
Fall, 2003 CIS 610

Advanced geometric methods

Homework 3

November 11, 2003; Due November 25, beginning of class

You may work in groups of 2 or 3. Please, write up your solutions as clearly and concisely
as possible. Be rigorous! You will have to present your solutions of the problems during a
special problem session.

“A problems” are for practice only, and should not be turned in.

Problem A1. (1) Given a unit vector (− sin θ, cos θ), prove that the Householder matrix
determined by the vector (− sin θ, cos θ) is(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)
.

Give a geometric interpretation (i.e., why the choice (− sin θ, cos θ)?).

(2) Given any matrix

A =

(
a b
c d

)
,

prove that there is a Householder matrix H such that AH is lower triangular, i.e.,

AH =

(
a′ 0
c′ d′

)
for some a′, c′, d′ ∈ R.

Problem A2. Given a Euclidean space E of dimension n, if h is a reflection about some
hyperplane orthogonal to a nonnull vector u and f is any isometry, prove that f ◦ h ◦ f−1 is
the reflection about the hyperplane orthogonal to f(u).

Problem A3. Let E be a Euclidean space of dimension n = 2. Prove that given any two
unit vectors u1, u2 ∈ E (unit means that ‖u1‖ = ‖u2‖ = 1), there is a unique rotation r such
that

r(u1) = u2.

Prove that there is a rotation mapping the pair 〈u1, u2〉 to the pair 〈u3, u4〉 iff there is a
rotation mapping the pair 〈u1, u3〉 to the pair 〈u2, u4〉 (all vectors being unit vectors).
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“B problems” must be turned in.

Problem B1 (30 pts). This problem is a warm-up for the next problem. Consider the set
of matrices of the form (

0 −a
a 0

)
,

where a ∈ R.

(a) Show that these matrices are invertible when a 6= 0 (give the inverse explicitly).
Given any two such matrices A,B, show that AB = BA. Describe geometrically the action
of such a matrix on points in the affine plane A2, with its usual Euclidean inner product.
Verify that this set of matrices is a vector space isomorphic to (R,+). This vector space is
denoted by so(2).

(b) Given an n× n matrix A, we define the exponential eA as

eA = In +
∑
k≥1

Ak

k!
,

where In denotes the n×n identity matrix. It can be shown rigorously that this power series
is indeed convergent for every A (over R or C), so that eA makes sense (and you do not have
to prove it!).

Given any matrix

A =

(
0 −θ
θ 0

)
,

prove that

eA = cos θ

(
1 0
0 1

)
+ sin θ

(
0 −1
1 0

)
=

(
cos θ − sin θ
sin θ cos θ

)
.

Hint . Check that(
0 −θ
θ 0

)
= θ

(
0 −1
1 0

)
and

(
0 −θ
θ 0

)2

= −θ2

(
1 0
0 1

)
,

and use the power series for cos θ and sin θ. Conclude that the exponential map provides a
surjective map exp: so(2) → SO(2) from so(2) onto the group SO(2) of plane rotations. Is
this map injective? How do you need to restrict θ to get an injective map?

Remark: By the way, so(2) is the Lie algebra of the (Lie) group SO(2).

(c) Consider the set U(1) of complex numbers of the form cos θ + i sin θ. Check that
this is a group under multiplication. Assuming that we use the standard affine frame for
the affine plane A2, every point (x, y) corresponds to the complex number z = x + iy, and
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this correspondence is a bijection. Then, every α = cos θ + i sin θ ∈ U(1) induces the map
Rα: A2 → A2 defined such that

Rα(z) = αz.

Prove that Rα is the rotation of matrix(
cos θ − sin θ
sin θ cos θ

)
.

Prove that the map R:U(1) → SO(2) defined such that R(α) = Rα is an isomorphism.
Deduce that topologically, SO(2) is a circle. Using the exponential map from R to U(1)
defined such that θ 7→ eiθ = cos θ + i sin θ, prove that there is a surjective homomorphism
from (R,+) to SO(2). What is the connection with the exponential map from so(2) to
SO(2)?

Problem B2 (60 pts).

