Chapter 8

Vector Fields, Lie Derivatives,
Integral Curves, Flows

Our goal in this chapter is to generalize the concept of a
vector field to manifolds, and to promote some standard
results about ordinary differential equations to manifolds.

8.1 Tangent and Cotangent Bundles

Let M be a C*-manifold (with k > 2). Roughly speaking,
a vector field on M is the assignment, p — X(p), of a

tangent vector X(p) € T,(M), to a point p € M.
Generally, we would like such assignments to have some

smoothness properties when p varies in M, for example,
to be C!, for some [ related to k.

473



474 CHAPTER 8. VECTOR FIELDS, INTEGRAL CURVES, FLOWS

Now, if the collection, T'(M), of all tangent spaces, T},(M ),
was a C'-manifold, then it would be very easy to define

what we mean by a C'-vector field: We would simply
require the map, X: M — T(M), to be C".

If M is a C*-manifold of dimension n, then we can indeed
make T'(M) into a C*~L-manifold of dimension 2n and
we now sketch this construction.

We find it most convenient to use Version 2 of the def-
inition of tangent vectors, i.e., as equivalence classes of

triples (U, o, x), with x € R". Recall that (U, ¢, x) and
(V, 1), y) are equivalent iff

(oo (@) =v.

First, we let T'(M) be the disjoint union of the tangent
spaces T,,(M ), for all p € M. See Figure 8.1.
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Figure 8.1: The tangent bundle of S*.

Formally,
T(M)=A{(p,v) | p€ M,veT, (M)}
There is a natural projection,

m: T(M)— M, with w(p,v)=p.
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We still have to give T'(M) a topology and to define a
C*Latlas.

For every chart, (U, ), of M (with U open in M) we
define the function, &: 7~ (U) — R*", by

(p,v) = ((p); O, (V)

where (p,v) € 7 1(U) and 6y, is the isomorphism be-
tween R™ and T,(M ) described just after Definition 7.12.

It is obvious that @ is a bijection between 7~ }(U) and
©(U) x R™, an open subset of R**. See Figure 8.2.

We give T (M) the weakest topology that makes all the
@ continuous, i.e., we take the collection of subsets of the
form @~ 1(W), where W is any open subset of ¢(U) x R",
as a basis of the topology of T'(M).
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Figure 8.2: A chart for T'(S).

One easily checks that T'(M) is Hausdorff and second-
countable in this topology.
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If (U, ) and (V, 1) are overlapping charts, then the tran-
sition function

~

Voo tipUNV)xR" — p(UNV) x R"

is given by

~

Yo Hz,z)=(Wop (z), (o ).(x)),

with (z,2) € p(UNV) x R
It is clear that 1 o @1 is a C* Lmap. Therefore, T'(M)

is indeed a C*~!-manifold of dimension 2n, called the
tangent bundle.
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Remark: Even if the manifold M is naturally embed-
ded in RY (for some N > n = dim(M)), it is not at all
obvious how to view the tangent bundle, T'(M), as em-

bedded in RY /, for some suitable N'. Hence, we see that
the definition of an abtract manifold is unavoidable.

A similar construction can be carried out for the cotan-
gent bundle.

In this case, we let T*(M) be the disjoint union of the
cotangent spaces T (M),

T"(M) ={(p,w) [ p e M,w e T (M)}

We also have a natural projection, w: T*(M) — M.

We can define charts as follows:
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For any chart, (U, ), on M, we define the function
o: 71 U) — R* by

(o) = <¢<p>7w (((f)) - (((f))) ,

where (p,w) € 7 }(U) and the (%) are the basis of

P
T,(M) associated with the chart (U, ¢).

Again, one can make T*(M) into a C*~!-manifold of di-
mension 2n, called the cotangent bundle.

Another method using Version 3 of the definition of tan-
gent vectors is presented in Section 77,
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For each chart (U, ) on M, we obtain a chart
o HU) = p(U) x R" C R*"
on T*(M) given by
P (p,w) = (0(P), 05 r() (@)
for all (p,w) € 7~ 1(U), where

Ot pp =L O 9;’%10: (M) — R".

