
Fall, 2003 CIS 610

Advanced geometric methods

Homework 4

November 25, 2003; Due December 11, beginning of class

You may work in groups of 2 or 3. Please, write up your solutions as clearly and concisely
as possible. Be rigorous! You will have to present your solutions of the problems during a
special problem session.

“B problems” must be turned in.

Problem B1 (50 pts). The purpose of this problem is to prove that given any self-adjoint
linear map f : E → E (i.e., such that f ∗ = f), where E is a Euclidean space of dimension
n ≥ 3, given an orthonormal basis (e1, . . . , en), there are n − 2 isometries hi, hyperplane
reflections or the identity, such that the matrix of

hn−2 ◦ · · · ◦ h1 ◦ f ◦ h1 ◦ · · · ◦ hn−2

is a symmetric tridiagonal matrix.

(1) Prove that for any isometry f : E → E, we have f = f ∗ = f−1 iff f ◦ f = id.

Prove that if f and h are self-adjoint linear maps (f ∗ = f and h∗ = h), then h ◦ f ◦ h is
a self-adjoint linear map.

(2) Proceed by induction, taking inspiration from the proof of the triangular decomposi-
tion given in the class notes. Let Vk be the subspace spanned by (ek+1, . . . , en). For the base
case, proceed as follows.

Let
f(e1) = a0

1e1 + · · ·+ a0
nen,

and let
r1, 2 =

∥∥a0
2e2 + · · ·+ a0

nen

∥∥ .

Find an isometry h1 (reflection or id) such that

h1(f(e1)− a0
1e1) = r1, 2 e2.

Observe that
w1 = r1, 2 e2 + a0

1e1 − f(e1) ∈ V1,

and prove that h1(e1) = e1, so that

h1 ◦ f ◦ h1(e1) = a0
1e1 + r1, 2 e2.
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Let f1 = h1 ◦ f ◦ h1.

Assuming by induction that

fk = hk ◦ · · · ◦ h1 ◦ f ◦ h1 ◦ · · · ◦ hk

has a tridiagonal matrix up to the kth row and column, 1 ≤ k ≤ n− 3, let

fk(ek+1) = ak
kek + ak

k+1ek+1 + · · ·+ ak
nen,

and let
rk+1, k+2 =

∥∥ak
k+2ek+2 + · · ·+ ak

nen

∥∥ .

Find an isometry hk+1 (reflection or id) such that

hk+1(fk(ek+1)− ak
kek − ak

k+1ek+1) = rk+1, k+2 ek+2.

Observe that

wk+1 = rk+1, k+2 ek+2 + ak
kek + ak

k+1ek+1 − fk(ek+1) ∈ Vk+1,

and prove that hk+1(ek) = ek and hk+1(ek+1) = ek+1, so that

hk+1 ◦ fk ◦ hk+1(ek+1) = ak
kek + ak

k+1ek+1 + rk+1, k+2 ek+2.

Let fk+1 = hk+1 ◦ fk ◦ hk+1, and finish the proof.

Do f and fn−2 have the same eigenvalues? If so, explain why.

(3) Prove that given any symmetric n×n-matrix A, there are n−2 matrices H1, . . . , Hn−2,
Householder matrices or the identity, such that

B = Hn−2 · · ·H1AH1 · · ·Hn−2

is a symmetric tridiagonal matrix.

Problem B2 (40 pts).
Write a computer program implementing the method of problem 1(3).

Problem B3 (40 pts).
Let A be a symmetric tridiagonal n× n-matrix

A =



b1 c1

c1 b2 c2

c2 b3 c3

. . . . . . . . .

cn−2 bn−1 cn−1

cn−1 bn


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where it is assumed that ci 6= 0 for all i, 1 ≤ i ≤ n − 1, and let Ak be the k × k-submatrix
consisting of the first k rows and columns of A, 1 ≤ k ≤ n. We define the polynomials Pk(x)
as follows (0 ≤ k ≤ n).

P0(x) = 1,

P1(x) = b1 − x,

Pk(x) = (bk − x)Pk−1(x)− c2
k−1Pk−2(x),

where 2 ≤ k ≤ n.

(1) Prove the following properties:

(i) Pk(x) is the characteristic polynomial of Ak, where 1 ≤ k ≤ n.

(ii) limx→−∞ Pk(x) = +∞, where 1 ≤ k ≤ n.

(iii) If Pk(x) = 0, then Pk−1(x)Pk+1(x) < 0, where 1 ≤ k ≤ n− 1.

(iv) Pk(x) has k distinct real roots that separate the k + 1 roots of Pk+1, where 1 ≤ k ≤
n− 1.

(2) (Extra Credit 20 pts) Given any real number µ > 0, for every k, 1 ≤ k ≤ n, define
the function sgk(µ) as follows:

sgk(µ) =

{
sign of Pk(µ) if Pk(µ) 6= 0,
sign of Pk−1(µ) if Pk(µ) = 0.

We encode the sign of a positive number as +, and the sign of a negative number as −.
Then, let E(k, µ) be the ordered list

E(k, µ) = 〈+, sg1(µ), sg2(µ), . . . , sgk(µ)〉 ,

and let N(k, µ) be the number changes of sign between consecutive signs in E(k, µ).

Prove that sgk(µ) is well defined, and that N(k, µ) is the number of roots λ of Pk(x) such
that λ < µ.

Remark : The above can be used to compute the eigenvalues of a (tridiagonal) symmetric
matrix (the method of Givens-Householder).

