
Chapter 4

Manifolds, Lie Groups, and Lie
Algebras; “Baby Case”

In this section we define precisely embedded submani-
folds , matrix Lie groups , and their Lie algebras .

One of the reasons that Lie groups are nice is that they
have a di↵erential structure, which means that the no-
tion of tangent space makes sense at any point of the
group.

Furthermore, the tangent space at the identity happens
to have some algebraic structure, that of a Lie algebra .

Roughly, the tangent space at the identity provides a “lin-
earization” of the Lie group, and it turns out that many
properties of a Lie group are reflected in its Lie algebra.
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Fortunately, most of the Lie groups that we need to con-
sider are subspaces of RN for some su�ciently large N .

In fact, they are all isomorphic to subgroups ofGL(N,R)
for some suitable N , even SE(n), which is isomorphic to
a subgroup of SL(n + 1).

Such groups are called linear Lie groups (or matrix
groups).

Since the groups under consideration are subspaces ofRN ,
we do not need immediately the definition of an abstract
manifold.

We just have to define embedded submanifolds (also
called submanifolds) of RN (in the case of GL(n,R),
N = n2).
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In general, the di�cult part in proving that a subgroup of
GL(n,R) is a Lie group is to prove that it is a manifold.

Fortunately, there is simple a characterization of the lin-
ear groups.

This characterization rests on two theorems. First, a Lie
subgroup H of a Lie group G (where H is an embedded
submanifold of G) is closed in G.

Second, a theorem of Von Neumann and Cartan asserts
that a closed subgroup of GL(n,R) is an embedded sub-
manifold, and thus, a Lie group.

Thus, a linear Lie group is a closed subgroup of
GL(n,R).
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A small annoying technical arises in our approach, the
problem with discrete subgroups .

If A is a subset of RN , recall that A inherits a topology
from RN called the subspace topology , and defined such
that a subset V of A is open if

V = A \ U

for some open subset U of RN .

A point a 2 A is said to be isolated if there is some open
subset U of RN such that

{a} = A \ U,

in other words, if {a} is an open set in A.
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The group GL(n,R) of real invertible n ⇥ n matrices
can be viewed as a subset of Rn2

, and as such, it is a
topological space under the subspace topology (in fact, a
dense open subset of Rn2

).

One can easily check that multiplication and the inverse
operation are continuous, and in fact smooth (i.e., C1-
continuously di↵erentiable).

This makes GL(n,R) a topological group.

Any subgroup G of GL(n,R) is also a topological space
under the subspace topology.
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A subgroup G is called a discrete subgroup if it has some
isolated point.

This turns out to be equivalent to the fact that every
point of G is isolated , and thus, G has the discrete
topology (every subset of G is open).

Now, because GL(n,R) is a topological group, it can
be shown that every discrete subgroup of GL(n,R) is
closed , and in fact countable.

Thus, discrete subgroups of GL(n,R) are Lie groups!

But these are not very interesting Lie groups so we will
consider only closed subgroups of GL(n,R) that are not
discrete.



159

We wish to define embedded submanifolds in RN .

For the sake of brevity, we use the terminology manifold
(but other authors would say embedded submanifold , or
something like that).

The intuition behind the notion of a smooth manifold in
RN is that a subspace M is a manifold of dimension m if
every point p 2 M is contained in some open subset U of
M (in the subspace topology) that can be parametrized
by some function ' : ⌦ ! U from some open subset ⌦
of the origin in Rm, and that ' has some nice properties
that allow:

(1) The definition of smooth functions on M and

(2) The definition of the tangent space at p.

For this, ' has to be at least a homeomorphism, but more
is needed: ' must be smooth, and the derivative '0(0m)
at the origin must be injective (letting 0m = (0, . . . , 0)| {z }

m

).
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Manifolds

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 3

Submanifolds embedded in RN
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The function
� : � ! U

is called a (local) parametrization of M at p. If 0m 2 � and �(0m) = p, we say that � is
centered at p.

Figure 4.1: A manifold in RN

Definition 4.1. Given any integers N, m, with
N � m � 1, an m-dimensional smooth manifold in
RN , for short a manifold , is a nonempty subset M of
RN such that for every point p 2 M there are two open
subsets ⌦ ✓ Rm and U ✓ M , with p 2 U , and a smooth
function ' : ⌦ ! RN such that ' is a homeomorphism
between ⌦ and U = '(⌦), and '0(t0) is injective, where
t0 = '�1(p).

The function ' : ⌦ ! U is called a (local) parametriza-
tion of M at p. If 0m 2 ⌦ and '(0m) = p, we say that
' : ⌦ ! U is centered at p.
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Recall that M ✓ RN is a topological space under the
subspace topology, and U is some open subset of M in
the subspace topology, which means that U = M \ W
for some open subset W of RN .

Since ' : ⌦ ! U is a homeomorphism, it has an inverse
'�1 : U ! ⌦ that is also a homeomorphism, called a
(local) chart .

Since ⌦ ✓ Rm, for every p 2 M and every parametriza-
tion ' : ⌦ ! U of M at p, we have '�1(p) = (z1, . . . , zm)
for some zi 2 R, and we call z1, . . . , zm the local coordi-
nates of p (w.r.t. '�1).
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We often refer to a manifold M without explicitly speci-
fying its dimension (the integer m).

Intuitively, a chart provides a “flattened” local map of a
region on a manifold.

Remark: We could allow m = 0 in definition 4.1. If so,
a manifold of dimension 0 is just a set of isolated points,
and thus it has the discrete topology.

In fact, it can be shown that a discrete subset of RN is
countable. Such manifolds are not very exciting, but they
do correspond to discrete subgroups.
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Example 4.1. The unit sphere S2 in R3 defined such
that

S2 =
�
(x, y, z) 2 R3 | x2 + y2 + z2 = 1

 

is a smooth 2-manifold, because it can be parametrized
using the following two maps '1 and '2:

'1 : (u, v) 7!
✓

2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 � 1

u2 + v2 + 1

◆

and

'2 : (u, v) 7!
✓

2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
1 � u2 � v2

u2 + v2 + 1

◆
.
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The map '1 corresponds to the inverse of the stereo-
graphic projection from the north pole N = (0, 0, 1) onto
the plane z = 0, and the map '2 corresponds to the in-
verse of the stereographic projection from the south pole
S = (0, 0, �1) onto the plane z = 0, as illustrated in
Figure 4.2.

