Chapter 8

Vector Fields, Lie Derivatives, Integral Curves, Flows

Our goal in this chapter is to generalize the concept of a vector field to manifolds, and to promote some standard results about ordinary differential equations to manifolds.

8.1 Tangent and Cotangent Bundles

Let M be a C^{k}-manifold (with $k \geq 2$). Roughly speaking, a vector field on M is the assignment, $p \mapsto X(p)$, of a tangent vector $X(p) \in T_{p}(M)$, to a point $p \in M$.

Generally, we would like such assignments to have some smoothness properties when p varies in M, for example, to be C^{l}, for some l related to k.

Now, if the collection, $T(M)$, of all tangent spaces, $T_{p}(M)$, was a C^{l}-manifold, then it would be very easy to define what we mean by a C^{l}-vector field: We would simply require the map, $X: M \rightarrow T(M)$, to be C^{l}.

If M is a C^{k}-manifold of dimension n, then we can indeed make $T(M)$ into a C^{k-1}-manifold of dimension $2 n$ and we now sketch this construction.

We find it most convenient to use Version 2 of the definition of tangent vectors, i.e., as equivalence classes of triples (U, φ, x), with $x \in \mathbb{R}^{n}$. Recall that (U, φ, x) and (V, ψ, y) are equivalent iff

$$
\left(\psi \circ \varphi^{-1}\right)_{\varphi(p)}^{\prime}(x)=y .
$$

First, we let $T(M)$ be the disjoint union of the tangent spaces $T_{p}(M)$, for all $p \in M$. See Figure 8.1.

Figure 8.1: The tangent bundle of S^{1}.

Formally,

$$
T(M)=\left\{(p, v) \mid p \in M, v \in T_{p}(M)\right\} .
$$

There is a natural projection,

$$
\pi: T(M) \rightarrow M, \quad \text { with } \quad \pi(p, v)=p .
$$

We still have to give $T(M)$ a topology and to define a C^{k-1}-atlas.

For every chart, (U, φ), of M (with U open in M) we define the function, $\widetilde{\varphi}: \pi^{-1}(U) \rightarrow \mathbb{R}^{2 n}$, by

$$
\widetilde{\varphi}(p, v)=\left(\varphi(p), \theta_{U, \varphi, p}^{-1}(v)\right)
$$

where $(p, v) \in \pi^{-1}(U)$ and $\theta_{U, \varphi, p}$ is the isomorphism between \mathbb{R}^{n} and $T_{p}(M)$ described just after Definition 7.12.

It is obvious that $\widetilde{\varphi}$ is a bijection between $\pi^{-1}(U)$ and $\varphi(U) \times \mathbb{R}^{n}$, an open subset of $\mathbb{R}^{2 n}$. See Figure 8.2.

We give $T(M)$ the weakest topology that makes all the $\widetilde{\varphi}$ continuous, i.e., we take the collection of subsets of the form $\widetilde{\varphi}^{-1}(W)$, where W is any open subset of $\varphi(U) \times \mathbb{R}^{n}$, as a basis of the topology of $T(M)$.

Figure 8.2: A chart for $T\left(S^{1}\right)$.
One easily checks that $T(M)$ is Hausdorff and secondcountable in this topology.

If (U, φ) and (V, ψ) are overlapping charts, then the transition function

$$
\tilde{\psi} \circ \widetilde{\varphi}^{-1}: \varphi(U \cap V) \times \mathbb{R}^{n} \longrightarrow \psi(U \cap V) \times \mathbb{R}^{n}
$$

is given by

$$
\widetilde{\psi} \circ \widetilde{\varphi}^{-1}(z, x)=\left(\psi \circ \varphi^{-1}(z),\left(\psi \circ \varphi^{-1}\right)_{z}^{\prime}(x)\right),
$$

with $(z, x) \in \varphi(U \cap V) \times \mathbb{R}^{n}$.

It is clear that $\tilde{\psi} \circ \widetilde{\varphi}^{-1}$ is a C^{k-1}-map. Therefore, $T(M)$ is indeed a C^{k-1}-manifold of dimension $2 n$, called the tangent bundle.

Remark: Even if the manifold M is naturally embedded in \mathbb{R}^{N} (for some $N \geq n=\operatorname{dim}(M)$), it is not at all obvious how to view the tangent bundle, $T(M)$, as embedded in $\mathbb{R}^{N^{\prime}}$, for some suitable N^{\prime}. Hence, we see that the definition of an abtract manifold is unavoidable.

A similar construction can be carried out for the cotangent bundle.

In this case, we let $T^{*}(M)$ be the disjoint union of the cotangent spaces $T_{p}^{*}(M)$,

$$
T^{*}(M)=\left\{(p, \omega) \mid p \in M, \omega \in T_{p}^{*}(M)\right\} .
$$

We also have a natural projection, $\pi: T^{*}(M) \rightarrow M$.

We can define charts as follows:

For any chart, (U, φ), on M, we define the function $\widetilde{\varphi}: \pi^{-1}(U) \rightarrow \mathbb{R}^{2 n}$ by
$\widetilde{\varphi}(p, \omega)=\left(\varphi(p), \omega\left(\left(\frac{\partial}{\partial x_{1}}\right)_{p}\right), \ldots, \omega\left(\left(\frac{\partial}{\partial x_{n}}\right)_{p}\right)\right)$,
where $(p, \omega) \in \pi^{-1}(U)$ and the $\left(\frac{\partial}{\partial x_{i}}\right)_{p}$ are the basis of $T_{p}(M)$ associated with the chart (U, φ).

Again, one can make $T^{*}(M)$ into a C^{k-1}-manifold of dimension $2 n$, called the cotangent bundle.

Another method using Version 3 of the definition of tangent vectors is presented in Section ??

