
Chapter 8

Vector Fields, Lie Derivatives,
Integral Curves, Flows

Our goal in this chapter is to generalize the concept of a
vector field to manifolds, and to promote some standard
results about ordinary di↵erential equations to manifolds.

8.1 Tangent and Cotangent Bundles

LetM be aCk-manifold (with k � 2). Roughly speaking,
a vector field on M is the assignment, p 7! X(p), of a
tangent vector X(p) 2 Tp(M), to a point p 2 M .

Generally, we would like such assignments to have some
smoothness properties when p varies in M , for example,
to be Cl, for some l related to k.
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Now, if the collection, T (M), of all tangent spaces, Tp(M),
was a Cl-manifold, then it would be very easy to define
what we mean by a Cl-vector field: We would simply
require the map, X : M ! T (M), to be Cl.

If M is a Ck-manifold of dimension n, then we can indeed
make T (M) into a Ck�1-manifold of dimension 2n and
we now sketch this construction.

We find it most convenient to use Version 2 of the def-
inition of tangent vectors, i.e., as equivalence classes of
triples (U,', x), with x 2 Rn. Recall that (U,', x) and
(V, , y) are equivalent i↵

( � '�1)0'(p)
(x) = y.

First, we let T (M) be the disjoint union of the tangent
spaces Tp(M), for all p 2 M . See Figure 8.1.
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Figure 8.1: The tangent bundle of S1
.

Formally,

T (M) = {(p, v) | p 2 M, v 2 Tp(M)}.

There is a natural projection ,

⇡ : T (M) ! M, with ⇡(p, v) = p.
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We still have to give T (M) a topology and to define a
Ck�1-atlas.

For every chart, (U,'), of M (with U open in M) we
define the function, e' : ⇡�1(U) ! R2n, by

e'(p, v) = ('(p), ✓�1

U,',p(v)),

where (p, v) 2 ⇡�1(U) and ✓U,',p is the isomorphism be-
tween Rn and Tp(M) described just after Definition 7.12.

It is obvious that e' is a bijection between ⇡�1(U) and
'(U) ⇥ Rn, an open subset of R2n. See Figure 8.2.

We give T (M) the weakest topology that makes all the
e' continuous, i.e., we take the collection of subsets of the
form e'�1(W ), where W is any open subset of '(U)⇥Rn,
as a basis of the topology of T (M).
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Figure 8.2: A chart for T (S1
).

One easily checks that T (M) is Hausdor↵ and second-
countable in this topology.
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If (U,') and (V, ) are overlapping charts, then the tran-
sition function

e � e'�1 : '(U \ V ) ⇥ Rn �!  (U \ V ) ⇥ Rn

is given by

e � e'�1(z, x) = ( � '�1(z), ( � '�1)0z(x)),

with (z, x) 2 '(U \ V ) ⇥ Rn.

It is clear that e � e'�1 is a Ck�1-map. Therefore, T (M)
is indeed a Ck�1-manifold of dimension 2n, called the
tangent bundle .
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Remark: Even if the manifold M is naturally embed-
ded in RN (for some N � n = dim(M)), it is not at all
obvious how to view the tangent bundle, T (M), as em-
bedded in RN 0

, for some suitable N 0. Hence, we see that
the definition of an abtract manifold is unavoidable.

A similar construction can be carried out for the cotan-
gent bundle.

In this case, we let T ⇤(M) be the disjoint union of the
cotangent spaces T ⇤

p (M),

T ⇤(M) = {(p,!) | p 2 M,! 2 T ⇤
p (M)}.

We also have a natural projection, ⇡ : T ⇤(M) ! M .

We can define charts as follows:
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For any chart, (U,'), on M , we define the function
e' : ⇡�1(U) ! R2n by

e'(p,!) =
 
'(p),!

 ✓
@

@x1

◆

p

!
, . . . ,!

 ✓
@

@xn

◆

p

!!
,

where (p,!) 2 ⇡�1(U) and the
⇣

@
@xi

⌘

p
are the basis of

Tp(M) associated with the chart (U,').

Again, one can make T ⇤(M) into a Ck�1-manifold of di-
mension 2n, called the cotangent bundle .

