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 Motivations and Goals

1. Motivations

Observation: Often, the set of all objects having 
some common properties has some topological 
structure, i.e., it makes sense to say when two objects 
are close to each other. 

If one is lucky, a notion of distance also makes sense.
This can be useful when we need to compare and 
classify objects.  
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Sometimes, we are lucky and the set of objects forms 
a vector space (isomorphic to        ). 

Unfortunately, often, this is not the case. However,  in 
many cases,  locally, the set of objects looks like        .
Even better, some sort of tangent space is defined at 
every point. The set of objects has the structure of
a (smooth) manifold.

If we are lucky, there is also a way to multiply these
objects and so, not only do we have a manifold
structure but also a group. 

Furthermore, the manifold and the group structure 
may be nicely compatible and we have  a Lie group!      

R
n

R
n



4

Let us consider some examples:

1. The set of all lines in the plane through the origin.

If we draw a circle centered at the origin, we see
that every line intersects this circle in two (antipodal)
points. Better, if we consider a half circle (say, the 
upper half circle), we see that every line except the 
red line intersects the circle in a single point. 



5

The red line intersects the circle in exactly two 
points. If we identify these two antipodal points, we 
obtain another  circle and so, the set of lines in the 
plane is in bijection with a circle.

We obtain a space called the (real) projective line, 
denoted         .

2. The set of all lines in 3-space (      ) through the 
origin.

This time, we draw a sphere around the origin, and, 
again, we observe that every line intersects the 
sphere in two antipodal points.
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Better, consider the upper half sphere. It has a great
circle as boundary. Then, every line through the 
origin not in the plane containing this great circle
intersects the sphere in exactly one point, but
lines in that plane intersect this circle in two 
antipodal points. In order to obtain a bijection, we 
can form the surface obtained by gluing pairs of 
antipodal points together. The resulting surface is 
hard to visualize!
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Antipodal points, denoted both by a (or b) 
are identified. If we perform these 
identifications carefuly, we get various models 
of the projective plane.
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We obtain a surface called the (real) projective plane 
and denoted by         .

There are clever ways of getting a nice looking
surface representing the real projective plane
(see Hilbert and Cohn-Vossen’s classic book). For 
example, there are the cross-cap, the Steiner roman 
surface and the Boy surface.

It turns out that in 3D, every surface representing 
the projective plane must self intersect (but not in 
4D).  Moreover, the projective plane is not 
orientable.

RP
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A cross-cap
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Steiner Roman Surfaces
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Knitted Versions of the 
cross-cap and Steiner surface 
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Boy Surfaces



13

3. Symmetric Positive Definite Matrices

Diffusion tensor magnetic resonance imaging  
produces a 3D symmetric, positive definite matrix, at 
each voxel of an imaging volume. In brain imaging,
this method is used to track the white matter fibres,
which demonstrate higher diffusivity of water in the 
direction of the fibre. 

Diffusion tensor imaging has shown promise in 
clinical studies of brain pathologies and in the study
of brain connectivity.  One would hope to produce
statistical atlases from diffusion tensor images and to
understand the anatomical variability caused by a 
disease.
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Unfortunately, the space of symmetric, positive 
definite matrices,                , is not a vector space.
Consequently, standard linear statistical methods do 
not apply.

Recall that a matrix, A, is in                 iff  it is 
symmetric and if its eigenvalues are all strictly 
positive.   

For example, it is easy to show that a matrix

is positive definite iff  

SPD(n)

SPD(n)

(
a b

b c

)

ac − b
2

> 0 and a > 0.
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To better understand                , we observe that the
group,              , of invertible              matrices acts on
                 via:                                                               ,
where
                                                          .

Furthermore, it turns out that this action is 
transitive and that the stabilizer of the identity is
the orthogonal group,            .  It follows that there is
a bijection 

In fact, this even makes                   into a manifold,
a homogeneous space, as we will see later.

SPD(n)
GL(n) n × n

               

SPD(n) · : GL(n) × SPD(n) −→ SPD(n)

O(n)

SPD(n) ∼= GL(n)/O(n)

SPD(n)

A · S = ASA
!
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Some papers use this representation to define 
statistics of diffusion tensors; in particular, some 
paper of Fletcher and Joshi that will be considered
later in this course.

4. Medial axis representation of shapes

The medial axis representation (originally due to 
Blum) represents an object (2D or 3D) using the 
notion of medial axis. This is either a curve (2D) or
a surface (3D). In the 3D case, this is the locus of
centers of all spheres interior to the object and 
tangent to the boundary of the object in at least 2 
points. 
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Here are some illustration taken from Paul 
Yushkevich (Radiology, Upenn):



18

Fletcher, Lu and Joshi show that medial descriptions 
are in fact elements of a Lie group. They develop a 
methodology based on Lie groups for the statistical 
analysis of medially-defined anatomical objects.

5. 2D-Shapes  (Mumford and Sharon)

Mumford and Sharon propose to define a 2D shape
as a simple closed smooth curve in the plane.
They also postulate that  two shapes are to be 
identified if  one if obtained from the other by 
translation and scaling (but not rotation). Using 
complex analysis (namely, Riemann’s conformal 
mapping theorem)  they show  that a simple closed
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curve,     , corresponds to a diffeomorphism of the
unit circle,                           ,  unique up to Mobius 
transformations of the form

                                                         .

The group of diffeomorphisms is denoted                   
and the above group of Mobius transformations is
                               , which is isomorphic to the group                  
                   . It follows that the space of closed simple
curves, up to translation and scaling, is a space 
homeomorphic to the space                                        .
This is also a homogeneous space, but it has infinite 
dimension!
 

Γ

Ψ : S
1
−→ S

1

z !→

az + b

bz + a

Diff(S1)

SU(1, 1)/{I,−I}
PSL(2, R)

Diff(S1)/PSL(2, R)
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Mumford and Sharon also define a Riemannian 
metric on this space (using the Weil-Petersson 
metric).  This gives a precise way of telling how two 
shapes differ.

One of our goals is to come back and study this
paper of Mumford and Sharon.

II. Goals

In discussing the previous examples, we ran into 
terms such as
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• manifold

• group action

• homogeneous space

• Lie group (and Lie algebra)

• Riemannian metric

• curvature, diffeomorphism, etc.
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In this course, we will explain what all these terms 
mean (and more!).  We will also show how these 
concepts are used in various papers on shape analysis,
and medical imaging, more specifically diffusion 
tensors and shape statistics.
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I. Adjoint of a Linear Map in 
a Euclidean Space

                                                                               

Let E be a Euclidean space of dimension    .n

Recall that a linear map,                        ,  hasf : E −→ E

an adjoint,                         , so thatf∗
: E −→ E

                                                                            . 〈f(u), v〉 = 〈u, f∗(v)〉, for all u, v ∈ E

This means E has an inner  product             .  〈u, v〉