For each chart (U, φ) on M, we obtain a chart

$$
\widetilde{\varphi}^{*}: \pi^{-1}(U) \rightarrow \varphi(U) \times \mathbb{R}^{n} \subseteq \mathbb{R}^{2 n}
$$

on $T^{*}(M)$ given by

$$
\widetilde{\varphi}^{*}(p, \omega)=\left(\varphi(p), \theta_{U, \varphi, \pi(\omega)}^{*}(\omega)\right)
$$

for all $(p, \omega) \in \pi^{-1}(U)$, where

$$
\theta_{U, \varphi, p}^{*}=\iota \circ \theta_{U, \varphi, p}^{\top}: T_{p}^{*}(M) \rightarrow \mathbb{R}^{n}
$$

Here, $\theta_{U, \varphi, p}^{\top}: T_{p}^{*}(M) \rightarrow\left(\mathbb{R}^{n}\right)^{*}$ is obtained by dualizing the map, $\theta_{U, \varphi, p}: \mathbb{R}^{n} \rightarrow T_{p}(M)$, and $\iota:\left(\mathbb{R}^{n}\right)^{*} \rightarrow \mathbb{R}^{n}$ is the isomorphism induced by the canonical basis $\left(e_{1}, \ldots, e_{n}\right)$ of \mathbb{R}^{n} and its dual basis.

For simplicity of notation, we also use the notation $T M$ for $T(M)\left(\right.$ resp. $T^{*} M$ for $\left.T^{*}(M)\right)$.

Observe that for every chart, (U, φ), on M, there is a bijection

$$
\tau_{U}: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{n}
$$

given by

$$
\tau_{U}(p, v)=\left(p, \theta_{U, \varphi, p}^{-1}(v)\right)
$$

Clearly, $p r_{1} \circ \tau_{U}=\pi$, on $\pi^{-1}(U)$ as illustrated by the following commutative diagram:

Thus, locally, that is, over U, the bundle $T(M)$ looks like the product manifold $U \times \mathbb{R}^{n}$.

We say that $T(M)$ is locally trivial (over U) and we call τ_{U} a trivializing map.

For any $p \in M$, the vector space
$\pi^{-1}(p)=\{p\} \times T_{p}(M) \cong T_{p}(M)$ is called the fibre above p.

Observe that the restriction of τ_{U} to $\pi^{-1}(p)$ is an isomorphism between $\{p\} \times T_{p}(M) \cong T_{p}(M)$ and $\{p\} \times \mathbb{R}^{n} \cong \mathbb{R}^{n}$, for any $p \in M$.

Furthermore, for any two overlapping charts (U, φ) and (V, ψ), there is a function $g_{U V}: U \cap V \rightarrow \mathbf{G} \mathbf{L}(n, \mathbb{R})$ such that

$$
\left(\tau_{U} \circ \tau_{V}^{-1}\right)(p, x)=\left(p, g_{U V}(p)(x)\right)
$$

for all $p \in U \cap V$ and all $x \in \mathbb{R}^{n}$, with $g_{U V}(p)$ given by

$$
g_{U V}(p)=\left(\varphi \circ \psi^{-1}\right)_{\psi(p)}^{\prime}
$$

Obviously, $g_{U V}(p)$ is a linear isomorphism of \mathbb{R}^{n} for all $p \in U \cap V$.

The maps $g_{U V}(p)$ are called the transition functions of the tangent bundle.

For example, if $M=S^{n}$, the n-sphere in \mathbb{R}^{n+1}, we have two charts given by the stereographic projection $\left(U_{N}, \sigma_{N}\right)$ from the north pole, and the stereographic projection $\left(U_{S}, \sigma_{S}\right)$ from the south pole (with $U_{N}=S^{n}-\{N\}$ and $U_{S}=S^{n}-\{S\}$), and on the overlap, $U_{N} \cap U_{S}=$ $S^{n}-\{N, S\}$, the transition maps

$$
\mathcal{I}=\sigma_{S} \circ \sigma_{N}^{-1}=\sigma_{N} \circ \sigma_{S}^{-1}
$$

defined on $\varphi_{N}\left(U_{N} \cap U_{S}\right)=\varphi_{S}\left(U_{N} \cap U_{S}\right)=\mathbb{R}^{n}-\{0\}$, are given by

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto \frac{1}{\sum_{i=1}^{n} x_{i}^{2}}\left(x_{1}, \ldots, x_{n}\right)
$$

that is, the inversion \mathcal{I} of center $O=(0, \ldots, 0)$ and power 1.

We leave it as an exercice to prove that for every point $u \in \mathbb{R}^{n}-\{0\}$, we have

$$
d \mathcal{I}_{u}(h)=\|u\|^{-2}\left(h-2 \frac{\langle u, h\rangle}{\|u\|^{2}} u\right)
$$

the composition of the hyperplane reflection about the hyperplane $u^{\perp} \subseteq \mathbb{R}^{n}$ with the magnification of center O and ratio $\|u\|^{-2}$.

This is a similarity transformation. Therefore, the transition function $g_{N S}$ (defined on $U_{N} \cap U_{S}$) of the tangent bundle $T S^{n}$ is given by

$$
g_{N S}(p)(h)=\left\|\sigma_{S}(p)\right\|^{-2}\left(h-2 \frac{\left\langle\sigma_{S}(p), h\right\rangle}{\left\|\sigma_{S}(p)\right\|^{2}} \sigma_{S}(p)\right)
$$

All these ingredients are part of being a vector bundle.

For more on bundles, see Lang [30], Gallot, Hulin and Lafontaine [19], Lafontaine [28] or Bott and Tu [7].

