
Spring, 2005 CIS 610

Advanced Geometric Methods in Computer Science

Jean Gallier

Homework 1

February 2, 2005; Due February 21, 2005

“A problems” are for practice only, and should not be turned in.

Problem A1. Given a finite dimensional Euclidean space, E, if U and V are two orthogonal
subspaces that span E, i.e., E = U ⊕ V , we have the linear projections pU : E → U and
pV : E → V . Recall: since every w ∈ E can be written uniquely as w = u + v, with u ∈ U
and v ∈ V , we have pU(w) = u, pV (w) = v and pU(w)+pV (w) = w, for all w ∈ E. We define
the orthogonal reflection with respect to U and parallel to V as the linear map, s, given by

s(w) = 2pU(w)− w = w − 2pV (w),

for all w ∈ E. Observe that s ◦ s = id, that s is the identity on U and s = −id on V . When
U = H is a hyperplane, s is called a hyperplane reflection (about H).

(a) If w is any nonzero vector orthogonal to the hyperplane H, prove that s is given by

s(x) = x− 2
〈x, w〉
‖w‖2 w,

for all x ∈ E. (Here, ‖w‖2 = 〈w, w〉.)
(b) In matrix form, if the vector w is represented by the column vector W , show that the

matrix of the hyperplane reflection about the hyperplane K = {w}⊥ is

I − 2
WW>

W>W
.

Such matrices are called Householder matrices .

Problem A2. As in A1, let E be a finite dimensional Euclidean space and assume E
is nontrivial, i.e, dim(E) ≥ 1. Prove that if u, v ∈ E are any two nonzero vectors and
‖u‖ = ‖v‖, then there is a hyperplane, H, so that the reflection s about H sends u to v
(v = s(u)) and if u 6= v, then this reflection is unique.

Problem A3. Given a finite dimensional Euclidean space, E, recall that a linear map,
f : E → E, is an isometry iff

〈f(u), f(v)〉 = 〈u, v〉, for all u, v ∈ E.
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(a) Prove that a linear map, f , is an isometry iff

f ∗ ◦ f = f ◦ f ∗ = id,

where f ∗ denotes the adjoint of f .

(b) Note that an isometry, f , also preserves the Euclidean norm ‖u‖ =
√
〈u, u〉, i.e.,

‖f(u)‖ = ‖u‖, for all u ∈ E.

Is the following converse true: If f is a linear map and ‖f(u)‖ = ‖u‖, for all u ∈ E, then
f is an isometry?

Is this statement still true if we do not assume that f is linear?

(c) For any map, f : E → E, show that the condition

〈f(u), f(v)〉 = 〈u, v〉, for all u, v ∈ E

implies that f is actually linear (remember, E has finite dimension).

Problem A4. Let E and F be normed vector spaces (as defined in the transparencies,
Section 3.1).

(a) Check that

sup
u 6=0

‖Au‖
‖u‖

= sup
‖u‖=1

‖Au‖ .

Hint . Use property (b) of a norm.

(b) Prove that a linear map, A: E → F , is bounded iff it is linear. (Again, property (b)
of norms will be useful.)

(c) Prove that every norm on Rn or Cn is continuous.

(d) Two norms ‖ ‖1 and ‖ ‖2 are equivalent iff there exist c1, c2 > 0 so that ‖u‖1 ≤ c1 ‖u‖2

and ‖u‖2 ≤ c2 ‖u‖1, for all u ∈ E. Prove that on a finite dimensional vector space, E, any
two norms are equivalent.

Hint . If E is finite-dimensional, then E is isomorphic to Rn or to Cn. Use the fact that the
(n− 1)-sphere

Sn−1 = {u ∈ E | ‖u‖2 = 1}

is compact and consider the values of the functions x 7→ ‖x‖1
‖x‖2

and x 7→ ‖x‖2
‖x‖1

on Sn−1.

(e) Use (d) to prove that if E is finite-dimensional, then every linear map, A: E → F , is
bounded (E and F are normed vector spaces).

Problem A5. Prove Proposition 3.1.6 of the transparencies.
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Problem A6. Given an m× n matrix, A, prove that its Frobenius norm,

‖A‖F =

√∑
ij

|ai j|2

satisfies
‖A‖F =

√
tr(A∗A) =

√
tr(AA∗)

where tr(B) is the trace of the square matrix B (the sum of its diagonal elements).

“B problems” must be turned in.