Here, 9;’%]): T5(M) — (R")" is obtained by dualizing
the map, 0y ,,: R" — T,(M), and ¢: (R")* — R" is the
isomorphism induced by the canonical basis (e, ..., ey)

of R™ and its dual basis.

For simplicity of notation, we also use the notation 1T'M
for T(M) (resp. T*M for T*(M)).
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Observe that for every chart, (U, ), on M, there is a
bijection

o H(U) — U x R,
given by

(p,v) = (p, 0, (V).

Clearly, pri o 77 = m, on « (U) as illustrated by the
following commutative diagram:

U x R"

\/

Thus, locally, that is, over U, the bundle T'(M) looks like
the product manifold U x R".

T

We say that T'(M) is locally trivial (over U) and we call
T a trivializing map.
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For any p € M, the vector space
7w Hp) ={p} X T,(M) = T,(M) is called the
fibre above p.

Observe that the restriction of 77 to w1(p) is an isomor-
phism between {p} x T,(M) = T,(M) and
{p} x R" = R", for any p € M.

Furthermore, for any two overlapping charts (U, @) and

(V, 1)), there is a function gy : UNV — GL(n, R) such
that

(0 01 )(p, ) = (P, guv(p)())

for all p e UNV and all x € R", with gyy(p) given by

/

guv(p) = (po ¢_1>¢(p)-

Obviously, guy(p) is a linear isomorphism of R" for all
pelUNV.
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The maps gyy(p) are called the transition functions of
the tangent bundle.

For example, if M = S™, the n-sphere in R"™!, we have
two charts given by the stereographic projection (Uy, on)
from the north pole, and the stereographic projection
(Ug,0g) from the south pole (with Uy = S™ — {IV}
and Us = S" — {S}), and on the overlap, Uy N Ug =
S™ —{N, S}, the transition maps

~1 ~1
1=0500y =0NOOg

defined on on(Uy NUg) = ¢s(Uy NUg) = R" — {0},
are given by

1
(X1, .., xn) |—>—Zn 5 (150, )

i=1 L

that is, the inversion Z of center O = (0,...,0) and
power 1.



8.1. TANGENT AND COTANGENT BUNDLES 485

We leave it as an exercice to prove that for every point
u € R" — {0}, we have

az,m) = i (- 255 )

the composition of the hyperplane reflection about the
hyperplane u+ C R” with the magnification of center O
and ratio ||ul| .

This is a stmilarity transformation. Therefore, the tran-
sition function gyg (defined on Uy N Ug) of the tangent
bundle T'S™ is given by

gNS(p><h) _ ||O'S(p>H_2 (h B 2<‘0'S(p>7 ‘}lL2> O'S<p>)'

los(p)

All these ingredients are part of being a vector bundle.
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For more on bundles, see Lang [30], Gallot, Hulin and
Lafontaine [19], Lafontaine [28] or Bott and Tu |7].

When M = R", observe that
T(M)= M xR"=R" x R", ie., the bundle T'(M) is
(globally) trivial.

Given a C*-map, h: M — N, between two C*-manifolds,

we can define the function, dh: T'(M) — T(N), (also de-
noted Th, or h,, or Dh) by setting

dh(u) = dhy(u), it weT,(M).

We leave the next proposition as an exercise to the reader
(A proof can be found in Berger and Gostiaux [6)).

Proposition 8.1. Given a C*-map, h: M — N, be-
tween two C*-manifolds M and N (with k > 1), the
map dh: T(M) — T(N) is a C*~1 map.

We are now ready to define vector fields.
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8.2 Vector Fields, Lie Derivative

Definition 8.1. Let M be a C**1 manifold, with

k > 1. For any open subset, U of M, a vector field
on U is any section X of T(M) over U, that is, any
function X: U — T(M) such that m o X = idy (i.e.,
X(p) € T,(M), for every p € U). We also say that X is
a lifting of U into T'(M).

We say that X is a C*-vector field on U iff X is a section
over U and a C*-map.

The set of C*-vector fields over U is denoted T'(*) (U, T(M));
see Figure 8.3.
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Figure 8.3: A vector field on S* represented as the section X in T(S!).

Given a curve, v: la,b] — M, a vector field X along
v is any section of T(M) over ~, ie., a C*-function,
X: |a,b] — T (M), such that m o X = . We also say
that X lifts v into T'(M).