When $M=\mathbb{R}^{n}$, observe that
$T(M)=M \times \mathbb{R}^{n}=\mathbb{R}^{n} \times \mathbb{R}^{n}$, i.e., the bundle $T(M)$ is (globally) trivial.

Given a C^{k}-map, $h: M \rightarrow N$, between two C^{k}-manifolds, we can define the function, $d h: T(M) \rightarrow T(N)$, (also denoted $T h$, or h_{*}, or $D h$) by setting

$$
d h(u)=d h_{p}(u), \quad \text { iff } \quad u \in T_{p}(M) .
$$

We leave the next proposition as an exercise to the reader (A proof can be found in Berger and Gostiaux [6]).

Proposition 8.1. Given a C^{k}-map, $h: M \rightarrow N$, between two C^{k}-manifolds M and N (with $k \geq 1$), the map dh: $T(M) \rightarrow T(N)$ is a C^{k-1} map.

We are now ready to define vector fields.

8.2 Vector Fields, Lie Derivative

Definition 8.1. Let M be a C^{k+1} manifold, with $k \geq 1$. For any open subset, U of M, a vector field on U is any section X of $T(M)$ over U, that is, any function $X: U \rightarrow T(M)$ such that $\pi \circ X=\mathrm{id}_{U}$ (i.e., $X(p) \in T_{p}(M)$, for every $\left.p \in U\right)$. We also say that X is a lifting of U into $T(M)$.

We say that X is a C^{k}-vector field on U iff X is a section over U and a C^{k}-map.

The set of C^{k}-vector fields over U is denoted $\Gamma^{(k)}(U, T(M))$; see Figure 8.3.

Figure 8.3: A vector field on S^{1} represented as the section X in $T\left(S^{1}\right)$.

Given a curve, $\gamma:[a, b] \rightarrow M$, a vector field X along γ is any section of $T(M)$ over γ, i.e., a C^{k}-function, $X:[a, b] \rightarrow T(M)$, such that $\pi \circ X=\gamma$. We also say that X lifts γ into $T(M)$.

Clearly, $\Gamma^{(k)}(U, T(M))$ is a real vector space.

For short, the space $\Gamma^{(k)}(M, T(M))$ is also denoted by $\Gamma^{(k)}(T(M))\left(\right.$ or $\mathfrak{X}^{(k)}(M)$, or even $\Gamma(T(M))$ or $\left.\mathfrak{X}(M)\right)$.

Remark: We can also define a C^{j}-vector field on U as a section, X, over U which is a C^{j}-map, where $0 \leq j \leq k$. Then, we have the vector space $\Gamma^{(j)}(U, T(M))$, etc.

If $M=\mathbb{R}^{n}$ and U is an open subset of M, then $T(M)=\mathbb{R}^{n} \times \mathbb{R}^{n}$ and a section of $T(M)$ over U is simply a function, X, such that

$$
X(p)=(p, u), \quad \text { with } \quad u \in \mathbb{R}^{n}
$$

for all $p \in U$. In other words, X is defined by a function, $f: U \rightarrow \mathbb{R}^{n}$ (namely, $f(p)=u$).

This corresponds to the "old" definition of a vector field in the more basic case where the manifold, M, is just \mathbb{R}^{n}.

For any vector field $X \in \Gamma^{(k)}(U, T(M))$ and for any $p \in$ U, we have $X(p)=(p, v)$ for some $v \in T_{p}(M)$, and it is convenient to denote the vector v by X_{p} so that $X(p)=\left(p, X_{p}\right)$.

In fact, in most situations it is convenient to identify $X(p)$ with $X_{p} \in T_{p}(M)$, and we will do so from now on.

This amounts to identifying the isomorphic vector spaces $\{p\} \times T_{p}(M)$ and $T_{p}(M)$.

Let us illustrate the advantage of this convention with the next definition.

Given any C^{k}-function, $f \in \mathcal{C}^{k}(U)$, and a vector field, $X \in \Gamma^{(k)}(U, T(M))$, we define the vector field, $f X$, by

$$
(f X)_{p}=f(p) X_{p}, \quad p \in U .
$$

Obviously, $f X \in \Gamma^{(k)}(U, T(M))$, which shows that $\Gamma^{(k)}(U, T(M))$ is also a $\mathcal{C}^{k}(U)$-module.

For any chart, (U, φ), on M it is easy to check that the map

$$
p \mapsto\left(\frac{\partial}{\partial x_{i}}\right)_{p}, \quad p \in U,
$$

is a C^{k}-vector field on U (with $1 \leq i \leq n$). This vector field is denoted $\left(\frac{\partial}{\partial x_{i}}\right)$ or $\frac{\partial}{\partial x_{i}}$.

Definition 8.2. Let M be a C^{k+1} manifold and let X be a C^{k} vector field on M. If U is any open subset of M and f is any function in $\mathcal{C}^{k}(U)$, then the Lie derivative of f with respect to X, denoted $X(f)$ or $L_{X} f$, is the function on U given by

$$
X(f)(p)=X_{p}(f)=X_{p}(\mathbf{f}), \quad p \in U
$$

Observe that

$$
X(f)(p)=d f_{p}\left(X_{p}\right)
$$

where $d f_{p}$ is identified with the linear form in $T_{p}^{*}(M)$ defined by

$$
d f_{p}(v)=v(\mathbf{f}), \quad v \in T_{p} M
$$

by identifying $T_{t_{0}} \mathbb{R}$ with \mathbb{R} (see the discussion following Proposition 7.15).

The Lie derivative, $L_{X} f$, is also denoted $X[f]$.