Problem B1 (30 pts). Prove Proposition 3.1.7:

Let A be an m × n matrix (over R or C) and let µ1 ≥ µ2 ≥ · · · ≥ µp be its singular values
(where p = min(m,n)). Then, the following properties hold:

1. ‖Au‖ ≤ ‖A‖ ‖u‖, where ‖A‖ is a subordinate norm and ‖Au‖2 ≤ ‖A‖F ‖u‖2, where
‖A‖F is the Frobenius norm.

2. ‖AB‖ ≤ ‖A‖ ‖B‖, for a subordinate norm or the Frobenius norm.

3. ‖UAV ‖ = ‖A‖, if U and V are orthogonal (or unitary) and ‖ ‖ is the Frobenius norm
or the subordinate norm ‖ ‖2.

4. ‖A‖∞ = maxi

∑
j |ai j|.

5. ‖A‖1 = maxj

∑
i |ai j|.

6. ‖A‖2 = µ1 =
√

λmax(A∗A), where λmax(A
∗A) is the largest eigenvalue of A∗A.

7. ‖A‖F =
√∑p

i=1 µ2
i , where p = min(m, n).

8. ‖A‖2 ≤ ‖A‖F ≤ √
p ‖A‖2.

In (4), (5), (6), (8), the matrix norms are the subordinate norms induced by the corresponding
norms (‖ ‖∞, ‖ ‖1 and ‖ ‖2) on Rm and Rn.

Problem B2 (30 pts). Prove Proposition 3.1.8:

Let A be an m× n matrix of rank r and let V DU> = A be an SVD for A. Write ui for the
columns of U , vi for the columns of V and µ1 ≥ µ2 ≥ · · · ≥ µp for the singular values of A
(p = min(m, n)). Then, a matrix of rank k < r closest to A (in the ‖ ‖2 norm) is given by

Ak =
k∑

i=1

µiviu
>
i = V diag(µ1, . . . , µk)U

>

and ‖A− Ak‖2 = µk+1.
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Hint . You will need to prove that if B is any rank k matrix (k < r) then ‖A−B‖2 ≥ µk+1.
Since rk(B) = k, the kernel of B has dimension n − k. Note that the space spanned by
u1, . . . , uk+1 has dimension k + 1; deduce that there must be a unit vector, h, in their
intersection and use

‖A−B‖2 ≥ ‖(A−B)h‖2 .

Problem B3 (40 pts). (a) Prove Lemma 3.2.2:

If B is a symmetric positive semi-definite d × d matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λd ≥ 0 and associated eigenvectors u1, . . . , ud, then

max
x 6=0

x>Bx

x>x
= λ1

(with the maximum attained for x = u1) and

max
x 6=0,x∈{u1,...,uk}⊥

x>Bx

x>x
= λk+1

(with the maximum attained for x = uk+1), where 1 ≤ k ≤ d− 1.

(b) Prove Theorem 3.2.3:

Let X be an n×d matrix of data points, X1, . . . , Xn, and let µ be the centroid of the Xi’s. If
X − µ = V DU> is an SVD decomposition of X − µ and if the main diagonal of D consists
of the singular values µ1 ≥ µ2 ≥ · · · ≥ µd, then a kth principal component of X is given by

Yk = (X − µ)uk = kth column of V D,

where uk is the kth column of U . Furthermore,

var(Yk) =
µ2

k

n− 1

and cov(Yh, Yk) = 0, whenever h 6= k.

Problem B4 (50 pts). The purpose of this problem is to prove that given any self-adjoint
linear map f : E → E (i.e., such that f ∗ = f), where E is a Euclidean space of dimension
n ≥ 3, given an orthonormal basis (e1, . . . , en), there are n − 2 isometries hi, hyperplane
reflections or the identity, such that the matrix of

hn−2 ◦ · · · ◦ h1 ◦ f ◦ h1 ◦ · · · ◦ hn−2

is a symmetric tridiagonal matrix.

(1) Prove that for any isometry f : E → E, we have f = f ∗ = f−1 iff f ◦ f = id.

Prove that if f and h are self-adjoint linear maps (f ∗ = f and h∗ = h), then h ◦ f ◦ h is
a self-adjoint linear map.
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(2) Proceed by induction, taking inspiration from the proof of the triangular decompo-
sition given in Lemma 7.3.1 of my book, Geometric Methods and Applications. Let Vk be
the subspace spanned by (ek+1, . . . , en). For the base case, proceed as follows.

Let
f(e1) = a0

1e1 + · · ·+ a0
nen,

and let
r1, 2 =

∥∥a0
2e2 + · · ·+ a0

nen

∥∥ .

