
Spring, 2005 CIS 610

Advanced Geometric Methods in Computer Science

Jean Gallier

Homework 2

February 23, 2005; Due March 16, 2005
(Note the new due date!)

“A problems” are for practice only, and should not be turned in.

Problem A1. (a) Find two symmetric matrices, A and B, such that AB is not symmetric.

(b) Find two matrices, A and B, such that

eAeB 6= eA+B.

Try

A =
π

2

 0 0 0
0 0 −1
0 1 0

 and B =
π

2

 0 0 1
0 0 0
−1 0 0

 .

Problem A2. (a) If K = R or K = C, recall that the projective space, P(Kn+1), is the set
of equivalence classes of the equivalence relation, ∼, on Kn+1 − {0}, defined so that, for all
u, v ∈ Kn+1 − {0},

u ∼ v iff v = λu, for some λ ∈ K − {0}.

The map, p: (Kn+1 − {0}) → P(Kn+1), is the projection mapping any nonzero vector in
Kn+1 to its equivalence class modulo ∼. We let RPn = P(Rn+1) and CPn = P(Cn+1).

Prove that for any n ≥ 0, there is a bijection between P(Kn+1) and Kn ∪P(Kn) (which
allows us to identify them).

(b) Prove that RPn and CPn are connected and compact.

Hint . If
Sn = {(x1, . . . , xn+1) ∈ Kn+1 | x2

1 + · · ·+ x2
n+1 = 1},

prove that p(Sn) = P(Kn+1), and recall that Sn is compact for all n ≥ 0 and connected for
n ≥ 1. For n = 0, P(K) consists of a single point.

Problem A3. Recall that R2 and C can be identified using the bijection (x, y) 7→ x+iy. Also
recall that the subset U(1) ⊆ C consisting of all complex numbers of the form cos θ + i sin θ
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is homeomorphic to the circle S1 = {(x, y) ∈ R2 | x2 + y2 = 1}. If c:U(1) → U(1) is the
map defined such that

c(z) = z2,

prove that c(z1) = c(z2) iff either z2 = z1 or z2 = −z1, and thus that c induces a bijective
map ĉ: RP1 → S1. Prove that ĉ is a homeomorphism (remember that RP1 is compact).

“B problems” must be turned in.

Problem B1 (20 pts). Let A = (ai j) be a real or complex n× n matrix.

(1) If λ is an eigenvalue of A, prove that there is some eigenvector u = (u1, . . . , un) of A
for λ such that

max
1≤i≤n

|ui| = 1.

(2) If u = (u1, . . . , un) is an eigenvector of A for λ as in (1), assuming that i, 1 ≤ i ≤ n,
is an index such that |ui| = 1, prove that

(λ− ai i)ui =
n∑

j=1
j 6=i

ai juj,

and thus that

|λ− ai i| ≤
n∑

j=1
j 6=i

|ai j|.

Conclude that the eigenvalues of A are inside the union of the closed disks Di defined such
that

Di =
{
z ∈ C | |z − ai i| ≤

n∑
j=1
j 6=i

|ai j|
}
.

Remark: This result is known as Gershgorin’s theorem.

Problem B2 (10). Recall that a real n×n symmetric matrix, A, is positive semi-definite iff
its eigenvalues, λ1, . . . , λn are non-negative (i.e., λi ≥ 0 for i = 1, . . . , n) and positive definite
iff its eigenvalues are positive (i.e., λi > 0 for i = 1, . . . , n).

(a) Prove that a symmetric matrix, A, is positive semi-definite iff X>AX ≥ 0, for all
X 6= 0 (X ∈ Rn) and positive definite iff X>AX > 0, for all X 6= 0 (X ∈ Rn).

(b) Prove that for any two positive definite matrices, A,B, for all λ, µ ∈ R, with λ, µ ≥ 0
and λ+µ > 0, the matrix λA+µB is still symmetric, positive definite. Deduce that the set
of n× n symmetric positive definite matrices is convex (in fact, a cone).
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Problem B3 (40). (i) In R3, the sphere S2 is the set of points of coordinates (x, y, z)
such that x2 + y2 + z2 = 1. The point N = (0, 0, 1) is called the north pole, and the point
S = (0, 0,−1) is called the south pole. The stereographic projection map σN : (S2−{N}) → R2

is defined as follows: For every point M 6= N on S2, the point σN(M) is the intersection of
the line through N and M and the plane of equation z = 0. Show that if M has coordinates
(x, y, z) (with x2 + y2 + z2 = 1), then

σN(M) =
( x

1− z
,

y

1− z

)
.