The reader should check that the map '1 parametrizes
S2 � {N} and that the map '2 parametrizes S2 � {S}
(and that they are smooth, homeomorphisms, etc.).

Using '1, the open lower hemisphere is parametrized by
the open disk of center O and radius 1 contained in the
plane z = 0.

The chart '�1

1
assigns local coordinates to the points in

the open lower hemisphere.
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O

N

S

'1(u, v)

'2(u, v)

(u, v)

z = 0

Figure 4.2: Inverse stereographic projections

We urge our readers to define a manifold structure on a
torus. This can be done using four charts.

Every open subset of RN is a manifold in a trivial way.
Indeed, we can use the inclusion map as a parametriza-
tion.
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In particular, GL(n,R) is an open subset of Rn2

, since
its complement is closed (the set of invertible matrices is
the inverse image of the determinant function, which is
continuous).

Thus, GL(n,R) is a manifold.

We can view GL(n,C) (and more generally Mn(C)) as a
subset of R2n2

using the embedding defined as follows:

Every complex n ⇥ n matrix A = (bjk + icjk) 2 Mn(C)
(with bjk, cjk 2 R) is written as A = B + iC, with
B = (bjk) and C = (cjk) in Mn(R) ' Rn2

.
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A 1-manifold is called a (smooth) curve , and a 2-manifold
is called a (smooth) surface (although some authors re-
quire that they also be connected).

The following two lemmas provide the link with the defi-
nition of an abstract manifold.

Lemma 4.1.Given an m-dimensional manifold M in
RN , for every p 2 M there are two open sets O, W ✓
RN with 0N 2 O and p 2 M \ W , and a smooth
di↵eomorphism ' : O ! W , such that
'(0N) = p and

'(O \ (Rm ⇥ {0N�m})) = M \ W.
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There is an open subset ⌦ of Rm such that

O \ (Rm ⇥ {0N�m}) = ⌦⇥ {0N�m},

and the map  : ⌦ ! RN given by

 (x) = '(x, 0N�m)

is an immersion and a homeomorphism onto U = W \M ;
so  is a parametrization of M at p.

We can think of ' as a promoted version of  which is
actually a di↵eomorphism between open subsets of RN ;
see Figure 4.3.
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Figure 4.3: An illustration of Lemma 4.1, where M is a surface embedded in R3
, namely

m = 2 and N = 3.
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The next lemma is easily shown from Lemma 4.1. It
is a key technical result used to show that interesting
properties of maps between manifolds do not depend on
parametrizations.

Lemma 4.2.Given an m-dimensional manifold M in
RN , for every p 2 M and any two parametrizations
'1 : ⌦1 ! U1 and '2 : ⌦2 ! U2 of M at p, if U1 \U2 6=
;, the map '�1

2
� '1 : '

�1

1
(U1 \ U2) ! '�1

2
(U1 \ U2) is

a smooth di↵eomorphism.

The maps '�1

2
� '1 : '

�1

1
(U1 \ U2) ! '�1

2
(U1 \ U2) are

called transition maps .

Lemma 4.2 is illustrated in Figure 4.4.
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'�1
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Figure 4.4: Parametrizations and transition functions

Using Definition 4.1, it may be quite hard to prove that
a space is a manifold. Therefore, it is handy to have
alternate characterizations such as those given in the next
Proposition:
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Proposition 4.3. A subset, M ✓ Rm+k, is an m-
dimensional manifold i↵ either

(1) For every p 2 M , there is some open subset, W ✓
Rm+k, with p 2 W and a (smooth) submersion,
f : W ! Rk, so that W \ M = f�1(0),
or

(2) For every p 2 M , there is some open subset, W ✓
Rm+k, with p 2 W and a (smooth) map,
f : W ! Rk, so that f 0(p) is surjective and
W \ M = f�1(0).

See Figure 4.5.
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0

p

f M

W

-1
f (0) = W ∩M

Figure 4.5: An illustration of Proposition 4.3, where M is the torus, m = 2, and k = 1. Note

that f�1
(0) is the pink patch of the torus, i.e. the zero level set of the open ball W .
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Observe that condition (2), although apparently weaker
than condition (1), is in fact equivalent to it, but more
convenient in practice.

This is because to say that f 0(p) is surjective means that
the Jacobian matrix of f 0(p) has rank k, which means
that some determinant is nonzero, and because the de-
terminant function is continuous this must hold in some
open subset W1 ✓ W containing p.

Consequently, the restriction, f1, of f to W1 is indeed a
submersion and

f�1

1
(0) = W1 \ f�1(0) = W1 \ W \ M = W1 \ M.

The proof is based on two technical lemmas that are
proved using the inverse function theorem.
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Lemma 4.4. Let U ✓ Rm be an open subset of Rm

and pick some a 2 U . If f : U ! Rn is a smooth
immersion at a, i.e., dfa is injective (so, m  n),
then there is an open set, V ✓ Rn, with f (a) 2 V ,
an open subset, U 0 ✓ U , with a 2 U 0 and f (U 0) ✓ V ,
an open subset O ✓ Rn�m, and a di↵eomorphism,
✓ : V ! U 0 ⇥ O, so that

✓(f (x1, . . . , xm)) = (x1, . . . , xm, 0, . . . , 0),

for all (x1, . . . , xm) 2 U 0, as illustrated in the diagram
below

U 0 ✓ U f
//

in1 ((

f (U 0) ✓ V
✓
✏✏

U 0 ⇥ O

where in1(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0); see Fig-
ure 4.6.
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Locally, that is, near any point a 2 U , we have ✓ � f =
in1, which is equivalent to f = ✓�1 � in1 since ✓ is a
di↵eomorphism, which means intuitively that f is the
injection of Rm into Rn (by padding with 0’s) followed by
a smooth bijective twist (achieved by ✓�1).

Θ

f

U
a U‘

V

f(U ‘)f(a)

U’ x O

Figure 4.6: An illustration of Lemma 4.4, where m = 2 and n = 3. Note that U 0
is the base

of the solid cylinder and ✓ is the di↵eomorphism between the solid cylinder and the solid

gourd shaped V . The composition ✓ � f injects U 0
into U 0 ⇥ O.



