
Fall, 2003 CIS 610

Advanced geometric methods

Homework 1

September 30, 2003; Due October 21, beginning of class

You may work in groups of 2 or 3. Please, write up your solutions as clearly and concisely
as possible. Be rigorous! You will have to present your solutions of the problems during a
special problem session.

Instead of doing Problem B7, search the literature for algorithms for computing the
convex hull of a finite set of points in the plane (or in space, but this is harder!). Write a
short critical paper presenting two such algorithms. You will also have to give a presentation
during the problem session. Some relevant sources are,

Computational Geometry in C , by O’Rourke, Joseph, Cambridge University Press, 1998,
second edition, and

Computational Geometry. Algorithms and Applications, by Berg, M., Van Kreveld, M.,
Overmars, M., and Schwarzkopf, O., Springer, 1997.

Computational Geometry: An Introduction, by F.P. Preparata and M.I. Shamos, Springer-
Verlag, 1985.

See also

“Convex Hull Computations”, by Raimund Seidel, in Discrete and Computational Geometry ,
J. Goodman and J. O’Rourke, eds., CRC Press, pp. 361-375. 1997.

“A problems” are for practice only, and should not be turned in.

Problem A1. (a) Given a tetrahedron (a, b, c, d), given any two distinct points x, y ∈
{a, b, c, d}, let let mx,y be the middle of the edge (x, y). Prove that the barycenter g of the
weighted points (a, 1/4), (b, 1/4), (c, 1/4), and (d, 1/4), is the common intersection of the line
segments (ma,b,mc,d), (ma,c,mb,d), and (ma,d,mb,c). Show that if gd is the barycenter of the
weighted points (a, 1/3), (b, 1/3), (c, 1/3) then g is the barycenter of (d, 1/4) and (gd, 3/4).

Problem A2. Given any two affine spaces E and F , for any affine map f :E → F , for any
convex set U in E and any convex set V in F , prove that f(U) is convex and that f−1(V )
is convex. Recall that

f(U) = {b ∈ F | ∃a ∈ U, b = f(a)}
is the direct image of U under f , and that

f−1(V ) = {a ∈ E | ∃b ∈ V, b = f(a)}
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is the inverse image of V under f .

Problem A3. Let E be a nonempty set and
−→
E be a vector space and assume that there

is a function Φ:E × E →
−→
E , such that if we denote Φ(a, b) by ab, the following properties

hold:

(1) ab + bc = ac, for all a, b, c ∈ E;

(2) For every a ∈ E, the map Φa:E →
−→
E defined such that for every b ∈ E, Φa(b) = ab,

is a bijection.

Let Ψa:
−→
E → E be the inverse of Φa:E →

−→
E .

Prove that the function +:E ×
−→
E → E defined such that

a+ u = Ψa(u)

for all a ∈ E and all u ∈
−→
E makes (E,

−→
E ,+) into an affine space.

Note: We showed in class that an affine space (E,
−→
E ,+) satisfies the properties stated above.

Thus, we obtain an equivalent characterization of affine spaces.

“B problems” must be turned in.

Problem B1 (30 pts). Given any two distinct points a, b in A2 of barycentric coordinates
(a0, a1, a2) and (b0, b1, b2) with respect to any given affine frame, show that the equation of
the line 〈a, b〉 determined by a and b is∣∣∣∣∣∣

a0 b0 x
a1 b1 y
a2 b2 z

∣∣∣∣∣∣ = 0,

or equivalently
(a1b2 − a2b1)x+ (a2b0 − a0b2)y + (a0b1 − a1b0)z = 0,

where (x, y, z) are the barycentric coordinates of the generic point on the line 〈a, b〉.

Prove that the equation of a line in barycentric coordinates is of the form

ux+ vy + wz = 0,

where u 6= v, or v 6= w, or u 6= w. Show that two equations

ux+ vy + wz = 0 and u′x+ v′y + w′z = 0
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represent the same line in barycentric coordinates iff (u′, v′, w′) = λ(u, v, w) for some λ ∈ R
(with λ 6= 0).

A triple (u, v, w) where u 6= v, or v 6= w, or u 6= w, is called a system of tangential
coordinates of the line defined by the equation

ux+ vy + wz = 0.

Problem B2 (30 pts). Given two lines D and D′ in A2 defined by tangential coordinates
(u, v, w) and (u′, v′, w′) (as defined in problem B1), let

d =

∣∣∣∣∣∣
u v w
u′ v′ w′

1 1 1

∣∣∣∣∣∣ = vw′ − wv′ + wu′ − uw′ + uv′ − vu′.

(a) Prove that D and D′ have a unique intersection point iff d 6= 0, and that when it
exists, the barycentric coordinates of this intersection point are

1

d
(vw′ − wv′, wu′ − uw′, uv′ − vu′).

(b) Letting (O, i, j) be any affine frame for A2, recall that when x + y + z = 0, for any
point a, the vector

x
−→
aO + y

−→
ai + z

−→
aj

is independent of a and equal to

y
−→
Oi+ z

−→
Oj = (y, z).

