Problem A1. Let $B_r = \{ x = (x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_1^2 + \cdots + x_n^2 < r \}$ be the open ball of radius r (centered at the origin) in \mathbb{R}^n (where $r > 0$). Prove that the map $x \mapsto \frac{rx}{\sqrt{r^2 - (x_1^2 + \cdots + x_n^2)}}$ is a diffeomorphism of B_r onto \mathbb{R}^n (where $x = (x_1, \ldots, x_n)$).

Hint. Compute explicitly the inverse of this map.

Problem A2. A smooth bijective map of manifolds need not be a diffeomorphism. For example, show that $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^3$ is not a diffeomorphism.

Problem A3. (a) Let $X \subseteq \mathbb{R}^M$ and $Y \subseteq \mathbb{R}^N$ be two smooth manifolds of dimension m and n respectively. We can make $X \times Y \subseteq \mathbb{R}^{M+N}$ into a smooth manifold of dimension $m+n$ as follows: for any $(p,q) \in X \times Y$, if $\varphi: \Omega_1 \to U$ and $\psi: \Omega_2 \to V$ are parametrizations at $p \in U \subseteq X$ and $q \in V \subseteq Y$ respectively, then show that $\varphi \times \psi: \Omega_1 \times \Omega_2 \to U \times V$ is indeed a parametrization at $(p,q) \in X \times Y$. As the $U \times V$’s cover $X \times Y$, these parametrizations make $X \times Y$ into a manifold.

Check that $T_{(p,q)}(X \times Y) = T_pX \times T_qY$.

(b) Given a set, X, let $\Delta = \{(x,x) \mid x \in X\} \subseteq X \times X$, called the diagonal of X. If X is a manifold, then prove that Δ is a manifold diffeomorphic to X.

(c) The graph of a function, $f: X \to Y$, is the subset of $X \times Y$ given by $\text{graph}(f) = \{(x,f(x)) \mid x \in X\}$. Define $F: X \to \text{graph}(f)$ by $F(x) = (x, f(x))$. Prove that if X and Y are smooth manifolds and if f is smooth, then F is a diffeomorphism and thus, $\text{graph}(f)$ is a manifold diffeomorphic to X.

(d) Given any (smooth) map, $f: X \to X$, some $x \in X$ is a fixed point of f iff $f(x) = x$. Prove that f has a fixed point iff $\text{graph}(f) \cap \Delta \neq \emptyset$ (where Δ is the diagonal in $X \times X$).
“B problems” must be turned in.

Problem B1 (60 pts). Recall from Homework 1, Problem B6, the Cayley parametrization of rotation matrices in $\text{SO}(n)$ given by

$$C(B) = (I - B)(I + B)^{-1},$$

where B is any $n \times n$ skew symmetric matrix. In that problem, it was shown that $C(B)$ is a rotation matrix that does not admit -1 as an eigenvalue and that every such rotation matrix is of the form $C(B)$.

(a) If you have not already done so, prove that the map $B \mapsto C(B)$ is injective.

(b) Prove that

$$dC(B)(A) = D_A((I - B)(I + B)^{-1}) = -[I + (I - B)(I + B)^{-1}]A(I + B)^{-1}.$$

Hint. First, show that $D_A(B^{-1}) = -B^{-1}AB^{-1}$ (where B is invertible) and that $D_A(f(B))g(B)) = (D_Af(B))g(B) + f(B)(D_Ag(B))$, where f and g are differentiable matrix functions.

Deduce that $dC(B)$ is injective, for every skew-symmetric matrix, B. If we identify the space of $n \times n$ skew symmetric matrices with $\mathbb{R}^{n(n-1)/2}$, show that the Cayley map, $C: \mathbb{R}^{n(n-1)/2} \to \text{SO}(n)$, is a parametrization of $\text{SO}(n)$.

(c) Now, consider $n = 3$, i.e., $\text{SO}(3)$. Let E_1, E_2 and E_3 be the rotations about the x-axis, y-axis, and z-axis, respectively, by the angle π, i.e.,

$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad E_2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad E_3 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Prove that the four maps

$$B \mapsto C(B)$$
$$B \mapsto E_1C(B)$$
$$B \mapsto E_2C(B)$$
$$B \mapsto E_3C(B)$$

where B is skew symmetric, are parametrizations of $\text{SO}(3)$ and that the union of the images of C, E_1C, E_2C and E_3C covers $\text{SO}(3)$, so that $\text{SO}(3)$ is a manifold.

(d) Let A be any matrix (not necessarily invertible). Prove that there is some diagonal matrix, E, with entries $+1$ or -1, so that $EA + I$ is invertible.