177

Lemma 4.5. Let W ✓ Rm be an open subset of Rm

and pick some a 2 W . If f : W ! Rn is a smooth
submersion at a, i.e., dfa is surjective (so, m � n),
then there is an open set, V ✓ W ✓ Rm, with a 2 V ,
and a di↵eomorphism,  , with domain O ✓ Rm, so
that  (O) = V and

f ( (x1, . . . , xm)) = (x1, . . . , xn),

for all (x1, . . . , xm) 2 O, as illustrated in the diagram
below

O ✓ Rm  
//

⇡
✏✏

V ✓ W ✓ Rm

f
uuRn,

where ⇡(x1, . . . , xm) = (x1, . . . , xn); see Figure 4.7.
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Locally, that is, near any point a 2 U , we have f �
 = ⇡, which is equivalent to f = ⇡ �  �1 since  is
a di↵eomorphism, which means intuitively that f is a
smooth bijective twist (achieved by  �1) followed by the
projection of Rm onto Rn (by dropping the last m � n
coordinates).

V

W

Of

Ψ

a
f( )a

x = Ψ -1(a)

Figure 4.7: An illustration of Lemma 4.5, where m = 3 and n = 2. Note that  is the

di↵eomorphism between the 0 and the solid purple ball V . The composition f �  projects

O onto its equatorial pink disk.
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Theorem 4.6. A nonempty subset, M ✓ RN , is an
m-manifold (with 1  m  N) i↵ any of the following
conditions hold:

(1) For every p 2 M , there are two open subsets ⌦ ✓
Rm and U ✓ M , with p 2 U , and a smooth func-
tion ' : ⌦ ! RN such that ' is a homeomorphism
between ⌦ and U = '(⌦), and '0(0) is injective,
where p = '(0).

(2) For every p 2 M , there are two open sets O, W ✓
RN with 0N 2 O and p 2 M \ W , and a smooth
di↵eomorphism ' : O ! W , such that '(0N) = p
and

'(O \ (Rm ⇥ {0N�m})) = M \ W.

(3) For every p 2 M , there is some open subset, W ✓
RN , with p 2 W and a smooth submersion
f : W ! RN�m, so that W \ M = f�1(0).
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(4) For every p 2 M , there is some open subset, W ✓
RN , and N � m smooth functions, fi : W ! R,
so that the linear forms df1(p), . . . , dfN�m(p) are
linearly independent and

W \ M = f�1

1
(0) \ · · · \ f�1

N�m(0).

See Figure 4.8.

M

p

p

W

0

f -1(0)1

f -1(0)2

Figure 4.8: An illustration of Condition (4) in Theorem 4.6, where N = 3 and m = 1. The

manifold M is the helix in R3
. The dark green portion of M is magnified in order to show

that it is the intersection of the pink surface, f�1
1 (0), and the blue surface, f�1

2 (0).



181

Condition (4) says that locally (that is, in a small open
set of M containing p 2 M), M is “cut out” by N � m
smooth functions, fi : W ! R, in the sense that the
portion of the manifold M \ W is the intersection of
the N � m hypersurfaces, f�1

i (0), (the zero-level sets of
the fi) and that this intersection is “clean”, which means
that the linear forms df1(p), . . . , dfN�m(p) are linearly
independent.
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As an illustration of Theorem 4.6, the sphere

Sn = {x 2 Rn+1 | kxk2

2
� 1 = 0}

is an n-dimensional manifold in Rn+1.

Indeed, the map f : Rn+1 ! R given by f (x) = kxk2

2
�1

is a submersion, since

df (x)(y) = 2
n+1X

k=1

xkyk.

The rotation group, SO(n), is an n(n�1)

2
-dimensional

manifold in Rn2

.

Indeed, GL+(n) is an open subset of Rn2

(recall,
GL+(n) = {A 2 GL(n) | det(A) > 0}) and if f is
defined by

f (A) = A>A � I,

where A 2 GL+(n), then f (A) is symmetric, so

f (A) 2 S(n) = R
n(n+1)

2 .
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We showed earlier that

df (A)(H) = A>H + H>A.

But then, df (A) is surjective for all A 2 SO(n), because
if S is any symmetric matrix, we see that

df (A)

✓
AS

2

◆
= S.

As SO(n) = f�1(0), we conclude that SO(n) is indeed
a manifold.

A similar argument proves that O(n) is an
n(n�1)

2
-dimensional manifold.

Using the map, f : GL(n) ! R, given by A 7! det(A),
we can prove that SL(n) is a manifold of dimension n2�1.

Remark: We have df (A)(B) = det(A)tr(A�1B), for
every A 2 GL(n).
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A class of manifolds generalizing the spheres and the or-
thogonal groups are the Stiefel manifolds .

For any n � 1 and any k with 1  k  n, let S(k, n) be
the set of all orthonormal k-frames ; that is, of k-tuples
of orthonormal vectors (u1, . . . , uk) with ui 2 Rn.

Obviously S(1, n) = Sn�1, and S(n, n) = O(n).

Every orthonormal k-frame (u1, . . . , uk) can be repre-
sented by an n ⇥ k matrix Y over the canonical basis
of Rn, and such a matrix Y satisfies the equation

Y >Y = I.

Thus, S(k, n) can be viewed as a subspace of Mn,k. We
claim that S(k, n) is a manifold.

Let W = {A 2 Mn,k | det(A>A) > 0}, an open subset
of Mn,k such that S(k, n) ✓ W .
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Generalizing the situation involving SO(n), define the
function f : W ! S(k) by

f (A) = A>A � I.

Basically the same computation as in the case of SO(n)
yields

df (A)(H) = A>H + H>A.

The proof that df (A) is surjective for all A 2 S(k, n) is
the same as before, because only the equation A>A = I
is needed.

As S(k, n) = f�1(0), we conclude that S(k, n) is a smooth
manifold of dimension

nk � k(k + 1)

2
= k(n � k) +

k(k � 1)

2
.
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The third characterization of Theorem 4.6 suggests the
following definition.

Definition 4.2. Let f : Rm+k ! Rk be a smooth func-
tion. A point, p 2 Rm+k, is called a critical point (of
f) i↵ dfp is not surjective and a point q 2 Rk is called a
critical value (of f) i↵ q = f (p), for some critical point,
p 2 Rm+k.

A point p 2 Rm+k is a regular point (of f) i↵ p is not
critical, i.e., dfp is surjective, and a point q 2 Rk is a
regular value (of f) i↵ it is not a critical value.

