
Spring, 2005 CIS 610

Advanced Geometric Methods in Computer Science

Jean Gallier

Homework 3

March 16, 2005; Due April 6, 2005
Note: New due date!

“A problems” are for practice only, and should not be turned in.

Problem A1. Let Br = {x = (x1, . . . , xn) ∈ Rn | x2
1 + · · · + x2

n < r} be the open ball of
radius r (centered at the origin) in Rn (where r > 0). Prove that the map

x 7→ rx√
r2 − (x2

1 + · · ·+ x2
n)

is a diffeomorphism of Br onto Rn (where x = (x1, . . . , xn)).

Hint . Compute explicity the inverse of this map.

Problem A2. A smooth bijective map of manifolds need not be a diffeomorphism. For
example, show that f :R→ R given by f(x) = x3 is not a diffeomorphism.

Problem A3. (a) Let X ⊆ RM and Y ⊆ RN be two smooth manifolds of dimension m and
n respectively. We can make X × Y ⊆ RM+N into a smooth manifold of dimension m + n
as follows: for any (p, q) ∈ X × Y , if ϕ: Ω1 → U and ψ: Ω2 → V are parametrizations at
p ∈ U ⊆ X and q ∈ V ⊆ Y respectively, then show that ϕ× ψ: Ω1 × Ω2 → U × V is indeed
a parametrization at (p, q) ∈ X × Y . As the U × V ’s cover X × Y , these parametrizations
make X × Y into a manifold.

Check that T(p,q)(X × Y ) = TpX × TqY .

(b) Given a set, X, let ∆ = {(x, x) | x ∈ X} ⊆ X ×X, called the diagonal of X. If X is
a manifold, then prove that ∆ is a manifold diffeomorphic to X.

(c) The graph of a function, f :X → Y , is the subset of X × Y given by

graph(f) = {(x, f(x)) | x ∈ X}.

Define F :X → graph(f) by F (x) = (x, f(x)). Prove that if X and Y are smooth manifolds
and if f is smooth, then F is a diffeomorphism and thus, graph(f) is a manifold diffeomorphic
to X.

(d) Given any (smooth) map, f :X → X, some x ∈ X is a fixed point of f iff f(x) = x.
Prove that f has a fixed point iff graph(f) ∩∆ 6= ∅ (where ∆ is the diagonal in X ×X).
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“B problems” must be turned in.

Problem B1 (60 pts). Recall from Homework 1, Problem B6, the Cayley parametrization
of rotation matrices in SO(n) given by

C(B) = (I −B)(I +B)−1,

where B is any n × n skew symmetric matrix. In that problem, it was shown that C(B)
is a rotation matrix that does not admit −1 as an eigenvalue and that every such rotation
matrix is of the form C(B).

(a) If you have not already done so, prove that the map B 7→ C(B) is injective.

(b) Prove that

dC(B)(A) = DA((I −B)(I +B)−1) = −[I + (I −B)(I +B)−1]A(I +B)−1.

Hint . First, show that DA(B−1) = −B−1AB−1 (where B is invertible) and that
DA(f(B)g(B)) = (DAf(B))g(B) + f(B)(DAg(B)), where f and g are differentiable matrix
functions.

Deduce that dC(B) is injective, for every skew-symmetric matrix, B. If we identify
the space of n × n skew symmetric matrices with Rn(n−1)/2, show that the Cayley map,
C:Rn(n−1)/2 → SO(n), is a parametrization of SO(n).

(c) Now, consider n = 3, i.e., SO(3). Let E1, E2 and E3 be the rotations about the
x-axis, y-axis, and z-axis, respectively, by the angle π, i.e.,

E1 =

 1 0 0
0 −1 0
0 0 −1

 , E2 =

−1 0 0
0 1 0
0 0 −1

 , E3 =

−1 0 0
0 −1 0
0 0 1

 .

Prove that the four maps

B 7→ C(B)

B 7→ E1C(B)

B 7→ E2C(B)

B 7→ E3C(B)

where B is skew symmetric, are parametrizations of SO(3) and that the union of the images
of C, E1C, E2C and E3C covers SO(3), so that SO(3) is a manifold.

(d) Let A be any matrix (not necessarily invertible). Prove that there is some diagonal
matrix, E, with entries +1 or −1, so that EA+ I is invertible.