The triple (x, y, z) such that x+ y+ z = 0 is called the barycentric coordinates of the vector

y
−→
Oi+ z

−→
Oj w.r.t. the affine frame (O, i, j).

Given any affine frame (O, i, j), prove that for u 6= v, or v 6= w, or u 6= w, the line of
equation

ux+ vy + wz = 0

in barycentric coordinates (x, y, z) (where x+ y + z = 1) has for direction the set of vectors
of barycentric coordinates (x, y, z) such that

ux+ vy + wz = 0

(where x+ y + z = 0).

Prove that D and D′ are parallel iff d = 0. In this case, if D 6= D′, show that the common
direction of D and D′ is defined by the vector of barycentric coordinates

(vw′ − wv′, wu′ − uw′, uv′ − vu′).
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(c) Given three lines D, D′, and D′′, at least two of which are distinct, and defined by
tangential coordinates (u, v, w), (u′, v′, w′), and (u′′, v′′, w′′), prove that D, D′, and D′′ are
parallel or have a unique intersection point iff∣∣∣∣∣∣

u v w
u′ v′ w′

u′′ v′′ w′′

∣∣∣∣∣∣ = 0.

Problem B3 (20 pts). Given an affine space E of dimension n and an affine frame
(a0, . . . , an) for E, let f :E → E and g:E → E be two affine maps represented by the two
(n+ 1)× (n+ 1)-matrices (

A b
0 1

)
and

(
B c
0 1

)
,

w.r.t. the frame (a0, . . . , an). We also say that f and g are represented by (A, b) and (B, c).

(1) Prove that the composition f ◦ g is represented by the matrix(
AB Ac+ b
0 1

)
.

We also say that f ◦ g is represented by (A, b)(B, c) = (AB,Ac+ b).

(2) Prove that f is invertible iff A is invertible and that the matrix representing f−1 is(
A−1 −A−1b

0 1

)
.

We also say that f−1 is represented by (A, b)−1 = (A−1,−A−1b). Prove that if A is an
orthogonal matrix, the matrix associated with f−1 is(

A> −A>b
0 1

)
.

Furthermore, denoting the columns of A as A1, . . . , An, prove that the vector A>b is the
column vector of components

(A1 · b, . . . , An · b).

(where · denotes the standard inner product of vectors)

(3) Given two affine frame (a0, . . . , an) and (a′0, . . . , a
′
n) for E, any affine map f :E → E

has a matrix representation (A, b) w.r.t. to (a0, . . . , an) and (a′0, . . . , a
′
n) defined such that

b = a′0f(a0) is expressed over the basis (a′0a′1, . . . , a
′
0a′n), and ai j is the ith coefficient of

f(a0aj) over the basis (a′0a′1, . . . , a
′
0a′n). Given any three frames (a0, . . . , an), (a′0, . . . , a

′
n),

and (a′′0, . . . , a
′′
n), for any two affine maps f :E → E and g:E → E, if f has the matrix

representation (A, b) w.r.t. (a0, . . . , an) and (a′0, . . . , a
′
n) and g has the matrix representation
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(B, c) w.r.t. (a′0, . . . , a
′
n) and (a′′0, . . . , a

′′
n), prove that g ◦ f has the matrix representation

(B, c)(A, b) w.r.t. (a0, . . . , an) and (a′′0, . . . , a
′′
n).

(4) Given two affine frame (a0, . . . , an) and (a′0, . . . , a
′
n) for E, there is a unique affine map

h:E → E such that h(ai) = a′i for i = 0, . . . , n, and we let (P, ω) be its associated matrix
representation with respect to the frame (a0, . . . , an). Note that ω = a0a′0, and that pi j is the
ith coefficient of a′0a′j over the basis (a0a1, . . . , a0an). Observe that (P, ω) is also the matrix
representation of idE w.r.t. the frames (a′0, . . . , a

′
n) and (a0, . . . , an), in that order. For any

affine map f :E → E, if f has the matrix representation (A, b) over the frame (a0, . . . , an)
and the matrix representation (A′, b′) over the frame (a′0, . . . , a

′
n), prove that

(A′, b′) = (P, ω)−1(A, b)(P, ω).

Given any two affine maps f :E → E and g:E → E, where f is invertible, for any affine
frame (a0, . . . , an) for E, if (a′0, . . . , a

′
n) is the affine frame image of (a0, . . . , an) under f (i.e.,

f(ai) = a′i for i = 0, . . . , n), letting (A, b) be the matrix representation of f w.r.t. the frame
(a0, . . . , an) and (B, c) be the matrix representation of g w.r.t. the frame (a′0, . . . , a

′
n) (not

the frame (a0, . . . , an)), prove that g ◦ f is represented by the matrix (A, b)(B, c) w.r.t. the
frame (a0, . . . , an).