(e) Prove that every rotation matrix, $A \in \text{SO}(n)$, is of the form

$$A = E(I - B)(I + B)^{-1},$$
for some skew symmetric matrix, B, and some diagonal matrix, E, with entries $+1$ and -1, and where the number of -1 is even. Moreover, prove that every orthogonal matrix $A \in \text{O}(n)$ is of the form

$$A = E(I - B)(I + B)^{-1},$$

for some skew symmetric matrix, B, and some diagonal matrix, E, with entries $+1$ and -1. The above provide parametrizations for $\text{SO}(n)$ (resp. $\text{O}(n)$) that show that $\text{SO}(n)$ and $\text{O}(n)$ are manifolds. However, observe that the number of these charts grows exponentially with n.

Problem B2 (20 pts).

1. For every symmetric, positive, definite matrix, S, and for every invertible matrix, A, prove that ASA^\top is symmetric, positive, definite.

2. Prove that for any symmetric, positive, definite matrix, S, there is some symmetric, positive, definite matrix, S_1, so that $S = S_1^2 = S_1S_1^\top$.

3. Use (2) to prove that given any two symmetric, positive, definite matrices, S and S', there is some invertible matrix, A, so that

$$ASA^\top = S'.$$

Conclude that the action of $\text{GL}(n, \mathbb{R})$ on $\text{SPD}(n)$ given by $A \cdot S = ASA^\top$ is well-defined and transitive.

Problem B3 (100 pts). Consider the action of the group $\text{SL}(2, \mathbb{R})$ on the upper half-plane, $H = \{z = x + iy \in \mathbb{C} \mid y > 0\}$, given by

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \cdot z = \frac{az + b}{cz + d}.$$

(a) Check that for any $g \in \text{SL}(2, \mathbb{R})$,

$$\Im(g \cdot z) = \frac{\Im(z)}{|cz + d|^2},$$

and conclude that if $z \in H$, then $g \cdot z \in H$, so that the action of $\text{SL}(2, \mathbb{R})$ on H is indeed well-defined (Recall, $\Re(z) = x$ and $\Im(z) = y$, where $z = x + iy$.)

(b) Check that if $c \neq 0$, then

$$\frac{az + b}{cz + d} = \frac{-1}{c^2z + cd} + \frac{a}{c}.$$

Prove that the group of Möbius transformations induced by $\text{SL}(2, \mathbb{R})$ is generated by Möbius transformations of the form

1. $z \mapsto z + b,$
2. \(z \mapsto kz \),
3. \(z \mapsto -1/z \),

where \(b \in \mathbb{R} \) and \(k \in \mathbb{R} \), with \(k > 0 \). Deduce from the above that the action of \(\text{SL}(2, \mathbb{R}) \) on \(H \) is transitive and that transformations of type (1) and (2) suffice for transitivity.

(c) Now, consider the action of the discrete group \(\text{SL}(2, \mathbb{Z}) \) on \(H \), where \(\text{SL}(2, \mathbb{Z}) \) consists of all matrices
\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}, \quad ad - bc = 1, \quad a, b, c, d \in \mathbb{Z}.
\]

Why is this action not transitive? Consider the two transformations
\[
S: z \mapsto -1/z
\]
asociated with \(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \) and
\[
T: z \mapsto z + 1
\]
asociated with \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \).

Define the subset, \(D \), of \(H \), as the set of points, \(z = x + iy \), such that \(-1/2 \leq x \leq -1/2 \) and \(x^2 + y^2 \geq 1 \). Observe that \(D \) contains the three special points, \(i, \rho = e^{2\pi i/3} \) and \(-\rho = e^{\pi i/3} \).

Draw a picture of this set, known as a fundamental domain of the action of \(G = \text{SL}(2, \mathbb{Z}) \) on \(H \). You will now prove the following result first established by Gauss:

Theorem I. Let \(G' \) be the subgroup of \(G = \text{SL}(2, \mathbb{Z}) \) generated by \(S \) and \(T \).

