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5.3 The Lorentz Groups O(n, 1), SO(n,1) and SOq(n, 1)

The Lorentz group provides another interesting example.
Moreover, the Lorentz group SO(3,1) shows up in an
interesting way in computer vision.

Denote the p x p-identity matrix by I, for p,q, > 1, and

define ;
0
n=(5)

If n = p+ q, the matrix I, is associated with the non-
degenerate symmetric bilinear form

P n
@p,Q((xh"'?xn)?(ylw"7yn)) :sz’yi_ Z LY
1=1

J=p+1

with associated quadratic form

p n
Opg((z1,. . mn)) =Y i — Y @,
1=1

J=p+1
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In particular, when p = 1 and ¢ = 3, we have the Lorentz
metric

2 2 2 2

In physics, x7 is interpreted as time and written ¢ and
T9, T3, T4 as coordinates in R? and written z, vy, 2. Thus,
the Lozentz metric is usually written a

12— g2 — P —
although it also appears as

e R TR N
which is equivalent but slightly less convenient for certain
purposes, as we will see later. The space R* with the

Lorentz metric is called Minkowsk: space. It plays an
important role in Einstein’s theory of special relativity:.

The group O(p, q) is the set of all n X n-matrices
O(p,q) ={A € GL(n,R) | A", ,A=1,,}.
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This is the group of all invertible linear maps of R" that
preserve the quadratic form, ®, ,, i.e., the group of isome-
tries of ®, .

Clearly, ]5’(1 = I, so the condition A'I,,A = I,, is
equivalent to I, ,A' I, ,A = I, which means that
At =1,,A"L,,

Thus, AI,,A" = I, also holds, which shows that O(p, ¢)
is closed under transposition (i.e., if A € O(p, q), then
A" € 0(p,q)).

We have the subgroup
SO(p.q) = {A € O(p,q) | det(A) = 1}

consisting of the isometries of (R",®,,) with determi-
nant +1. It is clear that SO(p, q) is also closed under
transposition.

The condition A'I,,A = I,, has an interpretation in
terms of the inner product ¢,, and the columns (and
rows) of A.
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Indeed, if we denote the jth column of A by A;, then
ATIp,qA = (opq(Ai, 4j)),

so A € O(p, q) iff the columns of A form an “orthonormal
basis” w.r.t. ¢, 1.€.,

0, f1<q,5<p;
Pral i 4y) = { b, ifpr1<ij<pta

The difference with the usual orthogonal matrices is that
ppg(Ai, Ai) = =1, ifp+1 <7 < p+gq As Ofp,q)
is closed under transposition, the rows of A also form an
orthonormal basis w.r.t. ¢, ,.

[t turns out that SO(p, ¢) has two connected components
and the component containing the identity is a subgroup

of SO(p, q) denoted SOy(p, q).

The group SOy(p, q) turns out to be homeomorphic to
SO(p) x SO(q) x RPY but this is not easy to prove.
(One way to prove it is to use results on pseudo-algebraic
subgroups of GL(n, C), see Knapp [?] or Gallier’s notes
on Clifford algebras (on the web)).



278 CHAPTER 5: REVIEW OF GROUPS AND GROUP ACTIONS

We will now determine the polar decomposition and the
SVD decomposition of matrices in the Lorentz groups

O(n,1) and SO(n, 1).

Write J = I,,1 and, given any A € O(n, 1), write

B u
= (7 0);

where B is an n X n matrix, u, v are (column) vectors in

R" and ¢ € R.

We begin with the polar decomposition of matrices in the
Lorentz groups O(n, 1).

Proposition 5.3.1 Every matrix A € O(n, 1) has a
polar decomposition of the form

= (E )0

0 1 v’ C

- A:(Q o)(\/nmﬂ v>7

0 -1 v’ C

where @ € O(n) and ¢ = \/HUH2 + 1.
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Thus, we see that O(n, 1) has four components corre-
sponding to the cases:

(1) @ € O(n); det(Q) < 0; +1 as the lower right entry
of the orthogonal matrix;

(2) @ € SO(n); —1 as the lower right entry of the or-
thogonal matrix;

(3) Q@ € O(n); det(Q) < 0; —1 as the lower right entry
of the orthogonal matrix;

(4) @ € SO(n); +1 as the lower right entry of the or-
thogonal matrix.

