2 − 1).

Injective immersions are generally not embeddings (or
submanifolds) because ϕ(N) may not be homeomorphic
to N .

An example is given by the Lemniscate of Bernoulli, an
injective immersion of R into R2:

x =
t(1 + t2)

1 + t4
,

y =
t(1− t2)

1 + t4
.

There is, however, a close relationship between submani-
folds and embeddings.
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Proposition 6.4.5 If N is a submanifold of M , then
the inclusion map, j:N →M , is an embedding. Con-
versely, if ϕ:N → M is an embedding, then ϕ(N)
with the subspace topology is a submanifold of M and
ϕ is a diffeomorphism between N and ϕ(N).

In summary, embedded submanifolds and (our) subman-
ifolds coincide.

Some authors refer to spaces of the form ϕ(N), where ϕ
is an injective immersion, as immersed submanifolds .

However, in general, an immersed submanifold is not a
submanifold.

One case where this holds is when N is compact, since
then, a bijective continuous map is a homeomorphism.

Our next goal is to review and promote to manifolds some
standard results about ordinary differential equations.
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6.5 Integral Curves, Flow of a Vector Field,

One-Parameter Groups of Diffeomorphisms

We begin with integral curves and (local) flows of vector
fields on a manifold.

Definition 6.5.1 Let ξ be a Ck−1 vector field on a Ck-
manifold, M , (k ≥ 2) and let p0 be a point on M . An
integral curve (or trajectory) for ξ with initial condi-
tion p0 is a Cp−1-curve, γ: I →M , so that

γ̇(t) = ξ(γ(t)), for all t ∈ I and γ(0) = p0,

where I = ]a, b[ ⊆ R is an open interval containing 0.

What definition 6.5.1 says is that an integral curve, γ,
with initial condition p0 is a curve on the manifold M
passing through p0 and such that, for every point p = γ(t)
on this curve, the tangent vector to this curve at p, i.e.,
γ̇(t), coincides with the value, ξ(p), of the vector field ξ
at p.
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Given a vector field, ξ, as above, and a point p0 ∈ M ,
is there an integral curve through p0? Is such a curve
unique? If so, how large is the open interval I?

We provide some answers to the above questions below.

Definition 6.5.2 Let ξ be a Ck−1 vector field on a Ck-
manifold, M , (k ≥ 2) and let p0 be a point on M . A
local flow for ξ at p0 is a map,

ϕ: J × U →M,

where J ⊆ R is an open interval containing 0 and U is an
open subset of M containing p0, so that for every p ∈ U ,
the curve t 7→ ϕ(t, p) is an integral curve of ξ with initial
condition p.

Thus, a local flow for ξ is a family of integral curves for all
points in some small open set around p0 such that these
curves all have the same domain, J , independently of the
initial condition, p ∈ U .
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The following theorem is the main existence theorem of
local flows.

This is a promoted version of a similar theorem in the
classical theory of ODE’s in the case where M is an open
subset of Rn.

Theorem 6.5.3 (Existence of a local flow) Let ξ be a
Ck−1 vector field on a Ck-manifold, M , (k ≥ 2) and
let p0 be a point on M . There is an open interval,
J ⊆ R, containing 0 and an open subset, U ⊆ M ,
containing p0, so that there is a unique local flow,
ϕ: J × U →M , for ξ at p0. Furthermore, ϕ is Ck−1.

Theorem 6.5.3 holds under more general hypotheses, namely,
when the vector field satisfies some Lipschitz condition,
see Lang [?] or Berger and Gostiaux [?].

Now, we know that for any initial condition, p0, there is
some integral curve through p0.
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However, there could be two (or more) integral curves
γ1: I1 →M and γ2: I2 →M with initial condition p0.

This leads to the natural question: How do γ1 and γ2

differ on I1∩ I2? The next proposition shows they don’t!

Proposition 6.5.4 Let ξ be a Ck−1 vector field on a
Ck-manifold, M , (k ≥ 2) and let p0 be a point on M .
If γ1: I1 → M and γ2: I2 → M are any two integral
curves both with initial condition p0, then γ1 = γ2 on
I1 ∩ I2.

Proposition 6.5.4 implies the important fact that there is
a unique maximal integral curve with initial condition
p.

Indeed, if {γk: Ik → M}k∈K is the family of all integral
curves with initial condition p (for some big index set,
K), if we let I(p) =

⋃
k∈K Ik, we can define a curve,

γp: I(p) →M , so that

γp(t) = γk(t), if t ∈ Ik.
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Since γk and γl agree on Ik∩Il for all k, l ∈ K, the curve
γp is indeed well defined and it is clearly an integral curve
with initial condition p with the largest possible domain
(the open interval, I(p)).