In particular, any q 2 Rk � f (Rm+k) is a regular value
and q 2 f (Rm+k) is a regular value i↵ every p 2 f�1(q)
is a regular point (but, in contrast, q is a critical value i↵
some p 2 f�1(q) is critical).
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Part (3) of Theorem 4.6 implies the following useful propo-
sition:

Proposition 4.7. Given any smooth function,
f : Rm+k ! Rk, for every regular value, q 2 f (Rm+k),
the preimage, Z = f�1(q), is a manifold of dimension
m.

Definition 4.2 and Proposition 4.7 can be generalized to
manifolds

Regular and critical values of smooth maps play an im-
portant role in di↵erential topology.

Firstly, given a smooth map, f : Rm+k ! Rk, almost
every point of Rk is a regular value of f .

To make this statement precise, one needs the notion of
a set of measure zero.
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Then, Sard’s theorem says that the set of critical values
of a smooth map has measure zero.

Secondly, if we consider smooth functions, f : Rm+1 ! R,
a point p 2 Rm+1 is critical i↵ dfp = 0.

Then, we can use second order derivatives to further clas-
sify critical points. The Hessian matrix of f (at p) is
the matrix of second-order partials

Hf(p) =

✓
@2f

@xi@xj
(p)

◆

and a critical point p is a nondegenerate critical point
if Hf(p) is a nonsingular matrix.
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The remarkable fact is that, at a nondegenerate critical
point, p, the local behavior of f is completely determined,
in the sense that after a suitable change of coordinates
(given by a smooth di↵eomorphism)

f (x) = f (p) � x2

1
� · · · � x2

� + x2

�+1
+ · · · + x2

m+1

near p, where � called the index of f at p is an integer
which depends only on p (in fact, � is the number of
negative eigenvalues of Hf(p)).

This result is known as Morse lemma (after Marston
Morse, 1892-1977).

Smooth functions whose critical points are all nondegen-
erate are called Morse functions .

It turns out that every smooth function, f : Rm+1 ! R,
gives rise to a large supply of Morse functions by adding
a linear function to it.



190CHAPTER 4. MANIFOLDS, LIE GROUPS, AND LIE ALGEBRAS; “BABY CASE”

More precisely, the set of a 2 Rm+1 for which the function
fa given by

fa(x) = f (x) + a1x1 + · · · + am+1xm+1

is not a Morse function has measure zero.

Morse functions can be used to study topological proper-
ties of manifolds.

In a sense to be made precise and under certain technical
conditions, a Morse function can be used to reconstuct
a manifold by attaching cells, up to homotopy equiv-
alence .

However, these results are way beyond the scope of these
notes.
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Let us now review the definitions of a smooth curve in a
manifold and the tangent vector at a point of a curve.

Definition 4.3. Let M be an m-dimensional manifold
in RN . A smooth curve � in M is any function � : I !
M where I is an open interval inR and such that for every
t 2 I , letting p = �(t), there is some parametrization
' : ⌦ ! U of M at p and some open interval (t � ✏, t+
✏) ✓ I such that the curve '�1 � � : (t � ✏, t+ ✏) ! Rm

is smooth. The notion of a smooth curve is illustrated in
Figure 4.9.

Using Lemma 4.2, it is easily shown that Definition 4.3
does not depend on the choice of the parametrization
' : ⌦ ! U at p.

Lemma 4.2 also implies that � viewed as a curve
� : I ! RN is smooth.
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t

M

U
p

0

γ

γ (t) = p

Ω

φ (p) = 0-1
φ -1

φ

Figure 4.9: A smooth curve in a manifold M . 1

�0
(t)

�

p M

Figure 4.10: Tangent vector to a curve on a manifold.
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Then the tangent vector to the curve � : I ! RN at t,
denoted by �0(t), is the value of the derivative of � at t
(a vector in RN) computed as usual:

�0(t) = lim
h 7!0

�(t + h) � �(t)

h
.

Given any point p 2 M , we will show that the set of
tangent vectors to all smooth curves in M through p is a
vector space isomorphic to the vector space Rm.

Given a smooth curve � : I ! M , for any t 2 I , letting
p = �(t), since M is a manifold, there is a parametriza-
tion ' : ⌦ ! U such that '(0m) = p 2 U and some open
interval J ✓ I with t 2 J and such that the function

'�1 � � : J ! Rm

is a smooth curve, since � is a smooth curve.

Letting ↵ = '�1 � �, the derivative ↵0(t) is well-defined,
and it is a vector in Rm.



194CHAPTER 4. MANIFOLDS, LIE GROUPS, AND LIE ALGEBRAS; “BABY CASE”

But ' � ↵ : J ! M is also a smooth curve, which agrees
with � on J , and by the chain rule,

�0(t) = '0(0m)(↵
0(t)),

since ↵(t) = 0m (because '(0m) = p and �(t) = p).

Observe that �0(t) is a vector in RN .

Now, for every vector v 2 Rm, the curve ↵ : J ! Rm

defined such that

↵(u) = (u � t)v

for all u 2 J is clearly smooth, and ↵0(t) = v.
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This shows that the set of tangent vectors at t to all
smooth curves (in Rm) passing through 0m is the entire
vector space Rm.

Since every smooth curve � : I ! M agrees with a curve
of the form ' � ↵ : J ! M for some smooth curve
↵ : J ! Rm (with J ✓ I) as explained above, and since
it is assumed that '0(0m) is injective, '0(0m) maps the
vector space Rm injectively to the set of tangent vectors
to � at p, as claimed.

All this is summarized in the following definition.
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Definition 4.4. Let M be an m-dimensional manifold
in RN . For every point p 2 M , the tangent space TpM
at p is the set of all vectors in RN of the form �0(0), where
� : I ! M is any smooth curve in M such that p = �(0).

The set TpM is a vector space isomorphic to Rm. Every
vector v 2 TpM is called a tangent vector to M at p.

We can now define Lie groups.

Definition 4.5. A Lie group is a nonempty subset G
of RN (N � 1) satisfying the following conditions:

(a) G is a group.

(b) G is a manifold in RN .

(c) The group operation · : G ⇥ G ! G and the inverse
map �1 : G ! G are smooth.
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Actually, we haven’t defined yet what a smooth map be-
tween manifolds is (in clause (c)).

This notion is explained in Definition 4.8, but we feel that
most readers will appreciate seeing the formal definition
a Lie group, as early as possible.

It is immediately verified that GL(n,R) is a Lie group.
Since all the Lie groups that we are considering are sub-
groups of GL(n,R), the following definition is in order.

Definition 4.6. A linear Lie group is a subgroup G of
GL(n,R) (for some n � 1) which is a smooth manifold
in Rn2

.