Observe that det(A) = —1 in cases (1) and (2) and that
det(A) = +1 in cases (3) and (4).
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Thus, (3) and (4) correspond to the group SO(n, 1), in
which case the polar decomposition is of the form

()T )

0 —1 v C

where Q) € O(n), with det(Q)) = —1 and ¢ = \/||U||2 +1

DT

0 1 v’ C

where Q € SO(n) and ¢ = \/HvH2 + 1.

The components in (1) and (2) are not groups. We will
show later that all four components are connected and
that case (4) corresponds to a group (Proposition 5.3.7).

This group is the connected component of the identity
and it is denoted SOg(n, 1) (see Corollary 5.4.14).

For the time being, note that A € SOgy(n, 1) ift

A € SO(n,1) and apt1n+1 (=¢) > 0 (here, A = (a;;).)
In fact, we proved above that if a,1,+1 > 0, then
An+1n+1 > L.
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Remark: If we let

I, 0
/\p = ( 01’1 1) and AT = In,la

I, 0
Iny = (0 —1)’

then we have the disjoint union

O(n, 1) = S()o(n, 1) U ApSO()(TL, 1)
U ATSO()(TL, 1) U APATSOO<TL7 1)

where

In order to determine the SVD of matrices in SOg(n, 1),
we analyze the eigenvectors and the eigenvalues of the
positive definite symmetric matrix

S:(m )

U C

involved in Proposition 5.3.1.
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Such a matrix is called a Lorentz boost. Observe that if
v=0,thenc=1and § = 1,;.

Proposition 5.3.2 Assume v # 0. The eigenvalues
of the symmetric positive definite matrix

S:<m )

UT C

where ¢ = \/||UH2 + 1, are 1 with multiplicity n — 1,
and e* and e~ each with multiplicity 1 (for some
a > 0). An orthonormal basis of eigenvectors of S

consists of vectors of the form

vy o e V2ol V2ol
O 9 9 O 9 L 9 _L 9
V2 V2

where the u; € R" are all orthogonal to v and pairwise
orthogonal.
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Corollary 5.3.3 The singular values of any matriz
A € O(n, 1) are 1 with multiplicity n—1, e, and e,
for some o > 0.

Note that the case o = 0 is possible, in which case, A is
an orthogonal matrix of the form

(7)) = (8 2),

with @ € O(n). The two singular values e® and e~ tell
us how much A deviates from being orthogonal.

We can now determine a convenient form for the SVD of
matrices in O(n, 1).
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Theorem 5.3.4 Fvery matrix A € O(n,1) can be

written as
A —
(1 e 0 0 0 \
S : : T
<€)0>0---1 0 0 (% (j)
¢ 0 -+ 0 cosha sinha
KO .++ 0 sinha coshoz)

with ¢ = £1, P € O(n) and Q € SO(n). When
A € SO(n, 1), we have det(P)e = +1, and when
A € SOq(n, 1), we have ¢ = +1 and P € SO(n), that

18,

A:
(1 e 0 0 0 \
N : : T
col s @
0 --- 0 cosha sinha
KO .++ 0 sinha«a coshoz)

with P € SO(n) and @ € SO(n).
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Remark: We warn our readers about Chapter 6 of Baker’s
book [?]. Indeed, this chapter is seriously flawed.

The main two Theorems (Theorem 6.9 and Theorem 6.10)
are false and as consequence, the proof of Theorem 6.11 is
wrong too. Theorem 6.11 states that the exponential map
exp: 50(n, 1) — SQOy(n, 1) is surjective, which is correct,
but known proofs are nontrivial and quite lengthy (see
Section 77).

The proof of Theorem 6.12 is also false, although the the-

orem itself is correct (this is our Theorem 77, see Section
77).

For a thorough analysis of the eigenvalues of Lorentz
isometries (and much more), one should consult Riesz

7] (Chapter III).

