Spring, 2005 CIS 610

Advanced Geometric Methods in Computer Science
Jean Gallier

Homework 2

February 23, 2005; Due March 16, 2005
(Note the new due date!)

“A problems” are for practice only, and should not be turned in.
Problem A1l. (a) Find two symmetric matrices, A and B, such that AB is not symmetric.

(b) Find two matrices, A and B, such that

€A€B 7é €A+B.
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Problem A2. (a) If K =R or K = C, recall that the projective space, P(K""1)| is the set
of equivalence classes of the equivalence relation, ~, on K" — {0}, defined so that, for all
u,v € K" — {0},

u~wv iff v=>MAu, forsome e K —{0}.
The map, p: (K™™' — {0}) — P(K""'), is the projection mapping any nonzero vector in
K™ to its equivalence class modulo ~. We let RP" = P(R"™!) and CP" = P(C"*!).

Prove that for any n > 0, there is a bijection between P(K" ™) and K™ UP(K™) (which
allows us to identify them).

(b) Prove that RP" and CP" are connected and compact.

Hint. 1f

S"={(z1,.. ., Tpy1) € K" |2t + -+ a2, =1},
prove that p(S™) = P(K"™!), and recall that S™ is compact for all n > 0 and connected for
n > 1. For n = 0, P(K) consists of a single point.

Problem A3. Recall that R? and C can be identified using the bijection (x,y) +— z+iy. Also
recall that the subset U(1) C C consisting of all complex numbers of the form cosf + isin 0



is homeomorphic to the circle S = {(z,y) € R?* | 2? +y* = 1}. If ¢ U(1) — U(1) is the
map defined such that
c(z) = 2%,

prove that c¢(z1) = c(z9) iff either 2o = z; or 2o = —z;, and thus that ¢ induces a bijective
map ¢ RP' — S'. Prove that ¢ is a homeomorphism (remember that RP! is compact).

“B problems” must be turned in.
Problem B1 (20 pts). Let A = (a;;) be a real or complex n x n matrix.

(1) If X\ is an eigenvalue of A, prove that there is some eigenvector u = (uy,...,u,) of A
for A such that

max |u;| = 1.
1<i<n

(2) If uw = (uy,...,u,) is an eigenvector of A for A as in (1), assuming that 7, 1 <7 <n,
is an index such that |u;| = 1, prove that

n
()\ - a“)uz = Z a; Uy,

j=1

i

and thus that .
A= aii] <Y faig).

j=1
i#i

Conclude that the eigenvalues of A are inside the union of the closed disks D; defined such

that .
j=1

i
Remark: This result is known as Gershgorin’s theorem.

Problem B2 (10). Recall that a real n xn symmetric matrix, A, is positive semi-definite iff
its eigenvalues, A, ..., A, are non-negative (i.e., \; > 0 for ¢ = 1,...,n) and positive definite
iff its eigenvalues are positive (i.e., \; >0 for i =1,...,n).

(a) Prove that a symmetric matrix, A, is positive semi-definite iff X" AX > 0, for all
X #0 (X € R") and positive definite iff X TAX > 0, for all X #0 (X € R").

(b

) Prove that for any two positive definite matrices, A, B, for all A\, p € R, with A\, u > 0
and A+ p > 0, the matrix M\A 4+ pB is still symmetric, positive definite. Deduce that the set
of n X n symmetric positive definite matrices is convex (in fact, a cone).



Problem B3 (40). (i) In R3, the sphere S? is the set of points of coordinates (z,y, 2)
such that 22 + y? + 22 = 1. The point N = (0,0, 1) is called the north pole, and the point
S = (0,0, —1) is called the south pole. The stereographic projection map oy: (S*—{N}) — R?
is defined as follows: For every point M # N on S?, the point o (M) is the intersection of
the line through N and M and the plane of equation z = 0. Show that if M has coordinates
(z,y,2) (with 2% +3* + 22 = 1), then

ON(M):< ’ Y )

1—2"1—2

Prove that oy is bijective and that its inverse is given by the map 7x:R* — (5% — {N}),
with

2x 2y 24+ -1
(a:7 y) — ( 2 2 Y 2 2 ) 2 2 ) *
4y +1 2y + 1 vy + 1
Similarly, og: (5% —{S}) — R? is defined as follows: For every point M # S on 52, the point
os(M) is the intersection of the line through S and M and the plane of equation z = 0.

Show that . Y
M) = ( , )
OS( ) 142 142

Prove that og is bijective and that its inverse is given by the map 75: R? — (52 — {S}), with

2z 2y 1—x2—y2>
w2+ U 2?2+ 10 a2 4yt 4 1)

(z,y) — (

Using the complex number u = z + iy to represent the point (z,y), the maps 7y:R? —
(82 — {N}) and op: (5% — {N}) — R? can be viewed as maps from C to (S? — {N}) and
from (S? — {N}) to C, defined such that

(w) < 2u |u|2—1>

w(u) =

N w2+ 17 u2+1

and u
O'N(U,Z): 1_27

and similarly for 7¢ and og. Prove that if we pick two suitable orientations for the zy-plane,
we have
on(M)os(M) =1,

for every M € S? — {N, S}.
(i) Identifying C? and R?, for z = x + iy and 2’ = 2’ + iy/, we define

(2, 21 = Va2 +y? + 22 + y2.