(e) Prove that every rotation matrix, A ∈ SO(n), is of the form

A = E(I −B)(I +B)−1,
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for some skew symmetric matrix, B, and some diagonal matrix, E, with entries +1 and
−1, and where the number of −1 is even. Moreover, prove that every orthogonal matrix
A ∈ O(n) is of the form

A = E(I −B)(I +B)−1,

for some skew symmetric matrix, B, and some diagonal matrix, E, with entries +1 and
−1. The above provide parametrizations for SO(n) (resp. O(n)) that show that SO(n) and
O(n) are manifolds. However, observe that the number of these charts grows exponentially
with n.

Problem B2 (20 pts). (1) For every symmetric, positive, definite matrix, S, and for every
invertible matrix, A, prove that ASA> is symmetric, positive, definite.

(2) Prove that for any symmetric, positive, definite matrix, S, there is some symmetric,
positive, definite matrix, S1, so that S = S2

1 = S1S
>
1 .

(3) Use (2) to prove that given any two symmetric, positive, definite matrices, S and S ′,
there is some invertible matrix, A, so that

ASA> = S ′.

Conclude that the action of GL(n,R) on SPD(n) given by A · S = ASA> is well-defined
and transitive.

Problem B3 (100 pts). Consider the action of the group SL(2,R) on the upper half-plane,
H = {z = x+ iy ∈ C | y > 0}, given by(

a b
c d

)
· z =

az + b

cz + d
.

(a) Check that for any g ∈ SL(2,R),

=(g · z) =
=(z)

|cz + d|2
,

and conclude that if z ∈ H, then g · z ∈ H, so that the action of SL(2,R) on H is indeed
well-defined (Recall, <(z) = x and =(z) = y, where z = x+ iy.)

(b) Check that if c 6= 0, then

az + b

cz + d
=

−1

c2z + cd
+
a

c
.

Prove that the group of Möbius transformations induced by SL(2,R) is generated by Möbius
transformations of the form

1. z 7→ z + b,
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2. z 7→ kz,

3. z 7→ −1/z,

where b ∈ R and k ∈ R, with k > 0. Deduce from the above that the action of SL(2,R) on
H is transitive and that transformations of type (1) and (2) suffice for transitivity.

(c) Now, consider the action of the discrete group SL(2,Z) on H, where SL(2,Z) consists
of all matrices (

a b
c d

)
, ad− bc = 1, a, b, c, d ∈ Z.

Why is this action not transitive? Consider the two transformations

S: z 7→ −1/z

associated with

(
0 −1
1 0

)
and

T : z 7→ z + 1

associated with

(
1 1
0 1

)
.

Define the subset, D, of H, as the set of points, z = x+ iy, such that −1/2 ≤ x ≤ −1/2
and x2 + y2 ≥ 1. Observe that D contains the three special points, i, ρ = e2πi/3 and
−ρ = eπi/3.

Draw a picture of this set, known as a fundamental domain of the action of G = SL(2,Z)
on H. You will now prove the following result first established by Gauss:

Theorem I. Let G′ be the subgroup of G = SL(2,Z) generated by S and T .

(1) For every point, z ∈ H, there is some g ∈ G′ so that g · z ∈ D.

(2) If two distinct points z, z′ ∈ D are in the same orbit under the action of G = SL(2,Z),
then either <(z) = ±1/2 and z = z′ ± 1 or |z| = 1 and z′ = −1/z.

(3) Let z ∈ D and consider the stabilizer, Gz of z (under the action of G). Then, Gz = {1},
unless

(i) z = i, in which case, Gz is the group of order 2 generated by S (note, S2 = 1)

(ii) z = ρ = e2πi/3, in which case Gz is the group of order 3 generated by ST (com-
position is written from right to left, as usual, and note that (ST )3 = 1)

(iii) z = −ρ = eπi/3, in which case Gz is the group of order 3 generated by TS (note
that (TS)3 = 1).
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Deduce from Theorem I that the natural map D −→ H/G is surjective and that its
restriction to the interior of D is injective.

Hints . Observe that since c, d are integers, for a fixed z, there are finitely many pairs (c, d)
so that |cz + d| < K, for any fixed K > 0. Thus, there is some g ∈ G′ so that =(g · z) is
maximum. Next, show that there is some n so that the real part of T ngz is between −1/2
and 1/2. Show that this element, z′ = T ngz, is actually in D.

For (2) and (3), show that it may be assumed that =(g · z) ≥ =(z), i.e., |cz + d| ≤ 1.

(d) Use Theorem I to prove

Theorem II. The group G = SL(2,Z) is generated by S and T , i.e., G′ = G.