Another method using Version 3 of the definition of tan-
gent vectors is presented in Section ??.
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For each chart (U,') on M , we obtain a chart

e'⇤ : ⇡�1(U) ! '(U) ⇥ Rn ✓ R2n

on T ⇤(M) given by

e'⇤(p,!) = ('(p), ✓⇤
U,',⇡(!)

(!))

for all (p,!) 2 ⇡�1(U), where

✓⇤
U,',p = ◆ � ✓>

U,',p : T ⇤
p (M) ! Rn.

Here, ✓>
U,',p : T ⇤

p (M) ! (Rn)⇤ is obtained by dualizing
the map, ✓U,',p : Rn ! Tp(M), and ◆ : (Rn)⇤ ! Rn is the
isomorphism induced by the canonical basis (e1, . . . , en)
of Rn and its dual basis.

For simplicity of notation, we also use the notation TM
for T (M) (resp. T ⇤M for T ⇤(M)).
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Observe that for every chart, (U,'), on M , there is a
bijection

⌧U : ⇡
�1(U) ! U ⇥ Rn,

given by

⌧U(p, v) = (p, ✓�1

U,',p(v)).

Clearly, pr1 � ⌧U = ⇡, on ⇡�1(U) as illustrated by the
following commutative diagram:

⇡�1(U)
⌧U

//

⇡
$$

U ⇥ Rn

pr1
zz

U

Thus, locally, that is, over U , the bundle T (M) looks like
the product manifold U ⇥ Rn.

We say that T (M) is locally trivial (over U) and we call
⌧U a trivializing map.
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For any p 2 M , the vector space
⇡�1(p) = {p} ⇥ Tp(M) ⇠= Tp(M) is called the
fibre above p.

Observe that the restriction of ⌧U to ⇡�1(p) is an isomor-
phism between {p} ⇥ Tp(M) ⇠= Tp(M) and
{p} ⇥ Rn ⇠= Rn, for any p 2 M .

Furthermore, for any two overlapping charts (U,') and
(V, ), there is a function gUV : U \V ! GL(n,R) such
that

(⌧U � ⌧�1

V )(p, x) = (p, gUV (p)(x))

for all p 2 U \ V and all x 2 Rn, with gUV (p) given by

gUV (p) = (' �  �1)0 (p)
.

Obviously, gUV (p) is a linear isomorphism of Rn for all
p 2 U \ V .
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The maps gUV (p) are called the transition functions of
the tangent bundle.

For example, if M = Sn, the n-sphere in Rn+1, we have
two charts given by the stereographic projection (UN, �N)
from the north pole, and the stereographic projection
(US, �S) from the south pole (with UN = Sn � {N}
and US = Sn � {S}), and on the overlap, UN \ US =
Sn � {N, S}, the transition maps

I = �S � ��1

N = �N � ��1

S

defined on 'N(UN \ US) = 'S(UN \ US) = Rn � {0},
are given by

(x1, . . . , xn) 7! 1Pn
i=1

x2

i

(x1, . . . , xn);

that is, the inversion I of center O = (0, . . . , 0) and
power 1.
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We leave it as an exercice to prove that for every point
u 2 Rn � {0}, we have

dIu(h) = kuk�2

✓
h � 2

hu, hi
kuk2

u

◆
,

the composition of the hyperplane reflection about the
hyperplane u? ✓ Rn with the magnification of center O
and ratio kuk�2.

This is a similarity transformation. Therefore, the tran-
sition function gNS (defined on UN \ US) of the tangent
bundle TSn is given by

gNS(p)(h) = k�S(p)k�2

✓
h � 2

h�S(p), hi
k�S(p)k2

�S(p)

◆
.

All these ingredients are part of being a vector bundle .
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For more on bundles, see Lang [30], Gallot, Hulin and
Lafontaine [19], Lafontaine [28] or Bott and Tu [7].

When M = Rn, observe that
T (M) = M ⇥ Rn = Rn ⇥ Rn, i.e., the bundle T (M) is
(globally) trivial.

Given aCk-map, h : M ! N , between twoCk-manifolds,
we can define the function, dh : T (M) ! T (N), (also de-
noted Th, or h⇤, or Dh) by setting

dh(u) = dhp(u), i↵ u 2 Tp(M).