The sphere S® is the subset of C* (or R?) consisting of those points (z,2’) such that
Iz, 2)II* = 1.



Prove that P(C?) = p(S®), where p: (C*> — {(0,0)}) — P(C?) is the projection map. If
we let u = z/2' (where z, 2’ € C) in the map

( 2u |u|2—1>
u —

[ul24+ 1" |Ju]2+1

and require that [|(z, z')||* = 1, show that we get the map HF: S — S? defined such that
HF((2,7)) = (222, |2 = |]").
Prove that HF: 5% — $? induces a bijection HF:P(C?) — 2, and thus that CP' = P(C?)

is homeomorphic to S2.

(iii) Prove that the inverse image HF~'(s) of every point s € S? is a circle. Thus S® can
be viewed as a union of disjoint circles. The map HF' is called the Hopf fibration.

Problem B4 (60). (a) Consider the map H:R* — R* defined such that

([E,y,Z) = (ny,yZ,ZL‘Z7l'2 - y2)

Prove that when it is restricted to the sphere S? (in R?), we have H(x,y, z) = H(2', v/, ') iff
('Y, 2) = (x,y,2) or (2/,y,7) = (—x,—y, —2). In other words, the inverse image of every
point in H(S?) consists of two antipodal points.

Prove that the map H induces an injective map from the projective plane onto H(S?),
and that it is a homeomorphism.

(b) The map H allows us to realize concretely the projective plane in R* as an embedded
manifold. Consider the three maps from R? to R* given by

br(uw) = ( uv u v u? —v? )7

W+l +1w+ 241w+ 024+ 1 w24+ 02+ 1
Q/JQ(U,U) - (

u v uv w?—1

wWHor+1 e+ 4+ 1w+ 41w+ 024+1)7
u uv v 1 — u?

bs(u,v) = 2 2 19 2 19 2 19 2 :
W4 v+l w0+l w0+ w0+ 1

Observe that 1, is the composition H o oy, where a;: R? — S? is given by

U v 1
(u,v)»—>( ; ; ),
Vuz+02+1 V2 + 02+ 1 Va2 + 02+ 1

that 1)y is the composition H o ap, where ay: R? — S? is given by

U 1 v
(u,v)r—>( , , )
V2 +02+1 Ve +024+1 Ve +02+1



and )5 is the composition H o a3, where as: R? — S? is given by

1 u v
(u7 /U) = ) J )
Vuz+ 12+ 1 Vu2+ 02+ 1 Vu2 + 02+ 1
Prove that each 1); is injective, continuous and nonsingular (i.e., the Jacobian is never zero).

Prove that 1;(R?) is an open subset, U;, of H(S?) for i = 1,2,3 and that the union of
the U;’s covers H(S?).

Prove that each 1; ': U; — R? is continuous. This is a little tricky. For example, for vy,
first prove that if the coordinates in R* are (¥, 2,t), then

yzt = x(y* — 2%).

Then, 1; ' is defined as follows: If y # 0 and z # 0,

T yt x 2t
u=-—-= v=— =
s y2— 22 Yy y2— 22
If y =0 and z # 0, then
t
u=0, v=-—-,
z
if y # 0 and z = 0, then
t
u=- v=0,
Y
and if y = z = 0, then
u=0, v=0.

Finally, you have to show continuity of the above functions, and do a similar thing for v,
and 3.

Conclude that 1)y, 19,13 are parametrizations of RP? as a manifold in R*.

(c) Investigate the surfaces in R? obtained by dropping one of the four coordinates. Show
that there are only two of them (the “Steiner Roman surface” and the “crosscap”, up to a
rigid motion).

Problem B5 (20). (a) Let A be any invertible (real) n x n matrix. Prove that for every
SVD, A = VDU', of A, the product VU is the same (i.e., if ViDU, = V,DU,, then
ViU = VoU,). What does VU have to do with the polar form of A?

(b) Given any invertible (real) n x n matrix, A, prove that there is a unique orthogonal
matrix, ) € O(n), such that ||A — Q| is minimal (under the Frobenius norm). In fact,

prove that Q = VUT, where A = VDU is an SVD of A. Moreover, if det(A) > 0, show
that @ € SO(n).

What can you say if A is singular (i.e., non-invertible)?



Problem B6 (40). (a) Consider the map, f: GL™(n) — S(n), given by
FA) = ATA—T.

Check that
df(A)(H)=A"H+ HTA,

for any matrix, H.
(b) Consider the map, f: GL(n) — R, given by
f(A) = det(A).

Prove that df(I)(B) = tr(B), the trace of B, for any matrix B (here, I is the identity
matrix). Then, prove that
df (A)(B) = det(A)tr(A'B),

where A € GL(n).
(c) Use the map A — det(A) — 1 to prove that SL(n) is a manifold of dimension n? — 1.
(d) Let J be the (n+ 1) x (n + 1) diagonal matrix

I, O
J= ( : _1) |
We denote by SO(n, 1) the group of real (n + 1) x (n + 1) matrices

SO(n,1)={AcGL(n+1)|ATJA=J and det(A)=1}.