Let Mn(R) denote the set of all real n ⇥ n matrices (in-
vertible or not). If we recall that the exponential map

exp : A 7! eA

is well defined on Mn(R), we have the following crucial
theorem due to Von Neumann and Cartan:
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Theorem 4.8. (Von Neumann and Cartan, 1927) A
nondiscrete closed subgroup G of GL(n,R) is a linear
Lie group. Furthermore, the set g defined such that

g = {X 2 Mn(R) | etX 2 G for all t 2 R}

is a nontrivial vector space equal to the tangent space
TIG at the identity I, and g is closed under the Lie
bracket [�, �] defined such that [A, B] = AB � BA
for all A, B 2 Mn(R).

Theorem 4.8 applies even when G is a discrete subgroup,
but in this case, g is trivial (i.e., g = {0}).

For example, the set of nonzero reals R⇤ = R � {0} =
GL(1,R) is a Lie group under multiplication, and the
subgroup

H = {2n | n 2 Z}
is a discrete subgroup of R⇤. Thus, H is a Lie group.
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On the other hand, the set Q⇤ = Q � {0} of nonzero
rational numbers is a multiplicative subgroup of R⇤, but
it is not closed, since Q is dense in R.

If G is closed and not discrete, we must have n � 1, and
g has dimension n.

The first step to prove Theorem 4.8 is this:

Proposition 4.9. Given any closed subgroup G in
GL(n,R), the set

g = {X 2 Mn(R) | X = �0(0), � : J ! G

is a C1 curve in Mn(R) such that �(0) = I}

satisfies the following properties:

(1) g is a vector subspace of Mn(R).
(2) For every X 2 Mn(R), we have X 2 g i↵ etX 2 G

for all t 2 R.
(3) For every X 2 g and for every g 2 G, we have

gXg�1 2 g.

(4) g is closed under the Lie bracket.
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The second step to prove Theorem 4.8 is this:

Proposition 4.10. Let G be a subgroup of GL(n,R),
and assume that G is closed and not discrete. Then,
dim(g) � 1, and the exponential map is a di↵eomor-
phism of a neighborhood of 0 in g onto a neighborhood
of I in G. Furthermore, there is an open subset ⌦ ✓
Mn(R) with 0n,n 2 ⌦, an open subset W ✓ GL(n,R)
with I 2 W , and a di↵eomorphism � : ⌦ ! W such
that

�(⌦ \ g) = W \ G.
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We now face an apparent problem, which is that Theo-
rem 4.8 applies to closed subgroups of GL(n,R) which
consists of real matrices, but many linear Lie groups actu-
ally consist of complex matrices, for example SL(n,C),
U(n), SU(n).

We can view a complex matrix A 2 Mn(C) as the real
matrix R(A) 2 M2n(R) given by

R(A) =

✓
B �C
C B

◆
,

where B and C are the real matrices in Mn(R) such that
A = B + iC.

More precisely, ifA = (bjk+icjk) 2 Mn(C) with bjk, cjk 2
R, then B = (bjk) and C = (cjk).
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A vector z = (xj + iyj) 2 Cn is viewed as the real vector
R(z) 2 R2n given by

R(z) = (x1, . . . , xn, y1, . . . , yn).

The mapping R : Cn ! R2n is a linear isomorphism be-
tween Cn as a real vector space and R2n.

The mapping R also maps the Euclidean hermitian norm
on Cn to the Euclidean norm on R2n since

|x1 + iy1|2 + · · ·+ |xn + iyn|2 = x2

1
+ y2

1
+ · · ·+ x2

n + y2

n.

Therefore the map R is a homeomorphism between Cn

and R2n.
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The map R on matrices has some nice properties (left as
an exercise). We have

R(Az) = R(A)R(z)

R(AB) = R(A)R(B)

R(A⇤) = (R(A))>

det(R(A)) = | det(A)|2.

Thus a subgroup ofGL(n,C) becomes a subgroupR(G) =
{R(g) | g 2 G} of GL(2n,R), but the fourth equation
causes a problem.

The second and third equations show that a unitary ma-
trix A 2 U(n) becomes an orthogonal matrix R(A) 2
O(2n), but since | det(A)| = 1, we get det(R(A)) = 1,
so R(U(n)) = SO(2n) \ R(GL(n,C)), but R(SU(n))
is a proper subgroup of SO(2n) \ R(GL(n,C))!
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It is not hard to prove that

R(eX) = eR(X) for all X 2 Mn(C),

so for any closed subgroup G of GL(n,C) and any X 2
Mn(C), the condition etX 2 G for all t 2 R is equivalent
to etR(X) 2 R(G) for all t 2 R, with R(X) 2 M2n(R)
and R(G) a closed subgroup of GL(2n,R).

Thus the condition for defining when a matrix R(X) be-
longs the Lie algebra R(g) of R(G) (as a subspace of
M2n(R)) is equivalent to the condition for X 2 Mn(C)
to belong to the Lie algebra g of G, as a real subspace of
Mn(C) (a subset closed under addition and multiplication
by scalars in R).
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This suggests that the simplest way to overcome the prob-
lem is to generalize the definition of a manifold given in
Definition 4.1 so that a manifold is now a subset M of
(E, k k), where (E, k k) is a real or complex normed vec-
tor space of finite dimension N > 0.

The subset M is endowed with the topology induced by
the topology of E as a normed vector space.

Parametrizations are still homeomorphisms ' : ⌦ ! U
from some open subset of Rm to some open subset of M
(undowed with the subspace topology induced by (E, k k).

The notion of derivative of a function ' : ⌦ ! E makes
perfect sense (where ⌦ is some open subset of Rm) so the
tangent space TpM is now defined as a subset of E closed
under addition and multiplication by real scalars, isomor-
phic to Rm. Such subsets of E are called real subspaces .
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In most cases, E is either Rn, Cn, Mn(R), or Mn(C). In
the last two cases we use the Frobenius norm on matrices
given by kAk = (tr(A⇤A))1/2.

We also modify Definition 4.6 so that a Lie group G is
a subset of (E, k k) (for some real or complex normed
vector space of finite dimension) and Condition (b) says
that G is a manifold in (E, k k).