We leave the next proposition as an exercise to the reader
(A proof can be found in Berger and Gostiaux [6]).

Proposition 8.1. Given a Ck-map, h : M ! N , be-
tween two Ck-manifolds M and N (with k � 1), the
map dh : T (M) ! T (N) is a Ck�1 map.

We are now ready to define vector fields.
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8.2 Vector Fields, Lie Derivative

Definition 8.1. Let M be a Ck+1 manifold, with
k � 1. For any open subset, U of M , a vector field
on U is any section X of T (M) over U , that is, any
function X : U ! T (M) such that ⇡ � X = idU (i.e.,
X(p) 2 Tp(M), for every p 2 U). We also say that X is
a lifting of U into T (M).

We say that X is a Ck-vector field on U i↵ X is a section
over U and a Ck-map.

The set ofCk-vector fields overU is denoted �(k)(U, T (M));
see Figure 8.3.
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U

X

=~

Figure 8.3: A vector field on S1
represented as the section X in T (S1

).

Given a curve, � : [a, b] ! M , a vector field X along
� is any section of T (M) over �, i.e., a Ck-function,
X : [a, b] ! T (M), such that ⇡ � X = �. We also say
that X lifts � into T (M).

Clearly, �(k)(U, T (M)) is a real vector space.
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For short, the space �(k)(M, T (M)) is also denoted by
�(k)(T (M)) (or X(k)(M), or even �(T (M)) or X(M)).

Remark: We can also define a Cj-vector field on U as
a section, X , over U which is aCj-map, where 0  j  k.
Then, we have the vector space �(j)(U, T (M)), etc.

If M = Rn and U is an open subset of M , then
T (M) = Rn⇥Rn and a section of T (M) over U is simply
a function, X , such that

X(p) = (p, u), with u 2 Rn,

for all p 2 U . In other words, X is defined by a function,
f : U ! Rn (namely, f (p) = u).

This corresponds to the “old” definition of a vector field
in the more basic case where the manifold, M , is just Rn.
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For any vector field X 2 �(k)(U, T (M)) and for any p 2
U , we have X(p) = (p, v) for some v 2 Tp(M), and
it is convenient to denote the vector v by Xp so that
X(p) = (p, Xp).

In fact, in most situations it is convenient to identify
X(p) with Xp 2 Tp(M), and we will do so from now
on.

This amounts to identifying the isomorphic vector spaces
{p} ⇥ Tp(M) and Tp(M).

Let us illustrate the advantage of this convention with the
next definition.

Given any Ck-function, f 2 Ck(U), and a vector field,
X 2 �(k)(U, T (M)), we define the vector field, fX , by

(fX)p = f (p)Xp, p 2 U.
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Obviously, fX 2 �(k)(U, T (M)), which shows that
�(k)(U, T (M)) is also a Ck(U)-module .

For any chart, (U,'), on M it is easy to check that the
map

p 7!
✓
@

@xi

◆

p

, p 2 U,

is a Ck-vector field on U (with 1  i  n). This vector

field is denoted
⇣

@
@xi

⌘
or @

@xi
.
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Definition 8.2. Let M be a Ck+1 manifold and let X
be a Ck vector field on M . If U is any open subset of M
and f is any function in Ck(U), then the Lie derivative
of f with respect to X , denoted X(f ) or LXf , is the
function on U given by

X(f )(p) = Xp(f ) = Xp(f), p 2 U.

Observe that

X(f )(p) = dfp(Xp),

where dfp is identified with the linear form in T ⇤
p (M)

defined by

dfp(v) = v(f), v 2 TpM,

by identifying Tt0R with R (see the discussion following
Proposition 7.15).

The Lie derivative, LXf , is also denoted X [f ].
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As a special case, when (U,') is a chart on M , the vector
field, @

@xi
, just defined above induces the function

p 7!
✓
@

@xi

◆

p

f, f 2 U,

denoted @
@xi

(f ) or
⇣

@
@xi

⌘
f .

It is easy to check that X(f ) 2 Ck�1(U).