Clearly, a result similar to Theorem 5.3.4 also holds for
the matrices in the groups O(1,n), SO(1,n) and SOy(1, n).
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For example, every matrix A € SOy(1, n) can be written
as

A=
(coshoz sinhaw 0 --- O\

L0 sm(l)loz cosoha (1) 8 10
O P . . . c . . O QT 7
\ 0 0 0 - 1)

where P, Q) € SO(n).

In the case n = 3, we obtain the proper orthochronous
Lorentz group, SOy(1,3), also denoted Lor(1,3). By

the way, O(1,3) is called the (full) Lorentz group and
SO(1,3) is the special Lorentz group.
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Theorem 5.3.4 (really, the version for SOg(1,n)) shows
that the Lorentz group SOy(1, 3) is generated by the ma-
trices of the form

L 0 .
(O P) with P € SO(3)

and the matrices of the form

cosha sinha 0 0
sinha cosha 0 0O
0 0 1 0
0 0 0 1

This fact will be useful when we prove that the homo-
morphism : SL(2, C) — SOy(1, 3) is surjective.

Remark: Unfortunately, unlike orthogonal matrices which
can always be diagonalized over C, not every matrix in
SO(1,n) can be diagonalized for n > 2. This has to do
with the fact that the Lie algebra so(1,n) has non-zero
idempotents (see Section 77).
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[t turns out that the group SOy(1,3) admits another
interesting characterization involving the hypersurface

H={(tz,y,2) e R | t? —2* —¢y* — 2* =1}.

This surface has two sheets and it is not hard to show
that SOg(1, 3) is the subgroup of SO(1, 3) that preserves
these two sheets (does not swap them).

Actually, we will prove this fact for any n. In preparation
for this we need some definitions and a few propositions.

Let us switch back to SO(n,1). First, as a matter of
notation, we write every u € R"™! as u = (u,t), where
u € R"and t € R, so that the Lorentz inner product can
be expressed as

(u,v) = {(u,t),(v,s)) =u-v —ts,

where u - v is the standard Euclidean inner product (the
Euclidean norm of x is denoted ||x|]).

Then, we can classify the vectors in R"™ as follows:
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Definition 5.3.5 A nonzero vector, u = (u,t) € R*
is called

(a) spacelike iff (u,u) > 0, ie., iff |ul|® > ¢
(b) timelike iff (u,u) <0, i.e., iff [u]|® < ¢
(c) lightlike or isotropic iff (u,u) = 0, i.c., iff [u)® = 2

A spacelike (resp. timelike, resp. lightlike) vector is said
to be positive ift t > 0 and negative ift t < 0. The set of
all isotropic vectors

Ha(0) = {u = (u,t) € R"" | [ul]* = ¢*}
is called the light cone. For every r > 0, let
Ha(r) = {u= (u,t) € R [ |Ju]]* = * = —r},
a hyperboloid of two sheets.

[t is easy to check that H,(r) has two connected compo-
nents.
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Since every Lorentz isometry, A € SO(n, 1), preserves
the Lorentz inner product, we conclude that A globally
preserves every hyperboloid, H,(r), for r > 0.

We claim that every A € SOy(n, 1) preserves both H,' ()
and H, (7). This follows immediately from

Proposition 5.3.6 If a,.1,.1 > 0, then every isom-
etry, A € SO(n, 1), preserves all positive (resp. nega-
tive) timelike vectors and all positive (resp. negative)
lightlike vectors. Moreover, if A € SO(n, 1) preserves
all positive timelike vectors, then a, 1,41 > 0.

Using Proposition 5.3.6, we can now show that SOg(n, 1)
is a subgroup of SO(n,1). Recall that

SOy(n,1)={A € SO(n,1) | aprinr1 > 0}.

Proposition 5.3.7 The set SOqy(n,1) is a subgroup
of SO(n, 1).
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Next, we wish to prove that the action
SOq(n,1) x H; (1) — H;F(1) is transitive. For this, we
need the next two propositions.