Similarly, in Definition 4.6, a linear Lie group is a sub-
group G ofGL(n,C) (for some n � 1) which is a smooth
manifold in Mn(C).
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For example, the group SU(2) ✓ M2(C) is a manifold
because we have two parametrizations 'N : R3 ! SU(2)
and 'S : R3 ! SU(2) given by inverse stereographic pro-
jection from R3 onto S3, namely

'N(x, y, z) =
0

BB@

2x

x2 + y2 + z2 + 1
+

2yi

x2 + y2 + z2 + 1

2z

x2 + y2 + z2 + 1
+

i(x2
+ y2

+ z2 � 1)

x2 + y2 + z2 + 1

� 2z

x2 + y2 + z2 + 1
+

i(x2
+ y2

+ z2 � 1)

x2 + y2 + z2 + 1

2x

x2 + y2 + z2 + 1
� 2yi

x2 + y2 + z2 + 1

1

CCA ,

and

'S(x, y, z) =
0

BB@

2x

x2 + y2 + z2 + 1
+

2yi

x2 + y2 + z2 + 1

2z

x2 + y2 + z2 + 1
+

i(1 � (x2
+ y2

+ z2
))

x2 + y2 + z2 + 1

� 2z

x2 + y2 + z2 + 1
+

i(1 � (x2
+ y2

+ z2
))

x2 + y2 + z2 + 1

2x

x2 + y2 + z2 + 1
� 2yi

x2 + y2 + z2 + 1

1

CCA .

The following generalized version of Theorem 4.8 can be
proven.



208CHAPTER 4. MANIFOLDS, LIE GROUPS, AND LIE ALGEBRAS; “BABY CASE”

Theorem 4.11. (Von Neumann and Cartan, 1927) A
closed subgroup G of GL(n,C) is a linear Lie group.
Furthermore, the set g defined such that

g = {X 2 Mn(C) | etX 2 G for all t 2 R}

is a nontrivial real vector space equal to the tangent
space TIG at the identity I, and g is closed under the
Lie bracket [�, �] defined such that [A, B] = AB�BA
for all A, B 2 Mn(C).

With the help of Theorem 4.11 it is now very easy to prove
that SL(n), O(n), SO(n), SL(n,C), U(n), and SU(n)
are Lie groups. It su�ces to show that these subgroups
of GL(n,R) (GL(2n,R) in the case of SL(n,C), U(n),
and SU(n)) are closed.

We can also prove that SE(n) is a Lie group as follows.
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Recall that we can view every element of SE(n) as a real
(n + 1) ⇥ (n + 1) matrix

✓
R U
0 1

◆

where R 2 SO(n) and U 2 Rn.

In fact, such matrices belong to SL(n + 1).

This embedding of SE(n) into SL(n + 1) is a group ho-
momorphism, since the group operation on SE(n) corre-
sponds to multiplication in SL(n + 1):

✓
RS RV + U
0 1

◆
=

✓
R U
0 1

◆✓
S V
0 1

◆
.

Note that the inverse is given by
✓

R�1 �R�1U
0 1

◆
=

✓
R> �R>U
0 1

◆
.
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Also note that the embedding shows that as a manifold,
SE(n) is di↵eomorphic to SO(n)⇥Rn (given a manifold
M1 of dimension m1 and a manifold M2 of dimension
m2, the product M1 ⇥ M2 can be given the structure of
a manifold of dimension m1 + m2 in a natural way).

Thus, SE(n) is a Lie group with underlying manifold
SO(n) ⇥ Rn, and in fact, a subgroup of SL(n + 1).

� Even though SE(n) is di↵eomorphic to SO(n)⇥Rn

as a manifold, it is not isomorphic to SO(n) ⇥ Rn

as a group, because the group multiplication on SE(n) is
not the multiplication on SO(n) ⇥ Rn. Instead, SE(n)
is a semidirect product of SO(n) by Rn.

Returning to Theorem 4.11, the vector space g is called
the Lie algebra of the Lie group G.

Lie algebras are defined as follows.
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Definition 4.7. A (real) Lie algebra A is a real vector
space together with a bilinear map [·, ·] : A ⇥ A ! A
called the Lie bracket on A such that the following two
identities hold for all a, b, c 2 A:

[a, a] = 0,

and the so-called Jacobi identity

[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0.

It is immediately verified that bilinearity and the fact that
[a, a] = 0 implies that [b, a] = �[a, b].

In view of Theorem 4.11, the vector space g = TIG associ-
ated with a Lie group G is indeed a Lie algebra. Further-
more, the exponential map exp : g ! G is well-defined.
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In general, exp is neither injective nor surjective, as we
observed earlier.

Theorem 4.11 also provides a kind of recipe for “comput-
ing” the Lie algebra g = TIG of a Lie group G.

Indeed, g is the tangent space to G at I , and thus we can
use curves to compute tangent vectors.

Actually, for every X 2 TIG, the map

�X : t 7! etX

is a smooth curve in G, and it is easily shown that
�0

X(0) = X . Thus, we can use these curves.

As an illustration, we show that the Lie algebras of SL(n)
and SO(n) are the matrices with null trace and the skew
symmetric matrices.
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Let t 7! R(t) be a smooth curve in SL(n) such that
R(0) = I . We have det(R(t)) = 1 for all t 2 (�✏, ✏).

Using the chain rule, we can compute the derivative of
the function

t 7! det(R(t))

at

t = 0, and we get

det0I(R
0(0)) = 0.

It is an easy exercise to prove that

det0I(X) = tr(X),

and thus tr(R0(0)) = 0, which says that the tangent vec-
tor X = R0(0) has null trace.
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Another proof consists in observing that X 2 sl(n,R) i↵

det(etX) = 1

for all t 2 R. Since det(etX) = etr(tX), for t = 1, we get
tr(X) = 0, as claimed.

Clearly, sl(n,R) has dimension n2 � 1.

Let t 7! R(t) be a smooth curve in SO(n) such that
R(0) = I . Since each R(t) is orthogonal, we have

R(t)R(t)> = I

for all t 2 (�✏, ✏).
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Taking the derivative at t = 0, we get

R0(0)R(0)> + R(0)R0(0)> = 0,

but since R(0) = I = R(0)>, we get

R0(0) + R0(0)> = 0,

which says that the tangent vector X = R0(0) is skew
symmetric.
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Since the diagonal elements of a skew symmetric matrix
are null, the trace is automatically null, and the condition
det(R) = 1 yields nothing new.

This shows that o(n) = so(n). It is easily shown that
so(n) has dimension n(n � 1)/2.