(e) In view of Theorem I, as every point in the interior of D corresponds to a unique orbit
and every orbit has some representative in D, by applying all elements of G = SL(2,Z) to
D, we get a tesselation of H, i.e., we get

H =
⋃
g∈G

g ·D,

where the interiors of g · D and g′ · D are disjoint whenever g · D and g′ · D are distinct.
By Theorem II, we get all g ·D’s by applying S and T to D. Draw the picture obtained by
applying

1, T, TS, ST−1S, ST−1, S, ST, STS, T−1S, T−1.

Problem B4 (30 pts). Let J be the 2× 2 matrix

J =

(
1 0
0 −1

)
and let SU(1, 1) be the set of 2× 2 complex matrices

SU(1, 1) = {A | A∗JA = J, det(A) = 1},

where A∗ is the conjugate transpose of A.

(a) Prove that SU(1, 1) is the group of matrices of the form

A =

(
a b
b a

)
, with aa− bb = 1.

If

g =

(
1 −i
1 i

)
prove that the map from SL(2,R) to SU(1, 1) given by

A 7→ gAg−1
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is a group isomorphism.

(b) Prove that the Möbius transformation associated with g,

z 7→ z − i
z + i

is a bijection between the upper half-plane, H, and the unit open disk, D = {z ∈ C | |z| < 1}.
Prove that the map from SU(1, 1) to S1 ×D given by(

a b
b a

)
7→ (a/|a|, b/a)

is a continuous bijection (in fact, a homeomorphism). Conclude that SU(1, 1) is topologically
an open solid torus.

(c) Check that SU(1, 1) acts transitively on D by(
a b
b a

)
· z =

az + b

bz + a
.

Find the stabilizer of z = 0 and conclude that

SU(1, 1)/SO(2) ∼= D.

Problem B5 (100 pts). (a) Let U ⊆ Rm be an open subset of Rm and pick some a ∈ U .
If f :U → R

n is a submersion at a, i.e., dfa is surjective (so, m ≥ n), prove that there is an
open set, W ⊆ U ⊆ Rm, with a ∈ W and a diffeomorphism, ψ, with domain V ⊆ Rm, so
that ψ(V ) = W and

f(ψ(x1, . . . , xm)) = (x1, . . . , xn),

for all (x1, . . . , xm) ∈ V .

Hint . Since dfa is surjective, the rank of the Jacobian matrix, (∂fi/∂xj(a)) (1 ≤ i ≤ n,
1 ≤ j ≤ m), is n and after some permutation of Rm, we may assume that the square matrix,
B = (∂fi/∂xj(a)) (1 ≤ i, j ≤ n), is invertible. Define the map, h:U → R

m, by

h(x) = (f1(x), . . . , fn(x), xn+1, . . . , xm),

where x = (x1, . . . , xm). Check that the Jacobian matrix of h at a is invertible. Then, apply
the inverse function theorem and finish up.

(b) Let f :M → N be a map of smooth manifolds. A point, p ∈ M , is called a critical
point (of f) iff dfp is not surjective and a point q ∈ N is called a critical value (of f) iff
q = f(p), for some critical point, p ∈ M . A point p ∈ M is a regular point (of f) iff p is
not critical, i.e., dfp is surjective, and a point q ∈ N is a regular value (of f) iff it is not a
critical value. In particular, any q ∈ N − f(M) is a regular value and q ∈ f(M) is a regular
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value iff every p ∈ f−1(q) is a regular point (but, in contrast, q is a critical value iff some
p ∈ f−1(q) is critical).

Prove that for every regular value, q ∈ f(M), the preimage Z = f−1(q) is a manifold of
dimension dim(M)− dim(N).

Hint . Pick any p ∈ f−1(q) and some parametrizations, ϕ at p and ψ at q, with ϕ(0) = p and
ψ(0) = q and consider h = ψ−1 ◦ f ◦ ϕ. Prove that dh0 is surjective and then apply (a).

(c) Under the same assumptions as (b), prove that for every point p ∈ Z = f−1(q), the
tangent space, TpZ, is the kernel of dfp:TpM → TqN .

(d) If X,Z ⊆ RN are manifolds and Z ⊆ X, we say that Z is a submanifold of X. Assume
there is a smooth function, g:X → R

k, and that 0 ∈ Rk is a regular value of g. Then, by
(b), Z = g−1(0) is a submanifold of X of dimension dim(X)− k. Let g = (g1, . . . , gk), with
each gi a function, gi:X → R. Prove that for any p ∈ X, dgp is surjective iff the linear
forms, (dgi)p:TpX → R, are linearly independent. In this case, we say that g1, . . . , gk are
independent at p. We also say that Z is cut out by g1, . . . , gk when

Z = {p ∈ X | g1(p) = 0, . . . , gk(p) = 0}

with g1, . . . , gk independent for all p ∈ Z.