Proposition 5.3.8 Let u = (u,t) and v = (v,s) be
nonzero vectors in R with (u,v) = 0. If u is time-
like, then v is spacelike (i.e., (v,v) > 0).

Lemma 5.3.8 also holds if u = (u, ) is a nonzero isotropic
vector and v = (v, ) is a nonzero vector that is not
collinear with w: If (u,v) = 0, then v is spacelike (i.e.,
(v,v) > 0).

Proposition 5.3.9 The action
SOy(n,1) x HI(1) — H (1) is transitive.
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Let us find the stabilizer of e,,,1 = (0,...,0,1).

We must have Ae, 1 = e,.1, and the polar form implies
that

A:(Zg ?) with P € SO(n).

Therefore, the stabilizer of e, is isomorphic to SO(n)
and we conclude that H (1), as a homogeneous space, is

H (1) 2 SO(n,1)/SO(n).
We will show in Section 5.4 that SOg(n, 1) is connected.
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5.4 Topological Groups

Since Lie groups are topological groups (and manifolds),
it is useful to gather a few basic facts about topological
oroups.

Definition 5.4.1 A set, GG, is a topological group ift
(a) G is a Hausdorff topological space;
(b) G is a group (with identity 1);

(¢) Multiplication, -G x G — G, and the inverse op-
eration, G — G:g — ¢!, are continuous, where
(G x G has the product topology:.

It is easy to see that the two requirements of condition
(¢) are equivalent to

(¢/) The map G x G — G: (g, h) — gh™ is continuous.
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Given a topological group G, for every a € G we de-
fine left translation as the map, L,: G — G, such that
L,(b) = ab, for all b € G, and right translation as the
map, R,: G — G, such that R,(b) = ba, for all b € G.

Observe that L, -1 is the inverse of L, and similarly, R, -1
is the inverse of R,. As multiplication is continuous, we
see that L, and R, are continuous.

Moreover, since they have a continuous inverse, they are
homeomorphisms.

As a consequence, if U is an open subset of GG, then so is
gU = L,(U) (resp. Ug = R,U), for all g € G.

Therefore, the topology of a topological group (i.e., its
family of open sets) is determined by the knowledge of
the open subsets containing the identity, 1.
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Given any subset, S C G, let S7! = {571 | s € S}; let
SY = {1} and S"* = S"S, for all n > 0. Property (c)
of Definition 5.4.1 has the following useful consequences:

Proposition 5.4.2 If G s a topological group and U
1s any open subset containing 1, then there is some
open subset, V. C U, with 1 € V, so that V = V!
and V2 C U. Furthermore, V C U.

A subset, U, containing 1 such that U = U~!, is called
symmetric.

Using Proposition 5.4.2, we can give a very convenient
characterization of the Hausdorft separation property in
a topological group.
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Proposition 5.4.3 If G is a topological group, then
the following properties are equivalent:

(1) G is Hausdorff;
(2) The set {1} 1is closed;
(3) The set {g} is closed, for every g € G.

If H is a subgroup of G (not necessarily normal), we
can form the set of left cosets, G/H and we have the
projection, p: G — G /H, where p(g) = gH = 7.

If G is a topological group, then G/H can be given the
quotient topology, where a subset U C G/ H is open iff
p~Y(U) is open in G.

With this topology, p is continuous. The trouble is that
G/ H is not necessarily Hausdorff. However, we can neatly
characterize when this happens.
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Proposition 5.4.4 If G is a topological group and H
15 a subgroup of G then the following properties hold:

(1) The map p:G — G/H is an open map, which
means that p(V') is open in G/H whenever V is
open in G.

(2) The space G/H is Hausdorff iff H is closed in G.

(3) If H is open, then H is closed and G/H has the
discrete topology (every subset is open).

(4) The subgroup H is open iff 1 € H (i.e., there is
some open subset, U, so that
leUCH).

Proposition 5.4.5 If G is a connected topological
group, then G 1s generated by any symmetric neigh-

borhood, V', of 1. In fact,

G:UV”.

n>1
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A subgroup, H, of a topological group G is discrete ift the
induced topology on H is discrete, i.e., for every h € H,
there is some open subset, U, of G so that UNH = {h}.