Problem B4 (50 pts). Let A and B be the following 4× 4-matrices:

A =


0 −θ1 0 0

θ1 0 0 0

0 0 0 −θ2

0 0 θ2 0

 B =


cos θ1 − sin θ1 0 0

sin θ1 cos θ1 0 0

0 0 cos θ2 − sin θ2

0 0 sin θ2 cos θ2


where θ1, θ2 ≥ 0.
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(i) Compute A2, and prove that
B = eA,

where

eA = In +
∑
p≥1

Ap

p!
=

∑
p≥0

Ap

p!
,

letting A0 = In. Use this to prove that for every orthogonal 4× 4-matrix B, there is a skew
symmetric matrix A such that

B = eA.

(ii) Given a skew-symmetric 4 × 4-matrix A, prove that there are two skew symmetric
matrices A1 and A2 and some θ1, θ2 ≥ 0, such that

A = A1 + A2,

A3
1 = −θ2

1A1,

A3
2 = −θ2

2A2,

A1A2 = A2A1 = 0,

tr(A2
1) = −2θ2

1,

tr(A2
2) = −2θ2

2,

and where Ai = 0 if θi = 0 and A2
1 + A2

2 = −θ2
1I4 if θ2 = θ1.

Using the above, prove that

eA = I4 +
sin θ1

θ1

A1 +
sin θ2

θ2

A2 +
(1− cos θ1)

θ2
1

A2
1 +

(1− cos θ2)

θ2
2

A2
2.

(iii) Given an orthogonal 4 × 4-matrix B, prove that there are two skew symmetric
matrices A1 and A2 and some θ1, θ2 ≥ 0, such that

B = I4 +
sin θ1

θ1

A1 +
sin θ2

θ2

A2 +
(1− cos θ1)

θ2
1

A2
1 +

(1− cos θ2)

θ2
2

A2
2.

where

A3
1 = −θ2

1A1,

A3
2 = −θ2

2A2,

A1A2 = A2A1 = 0,

tr(A2
1) = −2θ2

1,

tr(A2
2) = −2θ2

2,
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and where Ai = 0 if θi = 0 and A2
1 + A2

2 = −θ2
1I4 if θ2 = θ1. Prove that

1/2(B −B>) =
sin θ1

θ1

A1 +
sin θ2

θ2

A2,

1/2(B + B>) = I4 +
(1− cos θ1)

θ2
1

A2
1 +

(1− cos θ2)

θ2
2

A2
2,

tr(B) = 2 cos θ1 + 2 cos θ2.

(iv) Prove that if sin θ1 = 0 or sin θ2 = 0, then A1, A2 and the cos θi can be computed
from B. Prove that if θ2 = θ1, then

B = cos θ1I4 +
sin θ1

θ1

(A1 + A2),

and cos θ1 and A1 + A2 can be computed from B.

(v) Prove that
1

4
tr((B −B>)2) = 2 cos2 θ1 + 2 cos2 θ2 − 4.

Prove that cos θ1 and cos θ2 are solutions of the equation

x2 − sx + p = 0,

where

s =
1

2
tr(B), p =

1

8
(tr(B))2 − 1

16
tr((B −B>)2)− 1.

Prove that we also have

cos2 θ1 cos2 θ2 = det
(
1/2(B + B>)

)
.

If sin θi 6= 0 for i = 1, 2 and cos θ2 6= cos θ1, prove that the system

1/2(B −B>) =
sin θ1

θ1

A1 +
sin θ2

θ2

A2,

1/4(B + B>)(B −B>) =
sin θ1 cos θ1

θ1

A1 +
sin θ2 cos θ2

θ2

A2,

has a unique solution for A1 and A2.

(vi) Prove that A = A1 + A2 has an orthonormal basis of eigenvectors such that the first
two are a basis of the plane w.r.t. which B is a rotation of angle θ1, and the last two are a
basis of the plane w.r.t. which B is a rotation of angle θ2.

Remark : I don’t know a simple way to compute such an orthonormal basis of eigenvectors
of A = A1 + A2, but it should be possible!
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Problem B5 (50 pts). The motion of a rigid body in space can be described using rigid
motions. Given a fixed Euclidean frame (O, (e1, e2, e3)), we can assume that some moving
frame (C, (u1, u2, u3)) is attached (say glued) to a rigid body B (for example, at the center of
gravity of B) so that the position and orientation of B in space is completely (and uniquely)
determined by some rigid motion (R,U), where U specifies the position of C w.r.t. O, and R
is a rotation matrix specifying the orientation of B w.r.t. the fixed frame (O, (e1, e2, e3)). For
simplicity, we can separate the motion of the center of gravity C of B from the rotation of
B around its center of gravity. Then, a motion of B in space corresponds to two curves, the
trajectory of the center of gravity, and a curve in SO(3) representing the various orientations
of B. Given a sequence of “snapshots” of B, say B0, B1, . . . , Bm, we may want to find an
interpolating motion passing through the given snapshots.

Assuming that a rigid body B (say, a square box) spins around its center of gravity, which
remains fixed, write a computer program to display an interpolated motion of B, given a
sequence B0, B1, . . . , Bm of rotations specifying the orientation of B.

The problem is to ensure that the motion is smooth enough. You may use a cubic spline
curve in the appropriate space, and either use quaternion interpolation, or the exponential
map and Rodrigues’ formula.

Extra credit (40 points): Also assume that the center of gravity is moving, and write a
program performing motion interpolation.

TOTAL: 230 points.
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