Clearly, I'®)(U, T(M)) is a real vector space.
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For short, the space I'®)(M, T(M)) is also denoted by
TE(T(M)) (or XW)(M), or even T(T(M)) or X(M)).

Remark: We can also define a C7-vector field on U as
a section, X, over U which is a C’/-map, where 0 < j < k.
Then, we have the vector space ') (U, T(M)), etc.

If M =R" and U is an open subset of M, then
T(M) =R"xR" and a section of T'(M) over U is simply
a function, X, such that

X(p) = (p,u), with ueR",

for all p € U. In other words, X is defined by a function,
f: U — R" (namely, f(p) = u).

This corresponds to the “old” definition of a vector field
in the more basic case where the manifold, M, is just R".
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For any vector field X € I'®)(U, T(M)) and for any p €
U, we have X(p) = (p,v) for some v € T,(M), and
it is convenient to denote the vector v by X, so that

X(p) — (p7 Xp)

In fact, in most situations it is convenient to identify
X(p) with X, € T,(M), and we will do so from now

on.

This amounts to identifying the isomorphic vector spaces
{p} x T,(M) and T,(M).

Let us illustrate the advantage of this convention with the
next definition.

Given any C*-function, f € C*(U), and a vector field,
X e I'®(U, T(M)), we define the vector field, fX, by

(fX)py=fpX,, pel.
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Obviously, fX € T™)(U, T(M)), which shows that
FE(U, T(M)) is also a C*(U)-module.

For any chart, (U, @), on M it is easy to check that the
map

9,
pr (ax)p, peU,

is a C*-vector field on U (with 1 < ¢ < n). This vector
field is denoted (%) or G%i‘
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Definition 8.2. Let M be a C**! manifold and let X
be a C* vector field on M. If U is any open subset of M
and f is any function in C*(U), then the Lie derivative
of f with respect to X, denoted X(f) or Lxf, is the

function on U given by

Observe that

X(f)p) = dfp<Xp)a

where df, is identified with the linear form in 7 (M)
defined by

df,(v) = v(f), veT,M,

by identifying T3 R with R (see the discussion following
Proposition 7.15).

The Lie derivative, Ly f, is also denoted X|f].
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As a special case, when (U, ) is a chart on M, the vector
field, 22, just defined above induces the function

' Oy
pw(a)f,fea
6’331-

denoted (%Z_(f) or (é%) f.

[t is easy to check that X (f) € C*1(U).

As a consequence, every vector field X € I'®)(U, T(M))
induces a linear map,

Ly: CHU) — CF1(U),

given by f — X(f).



494 CHAPTER 8. VECTOR FIELDS, INTEGRAL CURVES, FLOWS

It is immediate to check that L x has the Leibniz property,
1.e.,

Lx(fg) = Lx(f)g+ fLx(g).

Linear maps with this property are called derivations.

Thus, we see that every vector field induces some kind of
differential operator, namely, a derivation.

Unfortunately, not every derivation of the above type
arises from a vector field, although this turns out to be
true in the smooth case i.e., when k = oo (for a proof,
see Gallot, Hulin and Lafontaine [19] or Lafontaine [28]).

In the rest of this section, unless stated otherwise, we
assume that £ > 1. The following easy proposition holds
(c.f. Warner [47)):
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Proposition 8.2. Let X be a vector field on the C*+1-
manifold, M, of dimensionn. Then, the following are
equivalent:

(a) X is C*.
(b) If (U, ) is a chart on M and if fi,..., f. are the
functions on U uniquely defined by

X1U=Y 5
i=1 !

then each f; is a C*-map.

(c) Whenever U is open in M and f € C*(U), then
X(f) ecHU).

Given any two C*-vector field, X, Y, on M, for any func-
tion, f € C¥(M), we defined above the function X (f)
and Y'(f).

Thus, we can form X (Y (f)) (resp. Y(X(f))), which are
in C*2(M).
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Unfortunately, even in the smooth case, there is generally
no vector field, Z, such that

Z(f) =X (f)), forall feCHM).
This is because X (Y (f)) (and Y(X(f))) involve second-

order derivatives.

However, if we consider X (Y (f))—Y (X(f)), then second-
order derivatives cancel out and there is a unique vector
field inducing the above differential operator.