The curve γp is called the maximal integral curve with
initial condition p and it is also denoted γ(t, p).

Note that Proposition 6.5.4 implies that any two distinct
integral curves are disjoint, i.e., do not intersect each
other.

The following interesting question now arises: Given any
p0 ∈M , if γp0: I(p0) →M is the maximal integral curve
with initial condition p0, for any t1 ∈ I(p0), and if p1 =
γp0(t1) ∈ M , then there is a maximal integral curve,
γp1: I(p1) →M , with initial condition p1.

What is the relationship between γp0 and γp1, if any? The
answer is given by
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Proposition 6.5.5 Let ξ be a Ck−1 vector field on
a Ck-manifold, M , (k ≥ 2) and let p0 be a point
on M . If γp0: I(p0) → M is the maximal integral
curve with initial condition p0, for any t1 ∈ I(p0), if
p1 = γp0(t1) ∈ M and γp1: I(p1) → M is the maximal
integral curve with initial condition p1, then

I(p1) = I(p0)−t1 and γp1(t) = γγp0(t1)(t) = γp0(t+t1),

for all t ∈ I(p0)− t1

It is useful to restate Proposition 6.5.5 by changing point
of view.

So far, we have been focusing on integral curves, i.e., given
any p0 ∈ M , we let t vary in I(p0) and get an integral
curve, γp0, with domain I(p0).
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Instead of holding p0 ∈M fixed, we can hold t ∈ R fixed
and consider the set

Dt(ξ) = {p ∈M | t ∈ I(p)},

i.e., the set of points such that it is possible to “travel for
t units of time from p” along the maximal integral curve,
γp, with initial condition p (It is possible that Dt(ξ) = ∅).

By definition, if Dt(ξ) 6= ∅, the point γp(t) is well defined,
and so, we obtain a map,
Φξ
t :Dt(ξ) →M , with domain Dt(ξ), given by

Φξ
t (p) = γp(t).

The above suggests the following definition:
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Definition 6.5.6 Let ξ be a Ck−1 vector field on a Ck-
manifold, M , (k ≥ 2). For any t ∈ R, let

Dt(ξ) = {p ∈M | t ∈ I(p)}

and
D(ξ) = {(t, p) ∈ R×M | t ∈ I(p)}

and let Φξ:D(ξ) →M be the map given by

Φξ(t, p) = γp(t).

The map Φξ is called the (global) flow of ξ and D(ξ) is
called its domain of definition. For any t ∈ R such that
Dt(ξ) 6= ∅, the map, p ∈ Dt(ξ) 7→ Φξ(t, p) = γp(t), is

denoted by Φξ
t (i.e., Φξ

t (p) = Φξ(t, p) = γp(t)).

Observe that

D(ξ) =
⋃
p∈M

(I(p)× {p}).
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Also, using the Φξ
t notation, the property of Proposition

6.5.5 reads

Φξ
s ◦ Φξ

t = Φξ
s+t, (∗)

whenever both sides of the equation make sense.

Indeed, the above says

Φξ
s(Φ

ξ
t (p)) = Φξ

s(γp(t)) = γγp(t)(s) = γp(s+ t) = Φξ
s+t(p).

Using the above property, we can easily show that the Φξ
t

are invertible. In fact, the inverse of Φξ
t is Φξ

−t.

We summarize in the following proposition some addi-
tional properties of the domains D(ξ), Dt(ξ) and the

maps Φξ
t :
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Theorem 6.5.7 Let ξ be a Ck−1 vector field on a Ck-
manifold, M , (k ≥ 2). The following properties hold:

(a) For every t ∈ R, if Dt(ξ) 6= ∅, then Dt(ξ) is open
(this is trivially true if Dt(ξ) = ∅).

(b) The domain, D(ξ), of the flow, Φξ, is open and the
flow is a Ck−1 map, Φξ:D(ξ) →M .

(c) Each Φξ
t :Dt(ξ) → D−t(ξ) is a Ck−1-diffeomorphism

with inverse Φξ
−t.

(d) For all s, t ∈ R, the domain of definition of

Φξ
s◦Φ

ξ
t is contained but generally not equal to Ds+t(ξ).

However, dom(Φξ
s ◦ Φξ

t ) = Ds+t(ξ) if s and t have

the same sign. Moreover, on dom(Φξ
s◦Φξ

t ), we have

Φξ
s ◦ Φξ

t = Φξ
s+t.