Prove that σN is bijective and that its inverse is given by the map τN : R2 → (S2 − {N}),
with

(x, y) 7→
( 2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
.

Similarly, σS: (S2−{S}) → R2 is defined as follows: For every point M 6= S on S2, the point
σS(M) is the intersection of the line through S and M and the plane of equation z = 0.
Show that

σS(M) =
( x

1 + z
,

y

1 + z

)
.

Prove that σS is bijective and that its inverse is given by the map τS: R2 → (S2−{S}), with

(x, y) 7→
( 2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,

1− x2 − y2

x2 + y2 + 1

)
.

Using the complex number u = x + iy to represent the point (x, y), the maps τN : R2 →
(S2 − {N}) and σN : (S2 − {N}) → R2 can be viewed as maps from C to (S2 − {N}) and
from (S2 − {N}) to C, defined such that

τN(u) =
( 2u

|u|2 + 1
,
|u|2 − 1

|u|2 + 1

)
and

σN(u, z) =
u

1− z
,

and similarly for τS and σS. Prove that if we pick two suitable orientations for the xy-plane,
we have

σN(M)σS(M) = 1,

for every M ∈ S2 − {N,S}.
(ii) Identifying C2 and R4, for z = x+ iy and z′ = x′ + iy′, we define

‖(z, z′)‖ =
√
x2 + y2 + x′2 + y′2.

The sphere S3 is the subset of C2 (or R4) consisting of those points (z, z′) such that
‖(z, z′)‖2 = 1.
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Prove that P(C2) = p(S3), where p: (C2 − {(0, 0)}) → P(C2) is the projection map. If
we let u = z/z′ (where z, z′ ∈ C) in the map

u 7→
( 2u

|u|2 + 1
,
|u|2 − 1

|u|2 + 1

)
and require that ‖(z, z′)‖2 = 1, show that we get the map HF :S3 → S2 defined such that

HF ((z, z′)) = (2zz′, |z|2 − |z′|2).

Prove that HF :S3 → S2 induces a bijection ĤF :P(C2) → S2, and thus that CP1 = P(C2)
is homeomorphic to S2.

(iii) Prove that the inverse image HF−1(s) of every point s ∈ S2 is a circle. Thus S3 can
be viewed as a union of disjoint circles. The map HF is called the Hopf fibration.

Problem B4 (60). (a) Consider the map H: R3 → R4 defined such that

(x, y, z) 7→ (xy, yz, xz, x2 − y2).

Prove that when it is restricted to the sphere S2 (in R3), we have H(x, y, z) = H(x′, y′, z′) iff
(x′, y′, z′) = (x, y, z) or (x′, y′, z′) = (−x,−y,−z). In other words, the inverse image of every
point in H(S2) consists of two antipodal points.

Prove that the map H induces an injective map from the projective plane onto H(S2),
and that it is a homeomorphism.

(b) The map H allows us to realize concretely the projective plane in R4 as an embedded
manifold. Consider the three maps from R2 to R4 given by

ψ1(u, v) =

(
uv

u2 + v2 + 1
,

u

u2 + v2 + 1
,

v

u2 + v2 + 1
,

u2 − v2

u2 + v2 + 1

)
,

ψ2(u, v) =

(
u

u2 + v2 + 1
,

v

u2 + v2 + 1
,

uv

u2 + v2 + 1
,

u2 − 1

u2 + v2 + 1

)
,

ψ3(u, v) =

(
u

u2 + v2 + 1
,

uv

u2 + v2 + 1
,

v

u2 + v2 + 1
,

1− u2

u2 + v2 + 1

)
.