Intuitively, XY — Y X measures the “failure of X and Y
to commute.”

Proposition 8.3. Given any C**'-manifold, M, of
dimension n, for any two C*-vector fields, X,Y, on
M, there is a unique C* l-vector field, [X,Y], such
that

X Y)(f) = X(Y(f) = Y(X(f), for allf € C*}(M).
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Definition 8.3. Given any C**'-manifold, M, of di-
mension n, for any two C*-vector fields, X, Y, on M. the
Lie bracket, [X,Y], of X and Y, is the C*~! vector field

defined so that
X Y](f) = X(Y(f)=Y(X(f), forall fecC"' (M)

An an example, in R?, if X and Y are the two vector
fields,

0 0 0
X—%+y$ and Y—a—y,
then
[X,Y]——g.
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We also have the following simple proposition whose proof
is left as an exercise (or, see Do Carmo [13]):

Proposition 8.4. Given any C**'-manifold, M, of
dimension n, for any C*-vector fields, X,Y,Z, on M,
for all f,g € C*(M), we have:

(a) | X, Y], Z]+ [V, Z], X]+ [|[Z,X],Y] =0 (Jacobi
identity).

(b) [ X, X] = 0.
(c) [fX,gY] = fglX, Y|+ fX(9)Y —gY(f)X.
(d) |—, —] is bilinear.
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Consequently, for smooth manifolds (k = oo), the space
of vector fields, T'(>)(T(M)), is a vector space equipped
with a bilinear operation, |[—, —|, that satisfies the Jacobi
identity.

This makes ['®)(T(M)) a Lie algebra.

Let h: M — N be a diffeomorphism between two man-
ifolds. Then, vector fields can be transported from N to
M and conversely:.
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Definition 8.4. Let h: M — N be a diffeomorphism
between two C**! manifolds. For every C* vector field,
Y, on N, the pull-back of Y along h is the vector field,
h*Y on M, given by

(RY), = dhyi (Yag),  p€ M.
See Figure 8.4.

Figure 8.4: The pull-back of the vector field Y.
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For every C* vector field, X, on M, the push-forward of
X along h is the vector field, h, X, on N, given by

hX = (h )X,
that is, for every p € M,

(h*X)h(p) — dhp<Xp)>

or equivalently,

(h*X)q = dhh—l(q)(Xh—l(q)>, q < N.
See Figure 8.5.
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Figure 8.5: The push-forward of the vector field X.

It is not hard to check that
Lyxf=Lx(foh)o h_l,

for any function f € C*(N).
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One more notion will be needed to when we deal with Lie
algebras.

Definition 8.5. Let h: M — N be a C**l-map of
manifolds. If X is a C* vector field on M and Y is a C*
vector field on IV, we say that X and Y are h-related iff

dho X =Y oh.

Proposition 8.5. Let h: M — N be a C*'-map of
manifolds, let X and Y be C* vector fields on M and
let X1,Y, be CF vector fields on N. If X is h-related
to X1 andY is h-related to Yy, then | X, Y] is h-related
to [Xl, Yi]
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8.3 Integral Curves, Flow of a Vector Field,
One-Parameter Groups of Diffeomorphisms

We begin with integral curves and (local) flows of vector
fields on a manifold.

Definition 8.6. Let X be a C*~! vector field on a C*-
manifold, M, (k > 2) and let py be a point on M. An
integral curve (or trajectory) for X with initial con-
dition py is a C*1-curve, v: I — M, so that

Y(t) = X p), foralltel and ~(0)= po,
where I = (a,b) C R is an open interval containing 0.

What definition 8.6 says is that an integral curve, v, with
initial condition pq is a curve on the manifold M passing
through py and such that, for every point p = ~(t) on
this curve, the tangent vector to this curve at p, i.e., Y(t),
coincides with the value, X, of the vector field X at p.
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Given a vector field, X, as above, and a point pg € M,
is there an integral curve through py? Is such a curve
unique? If so, how large is the open interval 17

We provide some answers to the above questions below.