As a special case, when (U, φ) is a chart on M, the vector field, $\frac{\partial}{\partial x_{i}}$, just defined above induces the function

$$
p \mapsto\left(\frac{\partial}{\partial x_{i}}\right)_{p} f, \quad f \in U
$$

denoted $\frac{\partial}{\partial x_{i}}(f)$ or $\left(\frac{\partial}{\partial x_{i}}\right) f$.
It is easy to check that $X(f) \in \mathcal{C}^{k-1}(U)$.
As a consequence, every vector field $X \in \Gamma^{(k)}(U, T(M))$ induces a linear map,

$$
L_{X}: \mathcal{C}^{k}(U) \longrightarrow \mathcal{C}^{k-1}(U)
$$

given by $f \mapsto X(f)$.

It is immediate to check that L_{X} has the Leibniz property, i.e.,

$$
L_{X}(f g)=L_{X}(f) g+f L_{X}(g)
$$

Linear maps with this property are called derivations.

Thus, we see that every vector field induces some kind of differential operator, namely, a derivation.

Unfortunately, not every derivation of the above type arises from a vector field, although this turns out to be true in the smooth case i.e., when $k=\infty$ (for a proof, see Gallot, Hulin and Lafontaine [19] or Lafontaine [28]).

In the rest of this section, unless stated otherwise, we assume that $k \geq 1$. The following easy proposition holds (c.f. Warner [47]):

Proposition 8.2. Let X be a vector field on the $C^{k+1}{ }_{-}$ manifold, M, of dimension n. Then, the following are equivalent:
(a) X is C^{k}.
(b) If (U, φ) is a chart on M and if f_{1}, \ldots, f_{n} are the functions on U uniquely defined by

$$
X \upharpoonright U=\sum_{i=1}^{n} f_{i} \frac{\partial}{\partial x_{i}}
$$

then each f_{i} is a C^{k}-map.
(c) Whenever U is open in M and $f \in \mathcal{C}^{k}(U)$, then $X(f) \in \mathcal{C}^{k-1}(U)$.

Given any two C^{k}-vector field, X, Y, on M, for any function, $f \in \mathcal{C}^{k}(M)$, we defined above the function $X(f)$ and $Y(f)$.

Thus, we can form $X(Y(f))$ (resp. $Y(X(f))$), which are in $\mathcal{C}^{k-2}(M)$.

Unfortunately, even in the smooth case, there is generally no vector field, Z, such that

$$
Z(f)=X(Y(f)), \quad \text { for all } f \in \mathcal{C}^{k}(M) .
$$

This is because $X(Y(f))$ (and $Y(X(f))$) involve secondorder derivatives.

However, if we consider $X(Y(f))-Y(X(f))$, then secondorder derivatives cancel out and there is a unique vector field inducing the above differential operator.

Intuitively, $X Y-Y X$ measures the "failure of X and Y to commute."

Proposition 8.3. Given any C^{k+1}-manifold, M, of dimension n, for any two C^{k}-vector fields, X, Y, on M, there is a unique C^{k-1}-vector field, $[X, Y]$, such that

$$
[X, Y](f)=X(Y(f))-Y(X(f)), \text { for all } f \in \mathcal{C}^{k-1}(M)
$$

Definition 8.3. Given any C^{k+1}-manifold, M, of dimension n, for any two C^{k}-vector fields, X, Y, on M, the Lie bracket, $[X, Y]$, of X and Y, is the C^{k-1} vector field defined so that
$[X, Y](f)=X(Y(f))-Y(X(f)), \quad$ for all $\quad f \in \mathcal{C}^{k-1}(M)$.

An an example, in \mathbb{R}^{3}, if X and Y are the two vector fields,

$$
X=\frac{\partial}{\partial x}+y \frac{\partial}{\partial z} \quad \text { and } \quad Y=\frac{\partial}{\partial y}
$$

then

$$
[X, Y]=-\frac{\partial}{\partial z} .
$$

We also have the following simple proposition whose proof is left as an exercise (or, see Do Carmo [13]):

Proposition 8.4. Given any C^{k+1}-manifold, M, of dimension n, for any C^{k}-vector fields, X, Y, Z, on M, for all $f, g \in \mathcal{C}^{k}(M)$, we have:
(a) $[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0 \quad$ (Jacobi identity).
(b) $[X, X]=0$.
(c) $[f X, g Y]=f g[X, Y]+f X(g) Y-g Y(f) X$.
(d) $[-,-]$ is bilinear.

Consequently, for smooth manifolds $(k=\infty)$, the space of vector fields, $\Gamma^{(\infty)}(T(M))$, is a vector space equipped with a bilinear operation, $[-,-]$, that satisfies the Jacobi identity.

This makes $\Gamma^{(\infty)}(T(M))$ a Lie algebra.
Let $h: M \rightarrow N$ be a diffeomorphism between two manifolds. Then, vector fields can be transported from N to M and conversely.

Definition 8.4. Let $h: M \rightarrow N$ be a diffeomorphism between two C^{k+1} manifolds. For every C^{k} vector field, Y, on N, the pull-back of Y along h is the vector field, $h^{*} Y$, on M, given by

$$
\left(h^{*} Y\right)_{p}=d h_{h(p)}^{-1}\left(Y_{h(p)}\right), \quad p \in M .
$$

See Figure 8.4.

Figure 8.4: The pull-back of the vector field Y.

For every C^{k} vector field, X, on M, the push-forward of X along h is the vector field, $h_{*} X$, on N, given by

$$
h_{*} X=\left(h^{-1}\right)^{*} X,
$$

that is, for every $p \in M$,

$$
\left(h_{*} X\right)_{h(p)}=d h_{p}\left(X_{p}\right)
$$

or equivalently,

$$
\left(h_{*} X\right)_{q}=d h_{h^{-1}(q)}\left(X_{h^{-1}(q)}\right), \quad q \in N
$$

See Figure 8.5.

Figure 8.5: The push-forward of the vector field X.