(a) Recall that the coordinates of the cross product u× v of two vectors u = (u1, u2, u3)
and v = (v1, v2, v3) in R3 are

(u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

Letting U be the matrix

U =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 ,

check that the coordinates of the cross product u× v are given by 0 −u3 u2

u3 0 −u1

−u2 u1 0

  v1

v2

v3

 =

u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

 .

(b) Show that the set of matrices of the form

U =

 0 −u3 u2

u3 0 −u1

−u2 u1 0


is a vector space isomorphic to (R3+). This vector space is denoted by so(3). Show that such
matrices are never invertible. Find the kernel of the linear map associated with a matrix U .
Describe geometrically the action of the linear map defined by a matrix U . Show that when
restricted to the plane orthogonal to u = (u1, u2, u3) through the origin, it is a rotation by
π/2.
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(c) Consider the map ψ: (R3,×) → so(3) defined by the formula

ψ(u1, u2, u3) =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 .

For any two matrices A,B ∈ so(3), defining [A, B] as

[A, B] = AB −BA,

verify that
ψ(u× v) = [ψ(u), ψ(v)].

Show that [−, −] is not associative. Show that [A, A] = 0, and that the so-called Jacobi
identity holds:

[A, [B, C]] + [C, [A, B]] + [B, [C, A]] = 0.

Show that [AB] is bilinear (linear in both A and B).

Remark: [A, B] is called a Lie bracket , and under this operation, the vector space so(3) is
called a Lie algebra. In fact, it is the Lie algebra of the (Lie) group SO(3).

(d) For any matrix

A =

 0 −c b
c 0 −a
−b a 0

 ,

letting θ =
√
a2 + b2 + c2 and

B =

 a2 ab ac
ab b2 bc
ac bc c2

 ,

prove that

A2 = −θ2I +B,

AB = BA = 0.

From the above, deduce that
A3 = −θ2A,

and for any k ≥ 0,

A4k+1 = θ4kA,

A4k+2 = θ4kA2,

A4k+3 = −θ4k+2A,

A4k+4 = −θ4k+2A2.
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Then prove that the exponential map exp: so(3) → SO(3) is given by

expA = eA = cos θ I3 +
sin θ

θ
A+

(1− cos θ)

θ2
B,

or, equivalently, by

eA = I3 +
sin θ

θ
A+

(1− cos θ)

θ2
A2,

if θ 6= k2π (k ∈ Z), with exp(03) = I3.

Remark: This formula is known as Rodrigues’s formula (1840).

(e) Prove that expA is a rotation of axis (a, b, c) and of angle θ =
√
a2 + b2 + c2.

Hint . Check that eA is an orthogonal matrix of determinant +1, etc., or look up any textbook
on kinematics or classical dynamics!

(f) Prove that the exponential map exp: so(3) → SO(3) is surjective. Prove that if R is
a rotation matrix different from I3, letting ω = (a, b, c) be a unit vector defining the axis of
rotation, if tr(R) = −1, then

(exp(R))−1 =

±π

 0 −c b
c 0 −a
−b a 0

 ,

and if tr(R) 6= −1, then

(exp(R))−1 =

{
θ

2 sin θ
(R−RT )

∣∣∣ 1 + 2 cos θ = tr(R)

}
.

(Recall that tr(R) = r1 1 + r2 2 + r3 3, the trace of the matrix R). Note that both θ and 2π−θ
yield the same matrix exp(R).

Problem B3 (30 pts). Given p vectors (u1, . . . , up) in a Euclidean space E of dimension
n ≥ p, the Gram determinant (or Gramian) of the vectors (u1, . . . , up) is the determinant

Gram(u1, . . . , up) =

∣∣∣∣∣∣∣∣
‖u1‖2 〈u1, u2〉 . . . 〈u1, up〉
〈u2, u1〉 ‖u2‖2 . . . 〈u2, up〉

...
...

. . .
...

〈up, u1〉 〈up, u2〉 . . . ‖up‖2

∣∣∣∣∣∣∣∣ .
(1) Prove that

Gram(u1, . . . , un) = λE(u1, . . . , un)2.