Definition 8.7. Let X be a C*~! vector field on a C*-
manifold, M, (k > 2) and let py be a point on M. A
local flow for X at pyis a map,

w: JJxU — M,

where J C R is an open interval containing 0 and U is an
open subset of M containing pg, so that for every p € U,
the curve t — (¢, p) is an integral curve of X with initial
condition p.

Thus, a local flow for X is a family of integral curves
for all points in some small open set around pg such that
these curves all have the same domain, J, independently
of the initial condition, p € U.
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The following theorem is the main existence theorem of
local flows.

This is a promoted version of a similar theorem in the

classical theory of ODE’s in the case where M is an open
subset of R".

Theorem 8.6. (Ezxistence of a local flow) Let X be a
C*=L wector field on a C*-manifold, M, (k > 2) and
let po be a point on M. There is an open interval J C
R containing 0 and an open subset U C M containing
Py, So that there is a unique local flow ¢: J XU — M
for X at py.

What this means is that if o1: JXU — M and py: JX
U — M are both local flows with domain J x U, then
01 = 9. Furthermore, ¢ is C* 1.
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Theorem 8.6 holds under more general hypotheses, namely,
when the vector field satisfies some Lipschitz condition,
see Lang [30] or Berger and Gostiaux [6].

Now, we know that for any initial condition, pg, there is
some integral curve through py.

However, there could be two (or more) integral curves
vi: Iy — M and ~y: Iy — M with initial condition py.

This leads to the natural question: How do ~; and
differ on 11 N I5? The next proposition shows they don’t!

Proposition 8.7. Let X be a C*~1 vector field on a
Ck-manifold, M, (k > 2) and let py be a point on M.
If vi: I1 = M and ~v: Iy — M are any two integral
curves both with initial condition py, then v = v on
I1 N 1,. See Figure 8.6.
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Figure 8.6: Two integral curves, v; and 7,, with initial condition py, which agree on the
domain overlap I N I5.

Proposition 8.7 implies the important fact that there is a
unique maximal integral curve with initial condition p.
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Indeed, if {~;: I; = M} cx is the family of all integral
curves with initial condition p (for some big index set,
K), if we let I(p) = U;cx I;, we can define a curve,
vp: I(p) = M, so that

YW(t) =v(t), if tel.

Since 7, and 7; agree on [; N I for all 5,1 € K, the curve
7vp 1s indeed well defined and it is clearly an integral curve
with initial condition p with the largest possible domain
(the open interval, I(p)).

The curve 7, is called the maximal integral curve with
initial condition p and it is also denoted by ~(p, t).

Note that Proposition 8.7 implies that any two distinct in-
tegral curves are disjoint, i.e., do not intersect each other.
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Consider the vector field in R? given by

0 0

and shown in Figure 8.7.

&

Figure 8.7: A vector field in R?

If we write v(t) = (x(t),y(t)), the differential equation,
Y(t) = X (v(t)), is expressed by

or, in matrix form,
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0

If we write X = (Zj) and A = (1 0

equation 1s written as

1) then the above

X' = AX.

Now, as

ey A2t2 A o

+i +§ + - +H + -,
we get
d A% A3 A"

A _t _t2 —tn—l ...:A tA
G A T oot T ©

so we see that e'p is a solution of the ODE X’ = AX
with initial condition X = p, and by uniqueness,
X = eMp is the solution of our ODE starting at X = p.
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Thus, our integral curve, 7, through p = (58) is the circle

given by
T\  fcost —sint\ (o
y) \sint cost Yo )
Observe that I(p) = R, for every p € R

Here is an example of a vector field on M = R that has
integral curves not defined on the whole of R.

Let X be the vector field on R given by

X(z)=(1+ x2>a%.

[t is easy to see that the maximal integral curve with
initial condition py = 0 is the curve v: (=7 /2, 7/2) — R
given by

v(t) = tant.
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The following interesting question now arises: Given any
po € M, if v,,: I(pp) — M is the maximal integral
curve with initial condition py and, for any t; € I(py), if
P1 = Yp,(t1) € M, then there is a maximal integral curve,
Yp, o I (p1) = M, with initial condition py;

What is the relationship between -y,, and -,,, if any?