It is not hard to check that

$$
L_{h_{*} X} f=L_{X}(f \circ h) \circ h^{-1}
$$

for any function $f \in C^{k}(N)$.

One more notion will be needed to when we deal with Lie algebras.

Definition 8.5. Let $h: M \rightarrow N$ be a C^{k+1}-map of manifolds. If X is a C^{k} vector field on M and Y is a C^{k} vector field on N, we say that X and Y are h-related iff

$$
d h \circ X=Y \circ h
$$

Proposition 8.5. Let $h: M \rightarrow N$ be a C^{k+1}-map of manifolds, let X and Y be C^{k} vector fields on M and let X_{1}, Y_{1} be C^{k} vector fields on N. If X is h-related to X_{1} and Y is h-related to Y_{1}, then $[X, Y]$ is h-related to $\left[X_{1}, Y_{1}\right]$.

8.3 Integral Curves, Flow of a Vector Field, One-Parameter Groups of Diffeomorphisms

We begin with integral curves and (local) flows of vector fields on a manifold.

Definition 8.6. Let X be a C^{k-1} vector field on a C^{k} manifold, $M,(k \geq 2)$ and let p_{0} be a point on M. An integral curve (or trajectory) for X with initial condition p_{0} is a C^{k-1}-curve, $\gamma: I \rightarrow M$, so that

$$
\dot{\gamma}(t)=X_{\gamma(t)}, \quad \text { for all } t \in I \quad \text { and } \quad \gamma(0)=p_{0}
$$

where $I=(a, b) \subseteq \mathbb{R}$ is an open interval containing 0 .

What definition 8.6 says is that an integral curve, γ, with initial condition p_{0} is a curve on the manifold M passing through p_{0} and such that, for every point $p=\gamma(t)$ on this curve, the tangent vector to this curve at p, i.e., $\dot{\gamma}(t)$, coincides with the value, X_{p}, of the vector field X at p.

Given a vector field, X, as above, and a point $p_{0} \in M$, is there an integral curve through p_{0} ? Is such a curve unique? If so, how large is the open interval I ?

We provide some answers to the above questions below.

Definition 8.7. Let X be a C^{k-1} vector field on a $C^{k}{ }_{-}$ manifold, $M,(k \geq 2)$ and let p_{0} be a point on M. A local flow for X at p_{0} is a map,

$$
\varphi: J \times U \rightarrow M
$$

where $J \subseteq \mathbb{R}$ is an open interval containing 0 and U is an open subset of M containing p_{0}, so that for every $p \in U$, the curve $t \mapsto \varphi(t, p)$ is an integral curve of X with initial condition p.

Thus, a local flow for X is a family of integral curves for all points in some small open set around p_{0} such that these curves all have the same domain, J, independently of the initial condition, $p \in U$.

The following theorem is the main existence theorem of local flows.

This is a promoted version of a similar theorem in the classical theory of ODE's in the case where M is an open subset of \mathbb{R}^{n}.

Theorem 8.6. (Existence of a local flow) Let X be a C^{k-1} vector field on a C^{k}-manifold, $M,(k \geq 2)$ and let p_{0} be a point on M. There is an open interval $J \subseteq$ \mathbb{R} containing 0 and an open subset $U \subseteq M$ containing p_{0}, so that there is a unique local flow $\varphi: J \times U \rightarrow M$ for X at p_{0}.

What this means is that if $\varphi_{1}: J \times U \rightarrow M$ and $\varphi_{2}: J \times$ $U \rightarrow M$ are both local flows with domain $J \times U$, then $\varphi_{1}=\varphi_{2}$. Furthermore, φ is C^{k-1}.

Theorem 8.6 holds under more general hypotheses, namely, when the vector field satisfies some Lipschitz condition, see Lang [30] or Berger and Gostiaux [6].

Now, we know that for any initial condition, p_{0}, there is some integral curve through p_{0}.

However, there could be two (or more) integral curves $\gamma_{1}: I_{1} \rightarrow M$ and $\gamma_{2}: I_{2} \rightarrow M$ with initial condition p_{0}.

This leads to the natural question: How do γ_{1} and γ_{2} differ on $I_{1} \cap I_{2}$? The next proposition shows they don't!

Proposition 8.7. Let X be a C^{k-1} vector field on a C^{k}-manifold, $M,(k \geq 2)$ and let p_{0} be a point on M. If $\gamma_{1}: I_{1} \rightarrow M$ and $\gamma_{2}: I_{2} \rightarrow M$ are any two integral curves both with initial condition p_{0}, then $\gamma_{1}=\gamma_{2}$ on $I_{1} \cap I_{2}$. See Figure 8.6.

Figure 8.6: Two integral curves, γ_{1} and γ_{2}, with initial condition p_{0}, which agree on the domain overlap $I_{1} \cap I_{2}$.

Proposition 8.7 implies the important fact that there is a unique maximal integral curve with initial condition p.

Indeed, if $\left\{\gamma_{j}: I_{j} \rightarrow M\right\}_{j \in K}$ is the family of all integral curves with initial condition p (for some big index set, $K)$, if we let $I(p)=\bigcup_{j \in K} I_{j}$, we can define a curve, $\gamma_{p}: I(p) \rightarrow M$, so that

$$
\gamma_{p}(t)=\gamma_{j}(t), \quad \text { if } \quad t \in I_{j}
$$

Since γ_{j} and γ_{l} agree on $I_{j} \cap I_{l}$ for all $j, l \in K$, the curve γ_{p} is indeed well defined and it is clearly an integral curve with initial condition p with the largest possible domain (the open interval, $I(p)$).

The curve γ_{p} is called the maximal integral curve with initial condition p and it is also denoted by $\gamma(p, t)$.