As a concrete example, the Lie algebra so(3) of SO(3)
is the real vector space consisting of all 3 ⇥ 3 real skew
symmetric matrices. Every such matrix is of the form

0

@
0 �d c
d 0 �b

�c b 0

1

A

where b, c, d 2 R.

The Lie bracket [A, B] in so(3) is also given by the usual
commutator, [A, B] = AB � BA.
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We can define an isomorphism of Lie algebras
 : (R3, ⇥) ! so(3) by the formula

 (b, c, d) =

0

@
0 �d c
d 0 �b

�c b 0

1

A .

It is indeed easy to verify that

 (u ⇥ v) = [ (u),  (v)].

It is also easily verified that for any two vectors
u = (b, c, d) and v = (b0, c0, d0) in R3,

 (u)(v) = u ⇥ v.

In robotics and in computer vision,  (u) is often denoted
by u⇥.
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The exponential map exp : so(3) ! SO(3) is given by
Rodrigues’s formula (see Lemma 1.12):

eA = cos ✓ I3 +
sin ✓

✓
A +

(1 � cos ✓)

✓2
B,

or equivalently by

eA = I3 +
sin ✓

✓
A +

(1 � cos ✓)

✓2
A2

if ✓ 6= 0, where

A =

0

@
0 �d c
d 0 �b

�c b 0

1

A ,

✓ =
p

b2 + c2 + d2, B = A2 + ✓2I3, and with e03 = I3.



219

Using the above methods, it is easy to verify that the Lie
algebras gl(n,R), sl(n,R), o(n), and so(n), are respec-
tively Mn(R), the set of matrices with null trace, and the
set of skew symmetric matrices (in the last two cases).

A similar computation can be done for gl(n,C), sl(n,C),
u(n), and su(n), confirming the claims of Section 1.5.

It is easy to show that gl(n,C) has dimension 2n2, sl(n,C)
has dimension 2(n2 � 1), u(n) has dimension n2, and
su(n) has dimension n2 � 1.

For example, the Lie algebra su(2) of SU(2) (or S3) is
the real vector space consisting of all 2⇥2 (complex) skew
Hermitian matrices of null trace.
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As we showed, SE(n) is a Lie group, and its lie algebra
se(n) described in Section 1.7 is easily determined as the
subalgebra of sl(n + 1) consisting of all matrices of the
form

✓
B U
0 0

◆

where B 2 so(n) and U 2 Rn.

Thus, se(n) has dimension n(n + 1)/2. The Lie bracket
is given by

✓
B U
0 0

◆✓
C V
0 0

◆
�
✓

C V
0 0

◆✓
B U
0 0

◆

=

✓
BC � CB BV � CU

0 0

◆
.
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We conclude by indicating the relationship between ho-
momorphisms of Lie groups and homomorphisms of Lie
algebras.

Definition 4.8. Let M1 (m1-dimensional) and M2 (m2-
dimensional) be manifolds in RN . A function
f : M1 ! M2 is smooth if for every p 2 M1 there are
parametrizations ' : ⌦1 ! U1 of M1 at p and  : ⌦2 !
U2 of M2 at f (p) such that f (U1) ✓ U2 and

 �1 � f � ' : ⌦1 ! Rm2

is smooth; see Figure 4.11.

Using Lemma 4.2, it is easily shown that Definition 4.8
does not depend on the choice of the parametrizations
' : ⌦1 ! U1 and  : ⌦2 ! U2.
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p

f(p)

M

M

1

2

U1

U2

Ω

Ω

1

2

φ

ψ ψ

½
½

m

m

1

2

f

-1

Figure 4.11: An illustration of a smooth map from the torus, M1, to the solid ellipsoid M2.

The pink patch on M1 is mapped into interior pink ellipsoid of M2.
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A smooth map f between manifolds is a smooth di↵eo-
morphism if f is bijective and both f and f�1 are smooth
maps.

Definition 4.9. Let M1 (m1-dimensional) and M2 (m2-
dimensional) be manifolds in RN . For any smooth func-
tion f : M1 ! M2 and any p 2 M1, the function
f 0

p : TpM1 ! Tf(p)M2, called the tangent map of f at
p, or derivative of f at p, or di↵erential of f at p, is
defined as follows: For every v 2 TpM1 and every smooth
curve � : I ! M1 such that �(0) = p and �0(0) = v,

f 0
p(v) = (f � �)0(0).

See Figure 4.12.

The map f 0
p is also denoted by dfp or Tpf .
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f(p)

p

Tp M1

M

M

1

2

f

0

γ

γ

(0) = p

I

Figure 4.12: An illustration of the tangent map from TpM1 to Tf(p)M2.
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Doing a few calculations involving the facts that

f � � = (f � ') � ('�1 � �) and � = ' � ('�1 � �)

and using Lemma 4.2, it is not hard to show that f 0
p(v)

does not depend on the choice of the curve �. It is easily
shown that f 0

p is a linear map.

Finally, we define homomorphisms of Lie groups and Lie
algebras and see how they are related.

Definition 4.10. Given two Lie groups G1 and G2, a
homomorphism (or map) of Lie groups is a function
f : G1 ! G2 that is a homomorphism of groups and a
smooth map (between the manifolds G1 and G2).
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Given two Lie algebras A1 and A2, a homomorphism (or
map) of Lie algebras is a function f : A1 ! A2 that is
a linear map between the vector spaces A1 and A2 and
that preserves Lie brackets, i.e.,

f ([A, B]) = [f (A), f (B)]

for all A, B 2 A1.

An isomorphism of Lie groups is a bijective function f
such that both f and f�1 are maps of Lie groups, and
an isomorphism of Lie algebras is a bijective function
f such that both f and f�1 are maps of Lie algebras.

If f : G1 ! G2 is a homomorphism of Lie groups, then
f 0

I : g1 ! g2 is a homomorphism of Lie algebras, but in
order to prove this, we need the adjoint representation
Ad, so we postpone the proof.
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The notion of a one-parameter group plays a crucial role
in Lie group theory.

Definition 4.11. A smooth homomorphism
h : (R,+) ! G from the additive group R to a Lie group
G is called a one-parameter group in G.

All parameter groups of a linear Lie group can be deter-
mined explicitly.

Proposition 4.12. Let G be any linear Lie group.