Proposition 5.4.6 If G is a topological group and H
15 discrete subgroup of G, then H is closed.

Proposition 5.4.7 If G is a topological group and H
15 any subgroup of G, then the closure, H, of H is a
subgroup of G.

Proposition 5.4.8 Let G be a topological group and
H be any subgroup of G. If H and G/H are con-
nected, then G is connected.
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Proposition 5.4.9 Let G be a topological group and
let V' be any connected symmetric open subset con-
taining 1. Then, if Gy is the connected component of
the identity, we have

Go=|JV"
n>1

and Gy is a normal subgroup of G. Moreover, the
group G /Gy is discrete.

A topological space, X 1is locally compact iff for every
point p € X, there is a compact neighborhood, C' of p,
i.e., there is a compact, C', and an open, U, with

p € U C C. For example, manifolds are locally compact.
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Proposition 5.4.10 Let G be a topological group and
assume that G is connected and locally compact. Then,
G is countable at infinity, which means that G is the
union of a countable family of compact subsets. In
fact, if V' 1is any symmetric compact neighborhood of

1, then
G=|Jv"

n>1

If a topological group, GG acts on a topological space, X,
and the action -: G x X — X is continuous, we say that
G acts continuously on X.

We would like to find sufficient conditions for the quotient
space, G /G, to be homeomorphic to X

For example, this happens if X is a Baire space. Re-
call that a Baire space, X, is a topological space with
the property that if {F'};>; is any countable family of
closed sets, Fj, such that each F; has empty interior, then
U, Fi also has empty interior.

The following theorem shows that there are plenty of
Baire spaces:
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Theorem 5.4.11 (Baire) (1) Every locally compact
topological space s a Baire space.

(2) Every complete metric space is a Baire space.

We can now greatly improve Proposition 5.2.5 when G
and X are topological spaces having some “nice” proper-
ties.

Theorem 5.4.12 Let G be a topological group which
1s locally compact and countable at infinity, X a Haus-
dorff topological space which is a Baire space and as-
sume that G acts transitively and continuously on X .
Then, for any v € X, the map p:G/G, — X is a
homeomorphism.

By Theorem 5.4.11, we get the following important corol-
lary:

Theorem 5.4.13 Let G be a topological group which
15 locally compact and countable at infinity, X a Haus-
dorff locally compact topological space and assume that
G acts transitively and continuously on X. Then, for
any x € X, the map ¢:G/G, — X is a homeomor-
phism.
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As an application of Theorem 5.4.13 and Proposition
5.4.8, we show that the Lorentz group SOq(n, 1) is con-
nected.

Firstly, it is easy to check that SOg(n, 1) and H, (1) sat-
isfy the assumptions of Theorem 5.4.13 because they are

both manifolds, although this notion has not been dis-
cussed yet (but will be in Chapter 6).

Also, we saw at the end of Section 5.3 that the action
:80¢(n, 1) x HS (1) — H, (1) of SOg(n, 1) on H, (1)

is transitive, so that, as topological spaces
SO(n,1)/80(n) = H, (1).

Now, we already showed that H (1) is connected so, by
Proposition 5.4.8, the connectivity of SOg(n, 1) follows
from the connectivity of SO(n) for n > 1.
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The connectivity of SO(n) is a consequence of the sur-
jectivity of the exponential map (see Theorem 4.2.2) but
we can also give a quick proof using Proposition 5.4.8.

Indeed, SO(n + 1) and S™ are both manifolds and we
saw in Section 5.2 that

SO(n +1)/S0(n) = S™.

Now, S™ is connected for n > 1 and SO(1) = S! is
connected. We finish the proof by induction on n.

Corollary 5.4.14 The Lorentz group SOg(n, 1) is con-
nected; it is the component of the identity in O(n, 1).

Readers who wish to learn more about topological groups
may consult Sagle and Walde [?] and Chevalley [?] for
an introductory account, and Bourbaki [?], Weil [?] and
Pontryagin [?, ?], for a more comprehensive account (es-
pecially the last two references).