Find an isometry h1 (reflection or id) such that

h1(f(e1)− a0
1e1) = r1, 2 e2.

Observe that
w1 = r1, 2 e2 + a0

1e1 − f(e1) ∈ V1,

and prove that h1(e1) = e1, so that

h1 ◦ f ◦ h1(e1) = a0
1e1 + r1, 2 e2.

Let f1 = h1 ◦ f ◦ h1.

Assuming by induction that

fk = hk ◦ · · · ◦ h1 ◦ f ◦ h1 ◦ · · · ◦ hk

has a tridiagonal matrix up to the kth row and column, 1 ≤ k ≤ n− 3, let

fk(ek+1) = ak
kek + ak

k+1ek+1 + · · ·+ ak
nen,

and let
rk+1, k+2 =

∥∥ak
k+2ek+2 + · · ·+ ak

nen

∥∥ .

Find an isometry hk+1 (reflection or id) such that

hk+1(fk(ek+1)− ak
kek − ak

k+1ek+1) = rk+1, k+2 ek+2.

Observe that

wk+1 = rk+1, k+2 ek+2 + ak
kek + ak

k+1ek+1 − fk(ek+1) ∈ Vk+1,

and prove that hk+1(ek) = ek and hk+1(ek+1) = ek+1, so that

hk+1 ◦ fk ◦ hk+1(ek+1) = ak
kek + ak

k+1ek+1 + rk+1, k+2 ek+2.

Let fk+1 = hk+1 ◦ fk ◦ hk+1, and finish the proof.

Do f and fn−2 have the same eigenvalues? If so, explain why.
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(3) Prove that given any symmetric n×n-matrix A, there are n−2 matrices H1, . . . , Hn−2,
Householder matrices or the identity, such that

B = Hn−2 · · ·H1AH1 · · ·Hn−2

is a symmetric tridiagonal matrix.

Problem B5 (20 pts). As discussed in class, let X be the 10×2 centered matrix consisting
of the year of birth and the length of beard of our ten mathematicians:

Name year length
Carl Friedrich Gauss -51.4 -5.6
Camille Jordan 9.6 6.4
Adrien-Marie Legendre -76.4 -5.6
Bernhard Riemann -2.4 9.4
David Hilbert 33.6 -3.6
Henri Poincaré 25.6 -0.6
Emmy Noether 53.6 -5.6
Karl Weierstrass 13.4 -5.6
Eugenio Beltrami 6.6 -3.6
Hermann Schwarz 14.6 14.4

Compute the principal directions and the two PC’s of X. Plot your results (You may
use Matlab, Mathematica, etc.). Can you conclude anything?

Problem B6 (40 pts). (a) Given a rotation matrix

R =

(
cos θ − sin θ
sin θ cos θ

)
,

where 0 < θ < π, prove that there is a skew symmetric matrix B such that

R = (I −B)(I + B)−1.

(b) If B is a skew symmetric n×n matrix, prove that λIn−B and λIn +B are invertible
for all λ 6= 0, and that they commute.

(c) Prove that
R = (λIn −B)(λIn + B)−1

is a rotation matrix that does not admit −1 as an eigenvalue. (Recall, a rotation is an
orthogonal matrix R with positive determinant, i.e., det(R) = 1.)

(d) Given any rotation matrix R that does not admit −1 as an eigenvalue, prove that
there is a skew symmetric matrix B such that

R = (In −B)(In + B)−1 = (In + B)−1(In −B).
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This is known as the Cayley representation of rotations (Cayley, 1846).

(e) Given any rotation matrix R, prove that there is a skew symmetric matrix B such
that

R =
(
(In −B)(In + B)−1

)2
.

Problem B7 (20 pts). Given any hyperplane, H, in Rm and given any point, x ∈ Rm, the
distance from x to H is defined by

d(x, H) = min
h∈H

d(x, h),

where d(x, h) is the usual Euclidean distance in Rm.

(a) If the hyperplane, H, is given by the equation

a1x1 + · · ·+ amxm + c = 0,

then prove that

d(x, H) =
|a1x1 + · · ·+ amxm + c|

‖a‖
,

where a = (a1, . . . , am) 6= 0 and x = (x1, . . . , xm).

(b) Given a data set of n points, X1, . . . , Xn ∈ Rd, prove that a hyperplane, H, that best
approximates X1, . . . , Xn in the least squares sense is a hyperplane that minimizes the sum
of the square distances of each Xi to H.

Extra Credit (40 pts). Write a computer program implementing the method of Problem
B4(3).

TOTAL: 230 + 40 points.
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