As a consequence, every vector field X 2 �(k)(U, T (M))
induces a linear map,

LX : Ck(U) �! Ck�1(U),

given by f 7! X(f ).
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It is immediate to check that LX has the Leibniz property,
i.e.,

LX(fg) = LX(f )g + fLX(g).

Linear maps with this property are called derivations .

Thus, we see that every vector field induces some kind of
di↵erential operator, namely, a derivation.

Unfortunately, not every derivation of the above type
arises from a vector field, although this turns out to be
true in the smooth case i.e., when k = 1 (for a proof,
see Gallot, Hulin and Lafontaine [19] or Lafontaine [28]).

In the rest of this section, unless stated otherwise, we
assume that k � 1. The following easy proposition holds
(c.f. Warner [47]):
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Proposition 8.2. Let X be a vector field on the Ck+1-
manifold, M , of dimension n. Then, the following are
equivalent:

(a) X is Ck.

(b) If (U,') is a chart on M and if f1, . . . , fn are the
functions on U uniquely defined by

X � U =
nX

i=1

fi
@

@xi
,

then each fi is a Ck-map.

(c) Whenever U is open in M and f 2 Ck(U), then
X(f ) 2 Ck�1(U).

Given any two Ck-vector field, X, Y , on M , for any func-
tion, f 2 Ck(M), we defined above the function X(f )
and Y (f ).

Thus, we can form X(Y (f )) (resp. Y (X(f ))), which are
in Ck�2(M).
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Unfortunately, even in the smooth case, there is generally
no vector field, Z, such that

Z(f ) = X(Y (f )), for all f 2 Ck(M).

This is because X(Y (f )) (and Y (X(f ))) involve second-
order derivatives.

However, if we considerX(Y (f ))�Y (X(f )), then second-
order derivatives cancel out and there is a unique vector
field inducing the above di↵erential operator.

Intuitively, XY �Y X measures the “failure of X and Y
to commute.”

Proposition 8.3. Given any Ck+1-manifold, M , of
dimension n, for any two Ck-vector fields, X, Y , on
M , there is a unique Ck�1-vector field, [X, Y ], such
that

[X, Y ](f ) = X(Y (f ))�Y (X(f )), for all f 2 Ck�1(M).
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Definition 8.3. Given any Ck+1-manifold, M , of di-
mension n, for any two Ck-vector fields, X, Y , on M , the
Lie bracket , [X, Y ], of X and Y , is the Ck�1 vector field
defined so that

[X, Y ](f ) = X(Y (f ))�Y (X(f )), for all f 2 Ck�1(M).

An an example, in R3, if X and Y are the two vector
fields,

X =
@

@x
+ y

@

@z
and Y =

@

@y
,

then

[X, Y ] = � @

@z
.
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We also have the following simple proposition whose proof
is left as an exercise (or, see Do Carmo [13]):

Proposition 8.4. Given any Ck+1-manifold, M , of
dimension n, for any Ck-vector fields, X, Y, Z, on M ,
for all f, g 2 Ck(M), we have:

(a) [[X, Y ], Z] + [[Y, Z], X ] + [[Z, X ], Y ] = 0 (Jacobi
identity).

(b) [X, X ] = 0.

(c) [fX, gY ] = fg[X, Y ] + fX(g)Y � gY (f )X.

(d) [�, �] is bilinear.
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Consequently, for smooth manifolds (k = 1), the space
of vector fields, �(1)(T (M)), is a vector space equipped
with a bilinear operation, [�, �], that satisfies the Jacobi
identity.

This makes �(1)(T (M)) a Lie algebra .

Let h : M ! N be a di↵eomorphism between two man-
ifolds. Then, vector fields can be transported from N to
M and conversely.
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Definition 8.4. Let h : M ! N be a di↵eomorphism
between two Ck+1 manifolds. For every Ck vector field,
Y , on N , the pull-back of Y along h is the vector field,
h⇤Y , on M , given by

(h⇤Y )p = dh�1

h(p)
(Yh(p)), p 2 M.