1. For every point, \(z \in H \), there is some \(g \in G' \) so that \(g \cdot z \in D \).
2. If two distinct points \(z, z' \in D \) are in the same orbit under the action of \(G = \text{SL}(2, \mathbb{Z}) \), then either \(\Re(z) = \pm 1/2 \) and \(z = z' \pm 1 \) or \(|z| = 1 \) and \(z' = -1/z \).
3. Let \(z \in D \) and consider the stabilizer, \(G_z \) of \(z \) (under the action of \(G \)). Then, \(G_z = \{1\} \), unless
 1. \(z = i \), in which case, \(G_z \) is the group of order 2 generated by \(S \) (note, \(S^2 = 1 \))
 2. \(z = \rho = e^{2\pi i/3} \), in which case \(G_z \) is the group of order 3 generated by \(ST \) (composition is written from right to left, as usual, and note that \((ST)^3 = 1 \))
 3. \(z = -\rho = e^{\pi i/3} \), in which case \(G_z \) is the group of order 3 generated by \(TS \) (note that \((TS)^3 = 1 \)).
Deduce from Theorem I that the natural map $D \rightarrow H/G$ is surjective and that its restriction to the interior of D is injective.

Hints. Observe that since c,d are integers, for a fixed z, there are finitely many pairs (c,d) so that $|cz + d| < K$, for any fixed $K > 0$. Thus, there is some $g \in G'$ so that $\Im(g \cdot z)$ is maximum. Next, show that there is some n so that the real part of $T^n g z$ is between $-1/2$ and $1/2$. Show that this element, $z' = T^n g z$, is actually in D.

For (2) and (3), show that it may be assumed that $\Im(g \cdot z) \geq \Im(z)$, i.e., $|cz + d| \leq 1$.

(d) Use Theorem I to prove

Theorem II. The group $G = \text{SL}(2, \mathbb{Z})$ is generated by S and T, i.e., $G' = G$.

(e) In view of Theorem I, as every point in the interior of D corresponds to a unique orbit and every orbit has some representative in D, by applying all elements of $G = \text{SL}(2, \mathbb{Z})$ to D, we get a *tesselation* of H, i.e., we get

$$H = \bigcup_{g \in G} g \cdot D,$$

where the interiors of $g \cdot D$ and $g' \cdot D$ are disjoint whenever $g \cdot D$ and $g' \cdot D$ are distinct. By Theorem II, we get all $g \cdot D$’s by applying S and T to D. Draw the picture obtained by applying

$$1, T, TS, ST^{-1} S, ST, S, ST, STS, T^{-1} S, T^{-1}.$$

Problem B4 (30 pts). Let J be the 2×2 matrix

$$J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

and let $\text{SU}(1, 1)$ be the set of 2×2 complex matrices

$$\text{SU}(1, 1) = \{ A \mid A^* J A = J, \quad \det(A) = 1 \},$$

where A^* is the conjugate transpose of A.

(a) Prove that $\text{SU}(1, 1)$ is the group of matrices of the form

$$A = \begin{pmatrix} a & b \\ \overline{b} & \overline{a} \end{pmatrix}, \quad \text{with} \quad a \overline{a} - b \overline{b} = 1.$$

If

$$g = \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$$

prove that the map from $\text{SL}(2, \mathbb{R})$ to $\text{SU}(1, 1)$ given by

$$A \mapsto gAg^{-1}$$

is...
is a group isomorphism.

(b) Prove that the Möbius transformation associated with \(g \),

\[
 z \mapsto \frac{z - i}{z + i}
\]
is a bijection between the upper half-plane, \(H \), and the unit open disk, \(D = \{ z \in \mathbb{C} \mid |z| < 1 \} \). Prove that the map from \(SU(1,1) \) to \(S^1 \times D \) given by

\[
 \begin{pmatrix} a & b \\ b & a \end{pmatrix} \mapsto (a/|a|, b/a)
\]
is a continuous bijection (in fact, a homeomorphism). Conclude that \(SU(1,1) \) is topologically an open solid torus.

(c) Check that \(SU(1,1) \) acts transitively on \(D \) by

\[
 \begin{pmatrix} a & b \\ b & a \end{pmatrix} \cdot z = \frac{az + b}{\bar{b}z + \bar{a}}.
\]

Find the stabilizer of \(z = 0 \) and conclude that

\[
 SU(1,1)/SO(2) \cong D.
\]

Problem B5 (100 pts). (a) Let \(U \subseteq \mathbb{R}^m \) be an open subset of \(\mathbb{R}^m \) and pick some \(a \in U \). If \(f: U \to \mathbb{R}^n \) is a submersion at \(a \), i.e., \(df_a \) is surjective (so, \(m \geq n \)), prove that there is an open set, \(W \subseteq U \subseteq \mathbb{R}^m \), with \(a \in W \) and a diffeomorphism, \(\psi \), with domain \(V \subseteq \mathbb{R}^m \), so that

\[
 \psi(V) = W \quad \text{and} \quad f(\psi(x_1, \ldots, x_m)) = (x_1, \ldots, x_n),
\]

for all \((x_1, \ldots, x_m) \in V\).