Observe that ψ1 is the composition H ◦ α1, where α1: R2 −→ S2 is given by

(u, v) 7→
(

u√
u2 + v2 + 1

,
v√

u2 + v2 + 1
,

1√
u2 + v2 + 1

)
,

that ψ2 is the composition H ◦ α2, where α2: R2 −→ S2 is given by

(u, v) 7→
(

u√
u2 + v2 + 1

,
1√

u2 + v2 + 1
,

v√
u2 + v2 + 1

)
.
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and ψ3 is the composition H ◦ α3, where α3: R2 −→ S2 is given by

(u, v) 7→
(

1√
u2 + v2 + 1

,
u√

u2 + v2 + 1
,

v√
u2 + v2 + 1

)
,

Prove that each ψi is injective, continuous and nonsingular (i.e., the Jacobian is never zero).

Prove that ψi(R2) is an open subset, Ui, of H(S2) for i = 1, 2, 3 and that the union of
the Ui’s covers H(S2).

Prove that each ψ−1
i :Ui → R2 is continuous. This is a little tricky. For example, for ψ1,

first prove that if the coordinates in R4 are (x, y, z, t), then

yzt = x(y2 − z2).

Then, ψ−1
1 is defined as follows: If y 6= 0 and z 6= 0,

u =
x

z
=

yt

y2 − z2
, v =

x

y
=

zt

y2 − z2
.

If y = 0 and z 6= 0, then

u = 0, v = − t
z
,

if y 6= 0 and z = 0, then

u =
t

y
v = 0,

and if y = z = 0, then
u = 0, v = 0.

Finally, you have to show continuity of the above functions, and do a similar thing for ψ−1
2

and ψ−1
3 .

Conclude that ψ1, ψ2, ψ3 are parametrizations of RP2 as a manifold in R4.

(c) Investigate the surfaces in R3 obtained by dropping one of the four coordinates. Show
that there are only two of them (the “Steiner Roman surface” and the “crosscap”, up to a
rigid motion).

Problem B5 (20). (a) Let A be any invertible (real) n × n matrix. Prove that for every
SVD, A = V DU>, of A, the product V U> is the same (i.e., if V1DU

>
1 = V2DU

>
2 , then

V1U
>
1 = V2U

>
2 ). What does V U> have to do with the polar form of A?

(b) Given any invertible (real) n× n matrix, A, prove that there is a unique orthogonal
matrix, Q ∈ O(n), such that ‖A−Q‖F is minimal (under the Frobenius norm). In fact,
prove that Q = V U>, where A = V DU> is an SVD of A. Moreover, if det(A) > 0, show
that Q ∈ SO(n).

What can you say if A is singular (i.e., non-invertible)?
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Problem B6 (40). (a) Consider the map, f :GL+(n) → S(n), given by

f(A) = A>A− I.

Check that
df(A)(H) = A>H +H>A,

for any matrix, H.

(b) Consider the map, f :GL(n) → R, given by

f(A) = det(A).

Prove that df(I)(B) = tr(B), the trace of B, for any matrix B (here, I is the identity
matrix). Then, prove that

df(A)(B) = det(A)tr(A−1B),

where A ∈ GL(n).

(c) Use the map A 7→ det(A)− 1 to prove that SL(n) is a manifold of dimension n2 − 1.

(d) Let J be the (n+ 1)× (n+ 1) diagonal matrix

J =

(
In 0
0 −1

)
.

We denote by SO(n, 1) the group of real (n+ 1)× (n+ 1) matrices

SO(n, 1) = {A ∈ GL(n+ 1) | A>JA = J and det(A) = 1}.

Check that SO(n, 1) is indeed a group with the inverse of A given by A−1 = JA>J (this is
the special Lorentz group.) Consider the function f :GL+(n+ 1) → S(n+ 1), given by

f(A) = A>JA− J,

where S(n+ 1) denotes the space of (n+ 1)× (n+ 1) symmetric matrices. Prove that

df(A)(H) = A>JH +H>JA

for any matrix, H. Prove that df(A) is surjective for all A ∈ SO(n, 1) and that SO(n, 1) is

a manifold of dimension n(n+1)
2

.

Problem B7 (40 pts). (a) Given any matrix

B =

(
a b
c −a

)
∈ sl(2,C),

if ω2 = a2 + bc and ω is any of the two complex roots of a2 + bc, prove that if ω 6= 0, then

eB = coshω I +
sinh ω

ω
B,

6



and eB = I +B, if a2 + bc = 0. Observe that tr(eB) = 2 cosh ω.