See Figure 8.4.

h(p)

Yh(p)

Y

p

h*Y
(h*Y)p

h

N

dh -1
h(p) h(p)(Y      )

M

Figure 8.4: The pull-back of the vector field Y .
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For every Ck vector field, X , on M , the push-forward of
X along h is the vector field, h⇤X , on N , given by

h⇤X = (h�1)⇤X,

that is, for every p 2 M ,

(h⇤X)h(p) = dhp(Xp),

or equivalently,

(h⇤X)q = dhh�1(q)(Xh�1(q)), q 2 N.

See Figure 8.5.
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p

X p

X

h(p)

(h* X)h(p)

h* X

h

dh (X  )p p

M

N

f

Figure 8.5: The push-forward of the vector field X.

It is not hard to check that

Lh⇤Xf = LX(f � h) � h�1,

for any function f 2 Ck(N).
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One more notion will be needed to when we deal with Lie
algebras.

Definition 8.5. Let h : M ! N be a Ck+1-map of
manifolds. If X is a Ck vector field on M and Y is a Ck

vector field on N , we say that X and Y are h-related i↵

dh � X = Y � h.

Proposition 8.5. Let h : M ! N be a Ck+1-map of
manifolds, let X and Y be Ck vector fields on M and
let X1, Y1 be Ck vector fields on N . If X is h-related
to X1 and Y is h-related to Y1, then [X, Y ] is h-related
to [X1, Y1].
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8.3 Integral Curves, Flow of a Vector Field,
One-Parameter Groups of Di↵eomorphisms

We begin with integral curves and (local) flows of vector
fields on a manifold.

Definition 8.6. Let X be a Ck�1 vector field on a Ck-
manifold, M , (k � 2) and let p0 be a point on M . An
integral curve (or trajectory) for X with initial con-
dition p0 is a Ck�1-curve, � : I ! M , so that

�̇(t) = X�(t), for all t 2 I and �(0) = p0,

where I = (a, b) ✓ R is an open interval containing 0.

What definition 8.6 says is that an integral curve, �, with
initial condition p0 is a curve on the manifold M passing
through p0 and such that, for every point p = �(t) on
this curve, the tangent vector to this curve at p, i.e., �̇(t),
coincides with the value, Xp, of the vector field X at p.
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Given a vector field, X , as above, and a point p0 2 M ,
is there an integral curve through p0? Is such a curve
unique? If so, how large is the open interval I?

We provide some answers to the above questions below.

Definition 8.7. Let X be a Ck�1 vector field on a Ck-
manifold, M , (k � 2) and let p0 be a point on M . A
local flow for X at p0 is a map,

' : J ⇥ U ! M,

where J ✓ R is an open interval containing 0 and U is an
open subset of M containing p0, so that for every p 2 U ,
the curve t 7! '(t, p) is an integral curve of X with initial
condition p.

Thus, a local flow for X is a family of integral curves
for all points in some small open set around p0 such that
these curves all have the same domain, J , independently
of the initial condition, p 2 U .
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The following theorem is the main existence theorem of
local flows.

This is a promoted version of a similar theorem in the
classical theory of ODE’s in the case where M is an open
subset of Rn.

Theorem 8.6. (Existence of a local flow) Let X be a
Ck�1 vector field on a Ck-manifold, M , (k � 2) and
let p0 be a point on M . There is an open interval J ✓
R containing 0 and an open subset U ✓ M containing
p0, so that there is a unique local flow ' : J ⇥U ! M
for X at p0.

What this means is that if '1 : J⇥U ! M and '2 : J⇥
U ! M are both local flows with domain J ⇥ U , then
'1 = '2. Furthermore, ' is Ck�1.
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Theorem 8.6 holds under more general hypotheses, namely,
when the vector field satisfies some Lipschitz condition,
see Lang [30] or Berger and Gostiaux [6].

Now, we know that for any initial condition, p0, there is
some integral curve through p0.

However, there could be two (or more) integral curves
�1 : I1 ! M and �2 : I2 ! M with initial condition p0.

This leads to the natural question: How do �1 and �2

di↵er on I1 \ I2? The next proposition shows they don’t!

Proposition 8.7. Let X be a Ck�1 vector field on a
Ck-manifold, M , (k � 2) and let p0 be a point on M .
If �1 : I1 ! M and �2 : I2 ! M are any two integral
curves both with initial condition p0, then �1 = �2 on
I1 \ I2. See Figure 8.6.
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0

0

p
0

γ

γ

1

2

M

Figure 8.6: Two integral curves, �1 and �2, with initial condition p0, which agree on the

domain overlap I1 \ I2.