Check that SO(n, 1) is indeed a group with the inverse of A given by A~! = JATJ (this is
the special Lorentz group.) Consider the function f: GL*(n + 1) — S(n + 1), given by

f(A)=ATJA -,
where S(n + 1) denotes the space of (n + 1) x (n + 1) symmetric matrices. Prove that
df(A)(H)=A"JH+ H"JA

for any matrix, H. Prove that df(A) is surjective for all A € SO(n, 1) and that SO(n,1) is

a manifold of dimension @

Problem B7 (40 pts). (a) Given any matrix

B= (“ b ) € s1(2,C),
& —a

if w? = a® + bc and w is any of the two complex roots of a® + be, prove that if w # 0, then

B sinh w

e’ =coshwl + B

)
w



and e? =T + B, if a® + bc = 0. Observe that tr(e?) = 2 cosh w.

Prove that the exponential map, exp: s[(2,C) — SL(2,C), is not surjective. For instance,

prove that
-1 1
0 -1

is not the exponential of any matrix in s((2, C).

(b) Recall that a matrix, N, is nilpotent iff there is some m > 0 so that N™ = 0. Let
A be any n X n matrix of the form A =1 — N, where N is nilpotent. Why is A invertible?
prove that there is some B so that e? = I — N as follows: Recall that for any y € R so that
|y — 1| is small enough, we have

-y 0=-»*

log(y) = —(1-y) - 5 ’

As N is nilpotent, we have N™ = 0, where m is the smallest integer with this propery. Then,
the expression

BII [—N :—N .......
og( ) 5 —

is well defined. Use a formal power series argument to show that
eB = A

We denote B by log(A).

(c) Let A € GL(n,C). Prove that there is some matrix, B, so that e = A. Thus, the
exponential map, exp: gl(n, C) — GL(n, C), is surjective.

First, use the fact that A has a Jordan form, PJP~!. Then, show that finding a log of
A reduces to finding a log of every Jordan block of J. As every Jordan block, J, has a fixed
nonzero constant, A, on the diagonal, with 1’s immediately above each diagonal entry and

zero’s everywhere else, we can write J as (A )(I — N), where N is niplotent. Find B; and
By so that \[ = e, [ — N = e, and B1By = ByB,. Conclude that J = e"1+52.

Problem B8 (50 pts). Recall that for any matrix

—c b
A= ¢ 0 =—-a ],
-b a 0

if we let 6 = Va2 + b2 + ¢ and

a® ab ac
B=|ab ¥ bc |,
ac bec ¢



then the exponential map, exp: s0(3) — SO(3), is given by

in 6 1 —cosf
epr:eA:<:OS<9I;>,—|-Sl;1 A—i—( 9(;08 )

B,

or, equivalently, by

A sin 0 (1 —cosb) ,
e :Ig+ 9 A—|— 92 A,

if 0 # k2m (k € Z), with exp(03) = I3 (Rodrigues’s formula (1840))

(a) Let R € SO(3) and assume that R # I and tr(R) # —1. Then, prove that a log of R
(i.e., a skew symmetric matrix, S, so that ¢ = R) is given by

log(R) (R—R"),

~ 2sind
where 1 +2cosf = tr(R) and 0 < 0 < 7.

(b) Now, assume that tr(R) = —1. In this case, show that R is a rotation of angle 7, that
R is symmetric and has eigenvalues, —1, —1,1. Assuming that e = R, Rodrigues formula
becomes

R=1+ %AQ,
m
SO
71.2

If we let S = A/, we see that we need to find a skew-symmetric matrix, S, so that

o1

=5

(R—1)=C.

Observe that C' is also symmetric and has eigenvalues, —1, —1,0. Thus, we can diagonalize

C, as

-1 0 0
c=pP| 0 -1 0]|P",
0 0 0
and if we let
0 —1 0
S=prP[1 0 o]PT,
0 0 0

check that S? = C.

(c) From (a) and (b), we know that we can compute explicity a log of a rotation matrix,
although when 6 ~ 0, we have to be careful in computing 5129; in this case, we may want to
use

sin0_1_9_2+0_4+
0 3! 5l '

8



Given two rotations, Ry, Ry € SO(3), there are three natural interpolation formulae:

_ T T
6(1 t)log R1+tlog Rg; Rlet log(R, R2) 6t log(R2R; )Rh

with 0 <t < 1.

Write a computer program to investigate the difference between these interpolation for-
mulae. The position of a rigid body spinning around its center of gravity is determined by
a rotation matrix, R € SO(3). If Ry denotes the initial position and R, the final position of
this rigid body, by computing interpolants of R, and Ry, we get a motion of the rigid body
and we can create an animation of this motion by displaying several interpolants. The rigid
body can be a “funny” object, for example a banana, a bottle, etc.

TOTAL: 280 points.