Prove that the exponential map, exp: sl(2,C) → SL(2,C), is not surjective. For instance,
prove that (

−1 1
0 −1

)
is not the exponential of any matrix in sl(2,C).

(b) Recall that a matrix, N , is nilpotent iff there is some m ≥ 0 so that Nm = 0. Let
A be any n× n matrix of the form A = I −N , where N is nilpotent. Why is A invertible?
prove that there is some B so that eB = I −N as follows: Recall that for any y ∈ R so that
|y − 1| is small enough, we have

log(y) = −(1− y)− (1− y)2

2
− · · · − (1− y)k

k
− · · · .

As N is nilpotent, we have Nm = 0, where m is the smallest integer with this propery. Then,
the expression

B = log(I −N) = −N − N2

2
− · · · − Nm−1

m− 1

is well defined. Use a formal power series argument to show that

eB = A.

We denote B by log(A).

(c) Let A ∈ GL(n,C). Prove that there is some matrix, B, so that eB = A. Thus, the
exponential map, exp: gl(n,C) → GL(n,C), is surjective.

First, use the fact that A has a Jordan form, PJP−1. Then, show that finding a log of
A reduces to finding a log of every Jordan block of J . As every Jordan block, J , has a fixed
nonzero constant, λ, on the diagonal, with 1’s immediately above each diagonal entry and
zero’s everywhere else, we can write J as (λI)(I − N), where N is niplotent. Find B1 and
B2 so that λI = eB1 , I −N = eB2 , and B1B2 = B2B1. Conclude that J = eB1+B2 .

Problem B8 (50 pts). Recall that for any matrix

A =

 0 −c b
c 0 −a
−b a 0

 ,

if we let θ =
√
a2 + b2 + c2 and

B =

 a2 ab ac
ab b2 bc
ac bc c2

 ,
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then the exponential map, exp: so(3) → SO(3), is given by

expA = eA = cos θ I3 +
sin θ

θ
A+

(1− cos θ)

θ2
B,

or, equivalently, by

eA = I3 +
sin θ

θ
A+

(1− cos θ)

θ2
A2,

if θ 6= k2π (k ∈ Z), with exp(03) = I3 (Rodrigues’s formula (1840))

(a) Let R ∈ SO(3) and assume that R 6= I and tr(R) 6= −1. Then, prove that a log of R
(i.e., a skew symmetric matrix, S, so that eS = R) is given by

log(R) =
θ

2 sin θ
(R−RT ),

where 1 + 2 cos θ = tr(R) and 0 < θ < π.

(b) Now, assume that tr(R) = −1. In this case, show that R is a rotation of angle π, that
R is symmetric and has eigenvalues, −1,−1, 1. Assuming that eA = R, Rodrigues formula
becomes

R = I +
2

π2
A2,

so

A2 =
π2

2
(R− I).

If we let S = A/π, we see that we need to find a skew-symmetric matrix, S, so that

S2 =
1

2
(R− I) = C.

Observe that C is also symmetric and has eigenvalues, −1,−1, 0. Thus, we can diagonalize
C, as

C = P

−1 0 0
0 −1 0
0 0 0

P>,

and if we let

S = P

 0 −1 0
1 0 0
0 0 0

P>,

check that S2 = C.

(c) From (a) and (b), we know that we can compute explicity a log of a rotation matrix,
although when θ ≈ 0, we have to be careful in computing sin θ

θ
; in this case, we may want to

use
sin θ

θ
= 1− θ2

3!
+
θ4

5!
+ · · · .
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Given two rotations, R1, R2 ∈ SO(3), there are three natural interpolation formulae:

e(1−t) log R1+t log R2 ; R1e
t log(R>1 R2); et log(R2R>1 )R1,

with 0 ≤ t ≤ 1.

Write a computer program to investigate the difference between these interpolation for-
mulae. The position of a rigid body spinning around its center of gravity is determined by
a rotation matrix, R ∈ SO(3). If R1 denotes the initial position and R2 the final position of
this rigid body, by computing interpolants of R1 and R2, we get a motion of the rigid body
and we can create an animation of this motion by displaying several interpolants. The rigid
body can be a “funny” object, for example a banana, a bottle, etc.

TOTAL: 280 points.
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