Proposition 8.7 implies the important fact that there is a
unique maximal integral curve with initial condition p.
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Indeed, if {�j : Ij ! M}j2K is the family of all integral
curves with initial condition p (for some big index set,
K), if we let I(p) =

S
j2K Ij, we can define a curve,

�p : I(p) ! M , so that

�p(t) = �j(t), if t 2 Ij.

Since �j and �l agree on Ij \ Il for all j, l 2 K, the curve
�p is indeed well defined and it is clearly an integral curve
with initial condition p with the largest possible domain
(the open interval, I(p)).

The curve �p is called the maximal integral curve with
initial condition p and it is also denoted by �(p, t).

Note that Proposition 8.7 implies that any two distinct in-
tegral curves are disjoint, i.e., do not intersect each other.
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Consider the vector field in R2 given by

X = �y
@

@x
+ x

@

@y

and shown in Figure 8.7.

Figure 8.7: A vector field in R2

If we write �(t) = (x(t), y(t)), the di↵erential equation,
�̇(t) = X(�(t)), is expressed by

x0(t) = �y(t)

y0(t) = x(t),

or, in matrix form,
✓

x0

y0

◆
=

✓
0 �1
1 0

◆✓
x

y

◆
.
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If we write X =
�x

y

�
and A =

✓
0 �1
1 0

◆
, then the above

equation is written as

X 0 = AX.

Now, as

etA = I +
A

1!
t +

A2

2!
t2 + · · · + An

n!
tn + · · · ,

we get

d

dt
(etA) = A+

A2

1!
t+

A3

2!
t2+· · ·+ An

(n � 1)!
tn�1+· · · = AetA,

so we see that etAp is a solution of the ODE X 0 = AX
with initial condition X = p, and by uniqueness,
X = etAp is the solution of our ODE starting at X = p.
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Thus, our integral curve, �p, through p =
�x0

y0

�
is the circle

given by
✓

x

y

◆
=

✓
cos t � sin t
sin t cos t

◆✓
x0

y0

◆
.

Observe that I(p) = R, for every p 2 R2.

Here is an example of a vector field on M = R that has
integral curves not defined on the whole of R.

Let X be the vector field on R given by

X(x) = (1 + x2)
@

@x
.

It is easy to see that the maximal integral curve with
initial condition p0 = 0 is the curve � : (�⇡/2, ⇡/2) ! R
given by

�(t) = tan t.
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The following interesting question now arises: Given any
p0 2 M , if �p0

: I(p0) ! M is the maximal integral
curve with initial condition p0 and, for any t1 2 I(p0), if
p1 = �p0

(t1) 2 M , then there is a maximal integral curve,
�p1

: I(p1) ! M , with initial condition p1;

What is the relationship between �p0
and �p1

, if any?

The answer is given by

Proposition 8.8. Let X be a Ck�1 vector field on
a Ck-manifold, M , (k � 2) and let p0 be a point
on M . If �p0

: I(p0) ! M is the maximal integral
curve with initial condition p0, for any t1 2 I(p0), if
p1 = �p0

(t1) 2 M and �p1
: I(p1) ! M is the maximal

integral curve with initial condition p1, then

I(p1) = I(p0)�t1 and �p1
(t) = ��p0

(t1)(t) = �p0
(t+t1),

for all t 2 I(p0) � t1 See Figure 8.8.
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0 t1

t1

b

0 b - t1- t1

a

a -

p

p

0

1

γ
p

γ
p1

0

M

Figure 8.8: The integral curve �p1 is a reparametrization of �p0 .

Proposition 8.8 says that the traces �p0
(I(p0)) and

�p1
(I(p1)) inM of the maximal integral curves �p0

and �p1

are identical; they only di↵er by a simple reparametriza-
tion (u = t + t1).
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It is useful to restate Proposition 8.8 by changing point
of view.

So far, we have been focusing on integral curves, i.e., given
any p0 2 M , we let t vary in I(p0) and get an integral
curve, �p0

, with domain I(p0).