The answer is given by

Proposition 8.8. Let X be a C*1 wvector field on
a C*-manifold, M, (k > 2) and let py be a point
on M. If vp,: I(po) = M 1is the maximal integral
curve with initial condition py, for any t1 € I(py), if
P11 = Yp,(t1) € M and ~y,,: I(p1) = M 1is the maximal
integral curve with initial condition py, then

I(p1) = I(po)—t1 and (1) = ¥y, 1) (E) = Wpo(E+11),

for allt € I(py) — t1 See Figure 8.8.
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Figure 8.8: The integral curve =, is a reparametrization of -,,.

Proposition 8.8 says that the traces v,,(I(po)) and

Yp, (I(p1)) in M of the maximal integral curves 7, and 7,
are identical; they only differ by a simple reparametriza-
tion (u =t +t1).
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It is useful to restate Proposition 8.8 by changing point
of view.

So far, we have been focusing on integral curves, i.e., given
any po € M, we let t vary in I(pg) and get an integral
curve, 7,,, with domain I(py).

Instead of holding py € M fixed, we can hold ¢ € R fixed
and consider the set

DyX)={peM|tellp)}

i.e., the set of points such that it is possible to “travel for
t units of time from p” along the maximal integral curve,
7y, with initial condition p (It is possible that

Dt(X ) — @)-

By definition, if Dy(X) # 0, the point 7,(t) is well de-
fined, and so, we obtain a map.

®: Dy(X) — M, with domain Dy(X), given by

(DiX (p) = ().
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Definition 8.8. Let X be a C*~1 vector field on a C*-
manifold, M, (k > 2). For any t € R, let

DyX)={peM|tellp)}

and

D(X)=A{(t,p) e Rx M |t € l(p)}
and let ®*: D(X) — M be the map given by
O (t,p) = Y(t).

The map & is called the (global) flow of X and D(X)
is called its domain of definition.

For any ¢t € R such that Dy(X) # 0, the map, p €
Dy(X) — DX (t,p) = 7,(t), is denoted by ;* (i.e.,

O (p) = (¢, p) = (1))
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Observe that

D(X) = JU(p) x {p}).

peEM

Also, using the ®* notation, the property of Proposition
8.8 reads

X X X
(Ds © q)t — q)ert? (*)
whenever both sides of the equation make sense.

Indeed, the above says

O (D7 (p) = P2 (1(t) = Vo) (8) = W(s+t) = DL, (p).

Using the above property, we can easily show that the
®:* are invertible. In fact, the inverse of ®;* is &= .
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Theorem 8.9. Let X be a C*~1 vector field on a C*-

manifold, M, (k > 2). The following properties hold:

(a) For everyt € R, if Di(X) # 0, then Dy(X) is open
(this is trivially true if Dy(X) =10).

(b) The domain, D(X), of the flow, ®*, is open and
the flow is a C*~! map, ®*: D(X) — M.

(c) Each ®X: Dy(X) — D_y(X) is a C* -diffeomor-
phism with inverse ®%,.

(d) For all s,t € R, the domain of definition of
O o O is contained but generally not equal to
D,.+(X). However, dom(®X o &) = Dy 4(X) if s

and t have the same sign. Moreover, on
dom(® o ®:), we have

X X xX
O o Oy —CI>S+t.

We may omit the superscript, X, and write ® instead of
dX if no confusion arises.
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The reason for using the terminology flow in referring to
the map ®* can be clarified as follows:

For any ¢ such that Dy(X) # (), every integral curve, 7,,
with initial condition p € D;(X), is defined on some open
interval containing |0, t], and we can picture these curves
as “flow lines” along which the points p flow (travel) for
a time interval €.

Then, ®* (¢, p) is the point reached by “flowing” for the
amount of time ¢ on the integral curve =, (through p)
starting from p.

Intuitively, we can imagine the flow of a fluid through
M, and the vector field X is the field of velocities of the
flowing particles.
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Given a vector field, X, as above, it may happen that
Dy(X)= M, for all t € R.

In this case, namely, when D(X) =R x M, we say that
the vector field X is complete.

Then, the ®;* are diffeomorphisms of M and they form
a group.

The family {®:* },cr a called a 1-parameter group of X.

In this case, ®* induces a group homomorphism,
(R, +) — Diff(M), from the additive group R to the
group of C*~!-diffeomorphisms of M.