Hint. Since \(df_a \) is surjective, the rank of the Jacobian matrix, \((\partial f_i/\partial x_j)(a) \) (1 \(\leq i \leq n \), 1 \(\leq j \leq m \)), is \(n \) and after some permutation of \(\mathbb{R}^m \), we may assume that the square matrix, \(B = (\partial f_i/\partial x_j)(a) \) (1 \(\leq i, j \leq n \)), is invertible. Define the map, \(h: U \to \mathbb{R}^m \), by

\[
 h(x) = (f_1(x), \ldots, f_n(x), x_{n+1}, \ldots, x_m),
\]

where \(x = (x_1, \ldots, x_m) \). Check that the Jacobian matrix of \(h \) at \(a \) is invertible. Then, apply the inverse function theorem and finish up.

(b) Let \(f: M \to N \) be a map of smooth manifolds. A point, \(p \in M \), is called a **critical point (of \(f \))** iff \(df_p \) is not surjective and a point \(q \in N \) is called a **critical value (of \(f \))** iff \(q = f(p) \), for some critical point, \(p \in M \). A point \(p \in M \) is a **regular point (of \(f \))** iff \(p \) is not critical, i.e., \(df_p \) is surjective, and a point \(q \in N \) is a **regular value (of \(f \))** iff it is not a critical value. In particular, any \(q \in N - f(M) \) is a regular value and \(q \in f(M) \) is a regular
value iff every \(p \in f^{-1}(q) \) is a regular point (but, in contrast, \(q \) is a critical value iff some \(p \in f^{-1}(q) \) is critical).

Prove that for every regular value, \(q \in f(M) \), the preimage \(Z = f^{-1}(q) \) is a manifold of dimension \(\dim(M) - \dim(N) \).

Hint. Pick any \(p \in f^{-1}(q) \) and some parametrizations, \(\varphi \) at \(p \) and \(\psi \) at \(q \), with \(\varphi(0) = p \) and \(\psi(0) = q \) and consider \(h = \psi^{-1} \circ f \circ \varphi \). Prove that \(dh_0 \) is surjective and then apply (a).

(c) Under the same assumptions as (b), prove that for every point \(p \in Z = f^{-1}(q) \), the tangent space, \(T_pZ \), is the kernel of \(df_p: T_pM \to T_qN \).

(d) If \(X, Z \subseteq \mathbb{R}^N \) are manifolds and \(Z \subseteq X \), we say that \(Z \) is a *submanifold of \(X \). Assume there is a smooth function, \(g: X \to \mathbb{R}^k \), and that \(0 \in \mathbb{R}^k \) is a regular value of \(g \). Then, by (b), \(Z = g^{-1}(0) \) is a submanifold of \(X \) of dimension \(\dim(X) - k \). Let \(g = (g_1, \ldots, g_k) \), with each \(g_i \) a function, \(g_i: X \to \mathbb{R} \). Prove that for any \(p \in X \), \(dg_p \) is surjective iff the linear forms, \((dg_i)_p: T_pX \to \mathbb{R} \), are linearly independent. In this case, we say that \(g_1, \ldots, g_k \) are independent at \(p \). We also say that \(Z \) is cut out by \(g_1, \ldots, g_k \) when

\[
Z = \{ p \in X \mid g_1(p) = 0, \ldots, g_k(p) = 0 \}
\]

with \(g_1, \ldots, g_k \) independent for all \(p \in Z \).

Let \(f: X \to Y \) be a smooth maps of manifolds and let \(q \in f(X) \) be a regular value. Prove that \(Z = f^{-1}(q) \) is a submanifold of \(X \) cut out by \(k = \dim(X) - \dim(Y) \) independent functions.

Hint. Pick some parametrization, \(\psi \), at \(q \), so that \(\psi(0) = q \) and check that \(0 \) is a regular value of \(g = \psi^{-1} \circ f \), so that \(g_1, \ldots, g_k \) work.

(e) Let \(U \subseteq \mathbb{R}^m \) be an open subset of \(\mathbb{R}^m \) and pick some \(a \in U \). If \(f: U \to \mathbb{R}^n \) is an immersion at \(a \), i.e., \(df_a \) is injective (so, \(m \leq n \)), prove that there is an open set, \(V \subseteq \mathbb{R}^n \), with \(f(a) \in V \), an open subset, \(U' \subseteq U \), with \(a \in U' \) and \(f(U') \subseteq V \) and a diffeomorphism, \(\varphi \), with domain \(V \), so that

\[
\varphi(f(x_1, \ldots, x_m)) = (x_1, \ldots, x_m, 0, \ldots, 0),
\]

for all \((x_1, \ldots, x_m) \in U' \).