Instead of holding p0 2 M fixed, we can hold t 2 R fixed
and consider the set

Dt(X) = {p 2 M | t 2 I(p)},

i.e., the set of points such that it is possible to “travel for
t units of time from p” along the maximal integral curve,
�p, with initial condition p (It is possible that
Dt(X) = ;).

By definition, if Dt(X) 6= ;, the point �p(t) is well de-
fined, and so, we obtain a map,
�X

t : Dt(X) ! M , with domain Dt(X), given by

�X
t (p) = �p(t).
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Definition 8.8. Let X be a Ck�1 vector field on a Ck-
manifold, M , (k � 2). For any t 2 R, let

Dt(X) = {p 2 M | t 2 I(p)}

and
D(X) = {(t, p) 2 R ⇥ M | t 2 I(p)}

and let �X : D(X) ! M be the map given by

�X(t, p) = �p(t).

The map �X is called the (global) flow of X and D(X)
is called its domain of definition .

For any t 2 R such that Dt(X) 6= ;, the map, p 2
Dt(X) 7! �X(t, p) = �p(t), is denoted by �X

t (i.e.,

�X
t (p) = �X(t, p) = �p(t)).
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Observe that

D(X) =
[

p2M

(I(p) ⇥ {p}).

Also, using the �X
t notation, the property of Proposition

8.8 reads

�X
s � �X

t = �X
s+t, (⇤)

whenever both sides of the equation make sense.

Indeed, the above says

�X
s (�

X
t (p)) = �X

s (�p(t)) = ��p(t)(s) = �p(s+t) = �X
s+t(p).

Using the above property, we can easily show that the
�X

t are invertible. In fact, the inverse of �X
t is �X

�t.
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Theorem 8.9. Let X be a Ck�1 vector field on a Ck-
manifold, M , (k � 2). The following properties hold:

(a) For every t 2 R, if Dt(X) 6= ;, then Dt(X) is open
(this is trivially true if Dt(X) = ;).

(b) The domain, D(X), of the flow, �X, is open and
the flow is a Ck�1 map, �X : D(X) ! M .

(c) Each �X
t : Dt(X) ! D�t(X) is a Ck�1-di↵eomor-

phism with inverse �X
�t.

(d) For all s, t 2 R, the domain of definition of
�X

s � �X
t is contained but generally not equal to

Ds+t(X). However, dom(�X
s � �X

t ) = Ds+t(X) if s
and t have the same sign. Moreover, on
dom(�X

s � �X
t ), we have

�X
s � �X

t = �X
s+t.

We may omit the superscript, X , and write � instead of
�X if no confusion arises.
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The reason for using the terminology flow in referring to
the map �X can be clarified as follows:

For any t such that Dt(X) 6= ;, every integral curve, �p,
with initial condition p 2 Dt(X), is defined on some open
interval containing [0, t], and we can picture these curves
as “flow lines” along which the points p flow (travel) for
a time interval t.

Then, �X(t, p) is the point reached by “flowing” for the
amount of time t on the integral curve �p (through p)
starting from p.

Intuitively, we can imagine the flow of a fluid through
M , and the vector field X is the field of velocities of the
flowing particles.
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Given a vector field, X , as above, it may happen that
Dt(X) = M , for all t 2 R.

In this case, namely, when D(X) = R ⇥ M , we say that
the vector field X is complete .

Then, the �X
t are di↵eomorphisms of M and they form

a group.

The family {�X
t }t2R a called a 1-parameter group of X .

In this case, �X induces a group homomorphism,
(R,+) �! Di↵(M), from the additive group R to the
group of Ck�1-di↵eomorphisms of M .

By abuse of language, even when it is not the case that
Dt(X) = M for all t, the family {�X

t }t2R is called a local
1-parameter group of X , even though it is not a group,
because the composition �X

s � �X
t may not be defined.
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If we go back to the vector field in R2 given by

X = �y
@

@x
+ x

@

@y
,

since the integral curve, �p(t), through p =
�x0

x0

�
is given

by
✓

x

y

◆
=

✓
cos t � sin t
sin t cos t

◆✓
x0

y0

◆
,

the global flow associated with X is given by

�X(t, p) =

✓
cos t � sin t
sin t cos t

◆
p,

and each di↵eomorphism, �X
t , is the rotation,

�X
t =

✓
cos t � sin t
sin t cos t

◆
.
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The 1-parameter group, {�X
t }t2R, generated by X is the

group of rotations in the plane, SO(2).