Note that Proposition 8.7 implies that any two distinct integral curves are disjoint, i.e., do not intersect each other.

Consider the vector field in \mathbb{R}^{2} given by

$$
X=-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}
$$

and shown in Figure 8.7.

Figure 8.7: A vector field in \mathbb{R}^{2}

If we write $\gamma(t)=(x(t), y(t))$, the differential equation, $\dot{\gamma}(t)=X(\gamma(t))$, is expressed by

$$
\begin{aligned}
x^{\prime}(t) & =-y(t) \\
y^{\prime}(t) & =x(t)
\end{aligned}
$$

or, in matrix form,

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{x}{y} .
$$

If we write $X=\binom{x}{y}$ and $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, then the above equation is written as

$$
X^{\prime}=A X .
$$

Now, as

$$
e^{t A}=I+\frac{A}{1!} t+\frac{A^{2}}{2!} t^{2}+\cdots+\frac{A^{n}}{n!} t^{n}+\cdots,
$$

we get
$\frac{d}{d t}\left(e^{t A}\right)=A+\frac{A^{2}}{1!} t+\frac{A^{3}}{2!} t^{2}+\cdots+\frac{A^{n}}{(n-1)!} t^{n-1}+\cdots=A e^{t A}$,
so we see that $e^{t A} p$ is a solution of the ODE $X^{\prime}=A X$ with initial condition $X=p$, and by uniqueness, $X=e^{t A} p$ is the solution of our ODE starting at $X=p$.

Thus, our integral curve, γ_{p}, through $p=\binom{x_{0}}{y_{0}}$ is the circle given by

$$
\binom{x}{y}=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)\binom{x_{0}}{y_{0}}
$$

Observe that $I(p)=\mathbb{R}$, for every $p \in \mathbb{R}^{2}$.

Here is an example of a vector field on $M=\mathbb{R}$ that has integral curves not defined on the whole of \mathbb{R}.

Let X be the vector field on \mathbb{R} given by

$$
X(x)=\left(1+x^{2}\right) \frac{\partial}{\partial x}
$$

It is easy to see that the maximal integral curve with initial condition $p_{0}=0$ is the curve $\gamma:(-\pi / 2, \pi / 2) \rightarrow \mathbb{R}$ given by

$$
\gamma(t)=\tan t
$$

The following interesting question now arises: Given any $p_{0} \in M$, if $\gamma_{p_{0}}: I\left(p_{0}\right) \rightarrow M$ is the maximal integral curve with initial condition p_{0} and, for any $t_{1} \in I\left(p_{0}\right)$, if $p_{1}=\gamma_{p_{0}}\left(t_{1}\right) \in M$, then there is a maximal integral curve, $\gamma_{p_{1}}: I\left(p_{1}\right) \rightarrow M$, with initial condition $p_{1} ;$

What is the relationship between $\gamma_{p_{0}}$ and $\gamma_{p_{1}}$, if any?
The answer is given by

Proposition 8.8. Let X be a C^{k-1} vector field on a C^{k}-manifold, $M,(k \geq 2)$ and let p_{0} be a point on M. If $\gamma_{p_{0}}: I\left(p_{0}\right) \rightarrow M$ is the maximal integral curve with initial condition p_{0}, for any $t_{1} \in I\left(p_{0}\right)$, if $p_{1}=\gamma_{p_{0}}\left(t_{1}\right) \in M$ and $\gamma_{p_{1}}: I\left(p_{1}\right) \rightarrow M$ is the maximal integral curve with initial condition p_{1}, then

$$
I\left(p_{1}\right)=I\left(p_{0}\right)-t_{1} \quad \text { and } \quad \gamma_{p_{1}}(t)=\gamma_{\gamma_{p_{0}}\left(t_{1}\right)}(t)=\gamma_{p_{0}}\left(t+t_{1}\right)
$$

for all $t \in I\left(p_{0}\right)-t_{1}$ See Figure 8.8.

Figure 8.8: The integral curve $\gamma_{p_{1}}$ is a reparametrization of $\gamma_{p_{0}}$.

Proposition 8.8 says that the traces $\gamma_{p_{0}}\left(I\left(p_{0}\right)\right)$ and $\gamma_{p_{1}}\left(I\left(p_{1}\right)\right)$ in M of the maximal integral curves $\gamma_{p_{0}}$ and $\gamma_{p_{1}}$ are identical; they only differ by a simple reparametrization $\left(u=t+t_{1}\right)$.

It is useful to restate Proposition 8.8 by changing point of view.

So far, we have been focusing on integral curves, i.e., given any $p_{0} \in M$, we let t vary in $I\left(p_{0}\right)$ and get an integral curve, $\gamma_{p_{0}}$, with domain $I\left(p_{0}\right)$.

Instead of holding $p_{0} \in M$ fixed, we can hold $t \in \mathbb{R}$ fixed and consider the set

$$
\mathcal{D}_{t}(X)=\{p \in M \mid t \in I(p)\},
$$

i.e., the set of points such that it is possible to "travel for t units of time from $p^{\prime \prime}$ along the maximal integral curve, γ_{p}, with initial condition p (It is possible that $\left.\mathcal{D}_{t}(X)=\emptyset\right)$.

By definition, if $\mathcal{D}_{t}(X) \neq \emptyset$, the point $\gamma_{p}(t)$ is well defined, and so, we obtain a map, $\Phi_{t}^{X}: \mathcal{D}_{t}(X) \rightarrow M$, with domain $\mathcal{D}_{t}(X)$, given by

$$
\Phi_{t}^{X}(p)=\gamma_{p}(t) .
$$

Definition 8.8. Let X be a C^{k-1} vector field on a C^{k} manifold, $M,(k \geq 2)$. For any $t \in \mathbb{R}$, let

$$
\mathcal{D}_{t}(X)=\{p \in M \mid t \in I(p)\}
$$

and

$$
\mathcal{D}(X)=\{(t, p) \in \mathbb{R} \times M \mid t \in I(p)\}
$$

and let $\Phi^{X}: \mathcal{D}(X) \rightarrow M$ be the map given by

$$
\Phi^{X}(t, p)=\gamma_{p}(t)
$$

The map Φ^{X} is called the (global) flow of X and $\mathcal{D}(X)$ is called its domain of definition.