Remark : Note that this is the opposite of what happens if f and g are both represented
by matrices w.r.t. the “fixed” frame (a0, . . . , an), where g ◦ f is represented by the matrix
(B, c)(A, b). The frame (a′0, . . . , a

′
n) can be viewed as a “moving” frame. The above has

applications in robotics, for example to rotation matrices expressed in terms of Euler angles,
or “roll, pitch, and yaw”.

Problem B4 (20 pts). Let S be any nonempty subset of an affine space E. Given some
point a ∈ S, we say that S is star-shaped with respect to a iff the line segment [a, x] is
contained in S for every x ∈ S, i.e. (1− λ)a+ λx ∈ S for all λ such that 0 ≤ λ ≤ 1. We say
that S is star-shaped iff it is star-shaped w.r.t. to some point a ∈ S.

(1) Prove that every nonempty convex set is star-shaped.

(2) Show that there are star-shaped subsets that are not convex. Show that there are
nonempty subsets that are not star-shaped (give an example in An, n = 1, 2, 3).

(3) Given a star-shaped subset S of E, let N(S) be the set of all points a ∈ S such that
S is star-shaped with respect to a. Prove that N(S) is convex.

Problem B5 (50 pts). (a) Let E be a vector space, and let U and V be two subspaces
of E so that they form a direct sum E = U ⊕ V . Recall that this means that every vector
x ∈ E can be written as x = u + v, for some unique u ∈ U and some unique v ∈ V . Define
the function pU :E → U (resp. pV :E → V ) so that pU(x) = u (resp. pV (x) = v), where
x = u+ v, as explained above. Check that that pU and pV are linear.
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(b) Now assume that E is an affine space (nontrivial), and let U and V be affine subspaces

such that
−→
E =

−→
U ⊕

−→
V . Pick any Ω ∈ V , and define qU :E →

−→
U (resp. qV :E →

−→
V , with

Ω ∈ U) so that

qU(a) = p−→
U

(Ωa) (resp. qV (a) = p−→
V

(Ωa)), for every a ∈ E.

Prove that qU does not depend on the choice of Ω ∈ V (resp. qV does not depend on the
choice of Ω ∈ U). Define the map pU :E → U (resp. pV :E → V ) so that

pU(a) = a− qV (a) (resp. pV (a) = a− qU(a)), for every a ∈ E.

Prove that pU (resp. pV ) is affine.

The map pU (resp. pV ) is called the projection onto U parallel to V (resp. projection
onto V parallel to U).

(c) Let (a0, . . . , an) be n + 1 affinely independent points in An, and let ∆(a0, . . . , an)
denote the convex hull of (a0, . . . , an) (an n-simplex). Prove that if f :An → A

n is an affine
map sending ∆(a0, . . . , an) inside itself, i.e.,

f(∆(a0, . . . , an)) ⊆ ∆(a0, . . . , an),

then, f has some fixed point b ∈ ∆(a0, . . . , an), i.e.,

f(b) = b.

Hint : Proceed by induction on n. First, treat the case n = 1. The affine map is determined
by f(a0) and f(a1), which are affine combinations of a0 and a1. There is an explicit formula
for some fixed point of f . For the induction step, compose f with some suitable projections.

Problem B6 (40 pts). Let A be a nonempty convex subset of An. A function f :A → R

is convex if
f((1− λ)a+ λb) ≤ (1− λ)f(a) + λf(b)

for all a, b ∈ A and for all λ ∈ [0, 1].

(a) If f is convex, prove that

f
(∑
i∈I

λiai

)
≤
∑
i∈I

λif(ai)

for every finite convex combination in A, i.e., any finite family (ai)i∈I of points in A and any
family (λi)i∈I with

∑
i∈I λi = 1 and λi ≥ 0 for all i ∈ I.

(b) Let f :A → R be a convex function and assume that A is convex and compact and
that f is continuous. Prove that f achieves its maximum in some extremal point of A.
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Problem B7 (100 pts). (a) Let A be any subset of An. Prove that if A is compact, then
its convex hull C(A) is also compact.

(b) Give a proof of the following version of Helly’s theorem using Corollary 1.10 of the
notes on convex sets (Convex sets: A deeper look):

Given any affine space E of dimension m, for every family {K1, . . . , Kn} of n convex and
compact subsets of E, if n ≥ m + 2 and the intersection

⋂
i∈I Ki of any m + 1 of the Ki is

nonempty (where I ⊆ {1, . . . , n}, |I| = m+ 1), then
⋂n
i=1 Ki is nonempty.

Hint : First, prove that the general case can be reduced to the case where n = m+ 2.

(c) Use (b) to prove Helly’s theorem without the assumption that the Ki are compact.

You will need to construct some nonempty compacts Ci ⊆ Ki. For this, you will need to
prove that the convex hull of finitely many points is compact.

(d) Prove that Helly’s theorem holds even if the family (Ki)I∈I is infinite, provided that
the Ki are convex and compact.

TOTAL: 290 points.
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