More generally, if B is an n⇥n invertible matrix that has
a real logarithm A (that is, if eA = B), then the matrix
A defines a vector field, X , in Rn, with

X =
nX

i,j=1

(aijxj)
@

@xi
,

whose integral curves are of the form,

�p(t) = etAp,

and we have
�p(1) = Bp.

The one-parameter group, {�X
t }t2R, generated by X is

given by {etA}t2R.
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When M is compact, it turns out that every vector field
is complete, a nice and useful fact.

Proposition 8.10. Let X be a Ck�1 vector field on a
Ck-manifold, M , (k � 2). If M is compact, then X
is complete, i.e., D(X) = R⇥ M . Moreover, the map
t 7! �X

t is a homomorphism from the additive group
R to the group, Di↵(M), of (Ck�1) di↵eomorphisms
of M .

Remark: The proof of Proposition 8.10 also applies when
X is a vector field with compact support (this means that
the closure of the set {p 2 M | X(p) 6= 0} is compact).

If h : M ! N is a di↵eomorphism and X is a vector field
on M , it can be shown that the local 1-parameter group
associated with the vector field, h⇤X , is

{h � �X
t � h�1}t2R.
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A point p 2 M where a vector field vanishes, i.e.,
X(p) = 0, is called a critical point of X .

Critical points play a major role in the study of vec-
tor fields, in di↵erential topology (e.g., the celebrated
Poincaré–Hopf index theorem) and especially in Morse
theory, but we won’t go into this here.

Another famous theorem about vector fields says that
every smooth vector field on a sphere of even dimension
(S2n) must vanish in at least one point (the so-called
“hairy-ball theorem.”

On S2, it says that you can’t comb your hair without
having a singularity somewhere. Try it, it’s true!).
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Let us just observe that if an integral curve, �, passes
through a critical point, p, then � is reduced to the point
p, i.e., �(t) = p, for all t.

Then, we see that if a maximal integral curve is defined
on the whole of R, either it is injective (it has no self-
intersection), or it is simply periodic (i.e., there is some
T > 0 so that �(t + T ) = �(t), for all t 2 R and � is
injective on [0, T [ ), or it is reduced to a single point.

We conclude this section with the definition of the Lie
derivative of a vector field with respect to another vector
field.
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Say we have two vector fields X and Y on M . For any
p 2 M , we can flow along the integral curve of X with
initial condition p to �t(p) (for t small enough) and then
evaluate Y there, getting Y (�t(p)).

Now, this vector belongs to the tangent space T�t(p)(M),
but Y (p) 2 Tp(M).

So to “compare” Y (�t(p)) and Y (p), we bring back Y (�t(p))
to Tp(M) by applying the tangent map, d��t, at �t(p),
to Y (�t(p)). (Note that to alleviate the notation, we use
the slight abuse of notation d��t instead of d(��t)�t(p).)
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Then, we can form the di↵erence d��t(Y (�t(p)))�Y (p),
divide by t and consider the limit as t goes to 0.

Definition 8.9. Let M be a Ck+1 manifold. Given any
two Ck vector fields, X and Y on M , for every p 2 M ,
the Lie derivative of Y with respect to X at p, denoted
(LX Y )p, is given by

(LX Y )p = lim
t�!0

d��t(Y (�t(p))) � Y (p)

t

=
d

dt
(d��t(Y (�t(p))))

����
t=0

.

It can be shown that (LX Y )p is our old friend, the Lie
bracket, i.e.,

(LX Y )p = [X, Y ]p.

(For a proof, see Warner [47] or O’Neill [38]).
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In terms of Definition 8.4, observe that

(LX Y )p = lim
t�!0

�
(��t)⇤Y

�
(p) � Y (p)

t

= lim
t�!0

�
�⇤

t Y
�
(p) � Y (p)

t

=
d

dt

�
�⇤

t Y
�
(p)

����
t=0

,

since (��t)�1 = �t.