For any $t \in \mathbb{R}$ such that $\mathcal{D}_{t}(X) \neq \emptyset$, the map, $p \in$ $\mathcal{D}_{t}(X) \mapsto \Phi^{X}(t, p)=\gamma_{p}(t)$, is denoted by Φ_{t}^{X} (i.e.,

$$
\left.\Phi_{t}^{X}(p)=\Phi^{X}(t, p)=\gamma_{p}(t)\right)
$$

Observe that

$$
\mathcal{D}(X)=\bigcup_{p \in M}(I(p) \times\{p\})
$$

Also, using the Φ_{t}^{X} notation, the property of Proposition 8.8 reads

$$
\begin{equation*}
\Phi_{s}^{X} \circ \Phi_{t}^{X}=\Phi_{s+t}^{X} \tag{*}
\end{equation*}
$$

whenever both sides of the equation make sense.

Indeed, the above says
$\Phi_{s}^{X}\left(\Phi_{t}^{X}(p)\right)=\Phi_{s}^{X}\left(\gamma_{p}(t)\right)=\gamma_{\gamma_{p}(t)}(s)=\gamma_{p}(s+t)=\Phi_{s+t}^{X}(p)$.

Using the above property, we can easily show that the Φ_{t}^{X} are invertible. In fact, the inverse of Φ_{t}^{X} is Φ_{-t}^{X}.

Theorem 8.9. Let X be a C^{k-1} vector field on a C^{k} manifold, $M,(k \geq 2)$. The following properties hold:
(a) For every $t \in \mathbb{R}$, if $\mathcal{D}_{t}(X) \neq \emptyset$, then $\mathcal{D}_{t}(X)$ is open (this is trivially true if $\mathcal{D}_{t}(X)=\emptyset$).
(b) The domain, $\mathcal{D}(X)$, of the flow, Φ^{X}, is open and the flow is a C^{k-1} map, $\Phi^{X}: \mathcal{D}(X) \rightarrow M$.
(c) Each $\Phi_{t}^{X}: \mathcal{D}_{t}(X) \rightarrow \mathcal{D}_{-t}(X)$ is a C^{k-1}-diffeomorphism with inverse Φ_{-t}^{X}.
(d) For all $s, t \in \mathbb{R}$, the domain of definition of $\Phi_{s}^{X} \circ \Phi_{t}^{X}$ is contained but generally not equal to $\mathcal{D}_{s+t}(X)$. However, $\operatorname{dom}\left(\Phi_{s}^{X} \circ \Phi_{t}^{X}\right)=\mathcal{D}_{s+t}(X)$ if s and t have the same sign. Moreover, on $\operatorname{dom}\left(\Phi_{s}^{X} \circ \Phi_{t}^{X}\right)$, we have

$$
\Phi_{s}^{X} \circ \Phi_{t}^{X}=\Phi_{s+t}^{X} .
$$

We may omit the superscript, X, and write Φ instead of Φ^{X} if no confusion arises.

The reason for using the terminology flow in referring to the map Φ^{X} can be clarified as follows:

For any t such that $\mathcal{D}_{t}(X) \neq \emptyset$, every integral curve, γ_{p}, with initial condition $p \in \mathcal{D}_{t}(X)$, is defined on some open interval containing $[0, t]$, and we can picture these curves as "flow lines" along which the points p flow (travel) for a time interval t.

Then, $\Phi^{X}(t, p)$ is the point reached by "flowing" for the amount of time t on the integral curve γ_{p} (through p) starting from p.

Intuitively, we can imagine the flow of a fluid through M, and the vector field X is the field of velocities of the flowing particles.

Given a vector field, X, as above, it may happen that $\mathcal{D}_{t}(X)=M$, for all $t \in \mathbb{R}$.

In this case, namely, when $\mathcal{D}(X)=\mathbb{R} \times M$, we say that the vector field X is complete.

Then, the Φ_{t}^{X} are diffeomorphisms of M and they form a group.

The family $\left\{\Phi_{t}^{X}\right\}_{t \in \mathbb{R}}$ a called a 1-parameter group of X.
In this case, Φ^{X} induces a group homomorphism, $(\mathbb{R},+) \longrightarrow \operatorname{Diff}(M)$, from the additive group \mathbb{R} to the group of C^{k-1}-diffeomorphisms of M.

By abuse of language, even when it is not the case that $\mathcal{D}_{t}(X)=M$ for all t, the family $\left\{\Phi_{t}^{X}\right\}_{t \in \mathbb{R}}$ is called a local 1-parameter group of X, even though it is not a group, because the composition $\Phi_{s}^{X} \circ \Phi_{t}^{X}$ may not be defined.

If we go back to the vector field in \mathbb{R}^{2} given by

$$
X=-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}
$$

since the integral curve, $\gamma_{p}(t)$, through $p=\binom{x_{0}}{x_{0}}$ is given by

$$
\binom{x}{y}=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)\binom{x_{0}}{y_{0}}
$$

the global flow associated with X is given by

$$
\Phi^{X}(t, p)=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right) p
$$

and each diffeomorphism, Φ_{t}^{X}, is the rotation,

$$
\Phi_{t}^{X}=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)
$$

The 1-parameter group, $\left\{\Phi_{t}^{X}\right\}_{t \in \mathbb{R}}$, generated by X is the group of rotations in the plane, $\mathbf{S O}(2)$.