Hint . By a previous problem, if (e1, . . . , en) is an orthonormal basis of E and A is the matrix
of the vectors (u1, . . . , un) over this basis,

det(A)2 = det(A>A) = det(Ai · Aj),
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where Ai denotes the ith column of the matrix A, and (Ai · Aj) denotes the n × n matrix
with entries Ai · Aj.

(2) Prove that
‖u1 × · · · × un−1‖2 = Gram(u1, . . . , un−1).

Hint . Letting w = u1 × · · · × un−1, observe that

λE(u1, . . . , un−1, w) = 〈w,w〉 = ‖w‖2,

and show that

‖w‖4 = λE(u1, . . . , un−1, w)2 = Gram(u1, . . . , un−1, w)

= Gram(u1, . . . , un−1)‖w‖2.

Problem B4 (50 pts). Given a Euclidean space E, let U be a nonempty affine subspace
of E, and let a be any point in E. We define the distance d(a, U) of a to U as

d(a, U) = inf{‖ab‖ | b ∈ U}.

(a) Prove that the affine subspace U⊥
a defined such that

U⊥
a = a+

−→
U

⊥

intersects U in a single point b such that d(a, U) = ‖ab‖.
Hint . Recall the discussion after Lemma 2.11.2.

(b) Let (a0, . . . , ap) be a frame for U (not necessarily orthonormal). Prove that

d(a, U)2 =
Gram(a0a, a0a1, . . . , a0ap)

Gram(a0a1, . . . , a0ap)
.

Hint . Gram is unchanged when a linear combination of other vectors is added to one of the
vectors, and thus

Gram(a0a, a0a1, . . . , a0ap) = Gram(ba, a0a1, . . . , a0ap),

where b is the unique point defined in question (a).

(c) If D and D′ are two lines in E that are not coplanar, a, b ∈ D are distinct points on
D, and a′, b′ ∈ D′ are distinct points on D′, prove that if d(D,D′) is the shortest distance
between D and D′ (why does it exist?), then

d(D,D′)2 =
Gram(aa′, ab, a′b′)

Gram(ab, a′b′)
.
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Problem B5 (30 pts). In E3, consider the closed convex set (cone), A, defined by the
inequalities

x ≥ 0, y ≥ 0, z ≥ 0, z2 ≤ xy,

and let D be the line given by x = 0, z = 1. Prove that D∩A = ∅, both A and D are convex
and closed, yet every plane containing D meets A. Therefore, A and D give another counter-
example to the Hahn-Banach theorem where A is closed (one cannot relax the hypothesis
that A is open).

Problem B6 (30 pts). In En, consider the polar duality A 7→ A∗, with respect to the
origin, O.

(i) For any nonempty subsets, A,B ⊆ En, prove the following properties:

(a) A∗ = A∗∗∗.

(b) For any λ 6= 0, we have (λA)∗ = (1/λ)A∗.

(c) (A ∪B)∗ = A∗ ∩B∗.

(d) A∗∗ = conv(A ∪ {O}), the topological closure of the convex hull of A and the origin.

(e) If A and B are closed, convex and both contain O, then (A ∩ B)∗ = conv(A∗ ∪B∗),
the topological closure of the convex hull of A∗ ∪B∗.

(ii) If A,B ⊆ En, for any λ, the set

(1− λ)A+ λB = {(1− λ)a+ λb | a ∈ A, b ∈ B}

is the Minkowski sum of A and B. Assume that 0 ≤ λ ≤ 1. Check that (1 − λ)A + λB
is convex if A and B are convex. Prove that (1 − λ)A + λB is a polytope if A and B are
polytopes.

(iii) (Extra Credit) The Minkowski sum can be viewed as a way of interpolating between
two polytopes and gives a way of morphing one polytope to another. The vertices of
(1−λ)A+λB are convex combinations of the vertices of A and B. However, not all of these
convex combinations are vertices. Investigate (in E3) practical algorithms for displaying the
result of morphing polytopes using the Minkowski sum (You may want to begin with the
case of polygons in E2.)

TOTAL: 230 points.
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