The reason for using the terminology flow in referring to
the map Φξ can be clarified as follows:
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For any t such that Dt(ξ) 6= ∅, every integral curve, γp,
with initial condition p ∈ Dt(ξ), is defined on some open
interval containing [0, t], and we can picture these curves
as “flow lines” along which the points p flow (travel) for
a time interval t.

Then, Φξ(t, p) is the point reached by “flowing” for the
amount of time t on the integral curve γp (through p)
starting from p.

Intuitively, we can imagine the flow of a fluid through
M , and the vector field ξ is the field of velocities of the
flowing particles.

Given a vector field, ξ, as above, it may happen that
Dt(ξ) = M , for all t ∈ R.

In this case, namely, when D(ξ) = R ×M , we say that
the vector field ξ is complete.
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Then, the Φξ
t are diffeomorphisms of M and they form a

group.

The family {Φξ
t}t∈R a called a 1-parameter group of ξ.

In this case, Φξ induces a group homomorphism,
(R,+) −→ Diff(M), from the additive group R to the
group of Ck−1-diffeomorphisms of M .

By abuse of language, even when it is not the case that
Dt(ξ) = M for all t, the family {Φξ

t}t∈R is called a local
1-parameter group of ξ, even though it is not a group,
because the composition Φξ

s ◦ Φξ
t may not be defined.

When M is compact, it turns out that every vector field
is complete, a nice and useful fact.
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Proposition 6.5.8 Let ξ be a Ck−1 vector field on a
Ck-manifold, M , (k ≥ 2). If M is compact, then ξ
is complete, i.e., D(ξ) = R ×M . Moreover, the map

t 7→ Φξ
t is a homomorphism from the additive group R

to the group, Diff(M), of (Ck−1) diffeomorphisms of
M .

Remark: The proof of Proposition 6.5.8 also applies
when ξ is a vector field with compact support (this means
that the closure of the set {p ∈ M | ξ(p) 6= 0} is com-
pact).

A point p ∈M where a vector field vanishes, i.e.,
ξ(p) = 0, is called a critical point of ξ.

Critical points play a major role in the study of vec-
tor fields, in differential topology (e.g., the celebrated
Poincaré–Hopf index theorem) and especially in Morse
theory, but we won’t go into this here (curious readers
should consult Milnor [?], Guillemin and Pollack [?] or
DoCarmo [?], which contains an informal but very clear
presentation of the Poincaré–Hopf index theorem).
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Another famous theorem about vector fields says that
every smooth vector field on a sphere of even dimension
(S2n) must vanish in at least one point (the so-called
“hairy-ball theorem”.

On S2, it says that you can’t comb your hair without
having a singularity somewhere. Try it, it’s true!).

Let us just observe that if an integral curve, γ, passes
through a critical point, p, then γ is reduced to the point
p, i.e., γ(t) = p, for all t.

Then, we see that if a maximal integral curve is defined
on the whole of R, either it is injective (it has no self-
intersection), or it is simply periodic (i.e., there is some
T > 0 so that γ(t + T ) = γ(t), for all t ∈ R and γ is
injective on [0, T [ ), or it is reduced to a single point.
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We conclude this section with the definition of the Lie
derivative of a vector field with respect to another vector
field.

Say we have two vector fields ξ and η on M . For any
p ∈ M , we can flow along the integral curve of ξ with
initial condition p to Φξ

t (p) (for t small enough) and then

evaluate η there, getting η(Φξ
t (p)).

Now, this vector belongs to the tangent space T
Φ
ξ
t (p)

(M),

but η(p) ∈ Tp(M).

So to “compare” η(Φξ
t (p)) and η(p), we bring back η(Φξ

t (p))

to Tp(M) by applying the tangent map, dΦξ
−t, at Φξ

t (p),

to η(Φξ
t (p)) (Note that to alleviate the notation, we use

the slight abuse of notation dΦξ
−t instead of d(Φξ

−t)Φξt (p)
.)
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Then, we can form the difference dΦξ
−t(η(Φ

ξ
t (p)))− η(p),

divide by t and consider the limit as t goes to 0.

This is the Lie derivative of η with respect to ξ at p,
denoted (Lξ η)p, and given by

(Lξ η)p = lim
t−→0

dΦξ
−t(η(Φ

ξ
t (p)))− η(p)

t
=

d

dt
(dΦξ

−t(η(Φ
ξ
t (p)))

∣∣∣∣
t=0

.

It can be shown that (Lξ η)p is our old friend, the Lie
bracket, i.e.,

(Lξ η)p = [ξ, η]p.