More generally, if B is an $n \times n$ invertible matrix that has a real logarithm A (that is, if $e^{A}=B$), then the matrix A defines a vector field, X, in \mathbb{R}^{n}, with

$$
X=\sum_{i, j=1}^{n}\left(a_{i j} x_{j}\right) \frac{\partial}{\partial x_{i}}
$$

whose integral curves are of the form,

$$
\gamma_{p}(t)=e^{t A} p
$$

and we have

$$
\gamma_{p}(1)=B p
$$

The one-parameter group, $\left\{\Phi_{t}^{X}\right\}_{t \in \mathbb{R}}$, generated by X is given by $\left\{e^{t A}\right\}_{t \in \mathbb{R}}$.

When M is compact, it turns out that every vector field is complete, a nice and useful fact.

Proposition 8.10. Let X be a C^{k-1} vector field on a C^{k}-manifold, $M,(k \geq 2)$. If M is compact, then X is complete, i.e., $\mathcal{D}(X)=\mathbb{R} \times M$. Moreover, the map $t \mapsto \Phi_{t}^{X}$ is a homomorphism from the additive group \mathbb{R} to the group, $\operatorname{Diff}(M)$, of $\left(C^{k-1}\right)$ diffeomorphisms of M.

Remark: The proof of Proposition 8.10 also applies when X is a vector field with compact support (this means that the closure of the set $\{p \in M \mid X(p) \neq 0\}$ is compact).

If $h: M \rightarrow N$ is a diffeomorphism and X is a vector field on M, it can be shown that the local 1-parameter group associated with the vector field, $h_{*} X$, is

$$
\left\{h \circ \Phi_{t}^{X} \circ h^{-1}\right\}_{t \in \mathbb{R}}
$$

A point $p \in M$ where a vector field vanishes, i.e., $X(p)=0$, is called a critical point of X.

Critical points play a major role in the study of vector fields, in differential topology (e.g., the celebrated Poincaré-Hopf index theorem) and especially in Morse theory, but we won't go into this here.

Another famous theorem about vector fields says that every smooth vector field on a sphere of even dimension $\left(S^{2 n}\right)$ must vanish in at least one point (the so-called "hairy-ball theorem."

On S^{2}, it says that you can't comb your hair without having a singularity somewhere. Try it, it's true!).

Let us just observe that if an integral curve, γ, passes through a critical point, p, then γ is reduced to the point p, i.e., $\gamma(t)=p$, for all t.

Then, we see that if a maximal integral curve is defined on the whole of \mathbb{R}, either it is injective (it has no selfintersection), or it is simply periodic (i.e., there is some $T>0$ so that $\gamma(t+T)=\gamma(t)$, for all $t \in \mathbb{R}$ and γ is injective on $[0, T[$), or it is reduced to a single point.

We conclude this section with the definition of the Lie derivative of a vector field with respect to another vector field.

Say we have two vector fields X and Y on M. For any $p \in M$, we can flow along the integral curve of X with initial condition p to $\Phi_{t}(p)$ (for t small enough) and then evaluate Y there, getting $Y\left(\Phi_{t}(p)\right)$.

Now, this vector belongs to the tangent space $T_{\Phi_{t}(p)}(M)$, but $Y(p) \in T_{p}(M)$.

So to "compare" $Y\left(\Phi_{t}(p)\right)$ and $Y(p)$, we bring back $Y\left(\Phi_{t}(p)\right)$ to $T_{p}(M)$ by applying the tangent map, $d \Phi_{-t}$, at $\Phi_{t}(p)$, to $Y\left(\Phi_{t}(p)\right)$. (Note that to alleviate the notation, we use the slight abuse of notation $d \Phi_{-t}$ instead of $d\left(\Phi_{-t}\right)_{\Phi_{t}(p)}$.)

Then, we can form the difference $d \Phi_{-t}\left(Y\left(\Phi_{t}(p)\right)\right)-Y(p)$, divide by t and consider the limit as t goes to 0 .

Definition 8.9. Let M be a C^{k+1} manifold. Given any two C^{k} vector fields, X and Y on M, for every $p \in M$, the Lie derivative of Y with respect to X at p, denoted $\left(L_{X} Y\right)_{p}$, is given by

$$
\begin{aligned}
\left(L_{X} Y\right)_{p} & =\lim _{t \rightarrow 0} \frac{d \Phi_{-t}\left(Y\left(\Phi_{t}(p)\right)\right)-Y(p)}{t} \\
& =\left.\frac{d}{d t}\left(d \Phi_{-t}\left(Y\left(\Phi_{t}(p)\right)\right)\right)\right|_{t=0}
\end{aligned}
$$

It can be shown that $\left(L_{X} Y\right)_{p}$ is our old friend, the Lie bracket, i.e.,

$$
\left(L_{X} Y\right)_{p}=[X, Y]_{p} .
$$

(For a proof, see Warner [47] or O'Neill [38]).

In terms of Definition 8.4, observe that

$$
\begin{aligned}
& \qquad \begin{aligned}
&\left(L_{X} Y\right)_{p}=\lim _{t \rightarrow 0} \frac{\left(\left(\Phi_{-t}\right)_{*} Y\right)(p)-Y(p)}{t} \\
&=\lim _{t \rightarrow 0} \frac{\left(\Phi_{t}^{*} Y\right)(p)-Y(p)}{t} \\
&=\left.\frac{d}{d t}\left(\Phi_{t}^{*} Y\right)(p)\right|_{t=0}, \\
& \text { since }\left(\Phi_{-t}\right)^{-1}=\Phi_{t} .
\end{aligned} \$.
\end{aligned}
$$