Let f :X → Y be a smooth maps of manifolds and let q ∈ f(X) be a regular value.
Prove that Z = f−1(q) is a submanifold of X cut out by k = dim(X)− dim(Y ) independent
functions.

Hint . Pick some parametrization, ψ, at q, so that ψ(0) = q and check that 0 is a regular
value of g = ψ−1 ◦ f , so that g1, . . . , gk work.

(e) Let U ⊆ Rm be an open subset of Rm and pick some a ∈ U . If f :U → R
n is an

immersion at a, i.e., dfa is injective (so, m ≤ n), prove that there is an open set, V ⊆ Rn,
with f(a) ∈ V , an open subset, U ′ ⊆ U , with a ∈ U ′ and f(U ′) ⊆ V and a diffeomorphism,
ϕ, with domain V , so that

ϕ(f(x1, . . . , xm)) = (x1, . . . , xm, 0, . . . , 0),

for all (x1, . . . , xm) ∈ U ′.
Hint . Since dfa is injective, the rank of the Jacobian matrix, (∂fi/∂xj(a)) (1 ≤ i ≤ n,
1 ≤ j ≤ m), is m and after some permutation of Rn, we may assume that the square matrix,
B = (∂fi/∂xj(a)) (1 ≤ i, j ≤ m), is invertible. Define the map, g:U × Rn−m → R

n, by

g(x, y) = (f1(x), . . . , fm(x), y1 + fm+1(x), . . . , yn−m + fn(x)),

where x = (x1, . . . , xm) and y = (y1, . . . , yn−m). Check that the Jacobian matrix of g at
(a, 0) is invertible. Then, apply the inverse function theorem and finish up.

Now, assume Z is a submanifold of X. Prove that locally, Z is cut out by independent
functions. This means that if k = dim(X) − dim(Z), the codimension of Z in X, then for
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every z ∈ Z, there are k independent functions, g1, . . . , gk, defined on some open subset,
W ⊆ X, with z ∈ W , so that Z ∩W is the common zero set of the gi’s.

(f) We would like to generalize our result in (b) to the more general situation where we
have a smooth map, f :X → Y , but this time, we have a submanifold, Z ⊆ Y and we are
investigating whether f−1(Z) is a submanifold of X. In particular, if X is also a submanifold
of Y and f is the inclusion of X into Y , then f−1(Z) = X ∩ Z.

Convince yourself that, in general, the intersection of two submanifolds is not a subman-
ifold. Try examples involving curves and surfaces and you will see how bad the situation can
be. What is needed is a notion generalizing that of a regular value, and this turns out to be
the notion of transversality.

We say that f is transveral to Z iff

dfp(TpX) + Tf(p)Z = Tf(p)Y,

for all p ∈ f−1(Z). (Recall, if U and V are subspaces of a vector space, E, then U + V is
the subspace U + V = {u+ v ∈ E | u ∈ U, v ∈ V }). In particular, if f is the inclusion of X
into Y , the transversality condition is

TpX + TpZ = TpY,

for all p ∈ X ∩ Z.

Draw several examples of transversal intersections to understand better this concept.
Prove that if f is transversal to Z, then f−1(Z) is a submanifold of X of codimension equal
to dim(Y )− dim(Z).

Hint . The set f−1(Z) is a manifold iff for every p ∈ f−1(Z), there is some open subset,
U ⊆ X, with p ∈ U , and f−1(Z) ∩ U is a manifold. First, use (e) to assert that locally near
q = f(p), Z is cut out by k = dim(Y ) − dim(Z) independent functions, g1, . . . , gk, so that
locally near p, the preimage f−1(Z) is cut out by g1 ◦ f, . . . , gk ◦ f . If we let g = (g1, . . . , gk),
it is an immersion and the issue is to prove that 0 is a regular value of g ◦f in order to apply
(b). Show that transversality is just what’s needed to show that 0 is a regular value of g ◦ f .

(g) With the same assumptions as in (f) (f is transversal to Z), if W = f−1(Z), prove
that for every p ∈ W ,

TpW = (dfp)
−1(Tf(p)Z),

the preimage of Tf(p)Z by dfp:TpX → Tf(p)Y . In particular, if f is the inclusion of X into
Y , then

Tp(X ∩ Z) = TpX ∩ TpZ.

(h) Let X,Z ⊆ Y be two submanifolds of Y , with X compact, Z closed, dim(X) +
dim(Z) = dim(Y ) and X transversal to Z. Prove that X ∩ Z consists of a finite set of
points.

TOTAL: 310 points.
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