1. For every X 2 g, the map h(t) = etX is a one-
parameter group in G.

2. Every one-parameter group h : R ! G is of the
form h(t) = etZ, with Z = h0(0).

In summary, for every Z 2 g, there is a unique one-
parameter group h such that h0(0) = Z given by h(t) =
eZt.
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The exponential map is natural in the following sense:

Proposition 4.13. Given any two linear Lie groups
G and H, for every Lie group homomorphism
f : G ! H, the following diagram commutes:

G f
// H

g
dfI

//

exp

OO

h
exp

OO

Alert readers must have noticed that we only defined the
Lie algebra of a linear group.

In the more general case, we can still define the Lie alge-
bra g of a Lie group G as the tangent space TIG at the
identity I .

The tangent space g = TIG is a vector space, but we
need to define the Lie bracket.
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This can be done in several ways. We explain briefly how
this can be done in terms of so-called adjoint represen-
tations .

This has the advantage of not requiring the definition of
left-invariant vector fields, but it is still a little bizarre!

Given a Lie group G, for every a 2 G we define left
translation as the map La : G ! G such that La(b) = ab
for all b 2 G, and right translation as the map
Ra : G ! G such that Ra(b) = ba for all b 2 G.

The maps La and Ra are di↵eomorphisms, and their
derivatives play an important role.
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The inner automorphisms

Ada = Ra�1 � La (= Ra�1La)

of G also play an important role.

Note that

Ada(b) = Ra�1La(b) = aba�1.

The derivative

(Ada)
0
I : TIG ! TIG

of Ada : G ! G at I is an isomorphism of Lie algebras,
and since TIG = g, if we denote (Ada)0I by Ada, we get
a map

Ada : g ! g.
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The map a 7! Ada is a map of Lie groups

Ad: G ! GL(g),

called the adjoint representation of G (where GL(g)
denotes the Lie group of all bijective linear maps on g).

In the case of a linear group, we have

Ad(a)(X) = Ada(X) = aXa�1

for all a 2 G and all X 2 g.

We are now almost ready to prove that if f : G1 ! G2

is a homomorphism of Lie groups, then f 0
I : g1 ! g2 is a

homomorphism of Lie algebras.

What we need is to express the Lie bracket [A, B] in terms
of the derivative of an expression involving the adjoint
representation Ad.
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For any A, B 2 g, we have

�
AdetA(B)

�0
(0) = (etABe�tA)0(0) = AB � BA = [A, B].

Proposition 4.14. If f : G1 ! G2 is a homomor-
phism of linear Lie groups, then the linear map
dfI : g1 ! g2 satisfies the equation

dfI(Ada(X)) = Adf(a)(dfI(X)),

for all a 2 G and all X 2 g1; that is, the following
diagram commutes

g1

dfI
//

Ada
✏✏

g2

Adf(a)
✏✏

g1 dfI

// g2

Furthermore, dfI is a homomorphism of Lie algebras.
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If some additional assumptions are made about G1 and
G2 (for example, connected, simply connected), it can be
shown that f is pretty much determined by f 0

I .

The derivative

Ad0
I : g ! gl(g)

of Ad: G ! GL(g) at I is map of Lie algebras, and if
we denote Ad0

I by ad, it is a map

ad: g ! gl(g),

called the adjoint representation of g.

Recall that Theorem 4.11 immediately implies that the
Lie algebra gl(g) of GL(g) is the vector space Hom(g, g)
of all linear maps on g.
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If we apply Proposition 4.13 to Ad: G ! GL(g), we
obtain the equation

AdeA = eadA for all A 2 g,

which is a generalization of the identity of Proposition
3.1.

In the case of a linear group, we have

ad(A)(B) = [A, B]

for all A, B 2 g.

This can be shown using Propositions 3.1 and 4.13
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One can also check that the Jacobi identity on g is equiv-
alent to the fact that ad preserves Lie brackets, i.e., ad is
a map of Lie algebras:

ad([A, B]) = [ad(A), ad(B)] for all A, B 2 g

(where on the right, the Lie bracket is the commutator of
linear maps on g).

Thus, we recover the Lie bracket from ad.

This is the key to the definition of the Lie bracket in the
case of a general Lie group (not just a linear Lie group).

We define the Lie bracket on g as

[A, B] = ad(A)(B).
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To be complete, we still have to define the exponential
map exp : g ! G for a general Lie group.

For this we need to introduce some left-invariant vector
fields induced by the derivatives of the left translations
and integral curves associated with such vector fields.

We conclude this section by computing explicitly the ad-
joint representations ad of so(3) and Ad of SO(3).

Recall that for every X 2 so(3), adX is a linear map
adX : so(3) ! so(3).

Also, for every R 2 SO(3), the map AdR : so(3) ! so(3)
is an invertible linear map of so(3).

Now, as we saw earlier, so(3) is isomorphic to (R3, ⇥),
where ⇥ is the cross-product on R3, via the isomorphism
 : (R3, ⇥) ! so(3) given by the formula

 (a, b, c) =

0

@
0 �c b
c 0 �a

�b a 0

1

A .



237

In robotics and in computer vision,  (u) is often denoted
by u⇥.

The image of the canonical basis (e1, e2, e3) of R3 is the
following basis of so(3):

0

@E1 =

0

@
0 0 0
0 0 �1
0 1 0

1

A , E2 =

0

@
0 0 1
0 0 0

�1 0 0

1

A ,

E3 =

0

@
0 �1 0
1 0 0
0 0 0

1

A

1

A .

Observe that

[E1, E2] = E3, [E2, E3] = E1, [E3, E1] = E2.
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Using the isomorphism  , we obtain an isomorphism  
between Hom(so(3), so(3)) and M3(R) = gl(3,R) given
by

 (f ) =  �1 � f �  ,

where  (f ) is expressed in the basis (e1, e2, e3).

By restricting toGL(so(3)), we obtain an isomorphism
between GL(so(3)) and GL(3,R).

It turns out that if we use the basis (E1, E2, E3) in so(3),
for every X 2 so(3), the matrix representing adX 2
Hom(so(3), so(3)) is X itself, and for every R 2 SO(3),
the matrix representing AdR 2 GL(so(3)) is R itself.
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Proposition 4.15. For all X 2 so(3) and all R 2
SO(3), we have

 (adX) = X,  (AdR) = R,

which means that  � ad is the inclusion map from
so(3) to M3(R) = gl(3,R), and that  � Ad is the in-
clusion map from SO(3) to GL(3,R). Equivalently,
for all u 2 R3, we have

adX( (u)) =  (Xu), AdR( (u)) =  (Ru).

These equations can also be written as

[X, u⇥] = (Xu)⇥, Ru⇥R�1 = (Ru)⇥.
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