Hint. Since \(df_a \) is injective, the rank of the Jacobian matrix, \((\partial f_i/\partial x_j(a)) (1 \leq i \leq n, 1 \leq j \leq m) \), is \(m \) and after some permutation of \(\mathbb{R}^n \), we may assume that the square matrix, \(B = (\partial f_i/\partial x_j(a)) (1 \leq i, j \leq m) \), is invertible. Define the map, \(g: U \times \mathbb{R}^{n-m} \to \mathbb{R}^n \), by

\[
g(x, y) = (f_1(x), \ldots, f_m(x), y_1 + f_{m+1}(x), \ldots, y_{n-m} + f_n(x)),
\]

where \(x = (x_1, \ldots, x_m) \) and \(y = (y_1, \ldots, y_{n-m}) \). Check that the Jacobian matrix of \(g \) at \((a, 0) \) is invertible. Then, apply the inverse function theorem and finish up.

Now, assume \(Z \) is a submanifold of \(X \). Prove that locally, \(Z \) is cut out by independent functions. This means that if \(k = \dim(X) - \dim(Z) \), the *codimension* of \(Z \) in \(X \), then for
every \(z \in Z \), there are \(k \) independent functions, \(g_1, \ldots, g_k \), defined on some open subset, \(W \subseteq X \), with \(z \in W \), so that \(Z \cap W \) is the common zero set of the \(g_i \)'s.

(f) We would like to generalize our result in (b) to the more general situation where we have a smooth map, \(f: X \to Y \), but this time, we have a submanifold, \(Z \subseteq Y \) and we are investigating whether \(f^{-1}(Z) \) is a submanifold of \(X \). In particular, if \(X \) is also a submanifold of \(Y \) and \(f \) is the inclusion of \(X \) into \(Y \), then \(f^{-1}(Z) = X \cap Z \).

Convince yourself that, in general, the intersection of two submanifolds is not a submanifold. Try examples involving curves and surfaces and you will see how bad the situation can be. What is needed is a notion generalizing that of a regular value, and this turns out to be the notion of transversality.

We say that \(f \) is transversal to \(Z \) iff
\[
df_p(T_pX) + T_f(p)Z = T_f(p)Y,
\]
for all \(p \in f^{-1}(Z) \). (Recall, if \(U \) and \(V \) are subspaces of a vector space, \(E \), then \(U + V \) is the subspace \(U + V = \{u + v \in E \mid u \in U, v \in V\} \).) In particular, if \(f \) is the inclusion of \(X \) into \(Y \), the transversality condition is
\[
T_pX + T_pZ = T_pY,
\]
for all \(p \in X \cap Z \).

Draw several examples of transversal intersections to understand better this concept. Prove that if \(f \) is transversal to \(Z \), then \(f^{-1}(Z) \) is a submanifold of \(X \) of codimension equal to \(\dim(Y) - \dim(Z) \).

Hint. The set \(f^{-1}(Z) \) is a manifold iff for every \(p \in f^{-1}(Z) \), there is some open subset, \(U \subseteq X \), with \(p \in U \), and \(f^{-1}(Z) \cap U \) is a manifold. First, use (e) to assert that locally near \(q = f(p) \), \(Z \) is cut out by \(k = \dim(Y) - \dim(Z) \) independent functions, \(g_1, \ldots, g_k \), so that locally near \(p \), the preimage \(f^{-1}(Z) \) is cut out by \(g_1 \circ f, \ldots, g_k \circ f \). If we let \(g = (g_1, \ldots, g_k) \), it is an immersion and the issue is to prove that \(0 \) is a regular value of \(g \circ f \) in order to apply (b). Show that transversality is just what’s needed to show that \(0 \) is a regular value of \(g \circ f \).

(g) With the same assumptions as in (f) (\(f \) is transversal to \(Z \)), if \(W = f^{-1}(Z) \), prove that for every \(p \in W \),
\[
T_pW = (df_p)^{-1}(T_{f(p)}Z),
\]
the preimage of \(T_{f(p)}Z \) by \(df_p: T_pX \to T_{f(p)}Y \). In particular, if \(f \) is the inclusion of \(X \) into \(Y \), then
\[
T_p(X \cap Z) = T_pX \cap T_pZ.
\]

(h) Let \(X, Z \subseteq Y \) be two submanifolds of \(Y \), with \(X \) compact, \(Z \) closed, \(\dim(X) + \dim(Z) = \dim(Y) \) and \(X \) transversal to \(Z \). Prove that \(X \cap Z \) consists of a finite set of points.

TOTAL: 310 points.