By abuse of language, even when it is not the case that
Dy(X) = M for all ¢, the family {®:* };cr is called a local
L-parameter group of X, even though it is not a group,
because the composition @2 o ®:* may not be defined.
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If we go back to the vector field in R? given by

0 0

since the integral curve, 7,(t), through p = (ig) is given

by
T\  [cost —sint o
y) \sint cost Yo/

the global flow associated with X is given by

X _ [cost —sint
P2t p) = (sint cost )p,

and each diffeomorphism, ®:*, is the rotation,

»X _ cost —sint
b \sint cost )
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The 1-parameter group, {®:* },cr, generated by X is the
group of rotations in the plane, SO(2).

More generally, if B is an n X n invertible matrix that has
a real logarithm A (that is, if e = B), then the matrix
A defines a vector field, X, in R", with

L 0
X=>Y (aij25) 5
ij=1 !

whose integral curves are of the form,

7p<t> = etApa

and we have

The one-parameter group, {®:* };cr, generated by X is
given by {e}en.
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When M is compact, it turns out that every vector field
is complete, a nice and useful fact.

Proposition 8.10. Let X be a C*~1 vector field on a
Ck-manifold, M, (k > 2). If M is compact, then X
is complete, i.e., D(X) =R x M. Moreover, the map
t — & is a homomorphism from the additive group
R to the group, Diff(M), of (C*71) diffeomorphisms
of M.

Remark: The proof of Proposition 8.10 also applies when
X is a vector field with compact support (this means that
the closure of the set {p € M | X (p) # 0} is compact).

If h: M — N is a diffeomorphism and X is a vector field
on M, it can be shown that the local 1-parameter group
associated with the vector field, h, X, is

{h O q)if O h_l}tER.
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A point p € M where a vector field vanishes, i.e.,
X(p) =0, is called a critical point of X.

Critical points play a major role in the study of vec-
tor fields, in differential topology (e.g., the celebrated
Poincaré-Hopf index theorem) and especially in Morse
theory, but we won'’t go into this here.

Another famous theorem about vector fields says that
every smooth vector field on a sphere of even dimension
(S%") must vanish in at least one point (the so-called
“hairy-ball theorem.”

On S?, it says that you can’t comb your hair without
having a singularity somewhere. Try it, it’s true!).
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Let us just observe that if an integral curve, 7, passes
through a critical point, p, then ~ is reduced to the point
p, i.e., y(t) = p, for all ¢.

Then, we see that if a maximal integral curve is defined
on the whole of R, either it is injective (it has no self-
intersection), or it is simply periodic (i.e., there is some
T > 0 so that y(t +T) = (¢), for all t € R and 7 is
injective on [0, 7' ), or it is reduced to a single point.

We conclude this section with the definition of the Lie
derivative of a vector field with respect to another vector

field.
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Say we have two vector fields X and Y on M. For any
p € M, we can flow along the integral curve of X with
initial condition p to ®;(p) (for ¢ small enough) and then
evaluate Y there, getting Y (Py(p)).

Now, this vector belongs to the tangent space T, ;) (M),
but Y(p) € T,(M).

So to “compare” Y (®4(p)) and Y (p), we bring back Y (®4(p))
to T,(M) by applying the tangent map, d®_;, at $.(p),
to Y (P(p)). (Note that to alleviate the notation, we use
the slight abuse of notation d®_; instead of d(®_;)g,(p).)
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Then, we can form the difference d®_;(Y (P(p))) —Y (p),
divide by ¢ and consider the limit as ¢ goes to 0.

Definition 8.9. Let M be a C**! manifold. Given any
two C* vector fields, X and Y on M, for every p € M,
the Lie deriwative of Y with respect to X at p, denoted
(LxY),, is given by

d®_(Y(Pi(p))) — Y(p)

(LxY)p = Jim, t
d
— dt (dP_+(Y(P4(p)))) o :

[t can be shown that (LxY'), is our old friend, the Lie
bracket, i.e.,

(LX Y)p — [X, Y]p-

(For a proof, see Warner [47] or O'Neill [38]).
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In terms of Definition 8.4, observe that

(LxY), = lim ((P-1).Y)(p) = Y(p)

t—0 t

= lim
t—0 t
d

= = (27Y)(p) N

since (P_;) "t = @y



