
Chapter 3

Adjoint Representations and the
Derivative of exp

3.1 The Adjoint Representations Ad and ad

Given any two vector spaces E and F , recall that the
vector space of all linear maps from E to F is denoted by
Hom(E, F ).

The vector space of all invertible linear maps from E to
itself is a group denoted GL(E).

When E = Rn, we often denote GL(Rn) by GL(n,R)
(and if E = Cn, we often denote GL(Cn) by GL(n,C)).

The vector space Mn(R) of all n ⇥ n matrices is also
denoted by gl(n,R) (and Mn(C) by gl(n,C)).
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Then, GL(gl(n,R)) is the vector space of all invertible
linear maps from gl(n,R) = Mn(R) to itself.

For any matrix A 2 MA(R) (or A 2 MA(C)), define the
maps LA : Mn(R) ! Mn(R) and RA : Mn(R) ! Mn(R)
by

LA(B) = AB, RA(B) = BA, for all B 2 Mn(R).

Observe that LA � RB = RB � LA for all A, B 2 Mn(R).

For any matrix A 2 GL(n,R), let

AdA : Mn(R) ! Mn(R) (conjugation by A)

be given by

AdA(B) = ABA�1 for all B 2 Mn(R).

Observe that AdA = LA � RA�1 and that AdA is an
invertible linear map with inverse AdA�1.
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The restriction ofAdA to invertible matricesB 2 GL(n,R)
yields the map

AdA : GL(n,R) ! GL(n,R)

also given by

AdA(B) = ABA�1 for all B 2 GL(n,R).

This time, observe that AdA is a group homomorphism
(with respect to multiplication), since

AdA(BC) = ABCA�1

= ABA�1ACA�1 = AdA(B)AdA(C).

In fact, AdA is a group isomorphism (because its inverse
is AdA�1).
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Beware that AdA is not a linear map on GL(n,R) be-
cause GL(n,R) is not a vector space!

However, GL(n,R) is an open subset of Mn(R), because
it is the complement of the set of singular matrices

{A 2 Mn(R) | det(A) = 0},

a closed set, since it is the inverse image of the closed set
{0} by the determinant function, which is continuous.
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Since GL(n,R) is an open subset of Mn(R), for every
B 2 GL(n,R), there is an open ballB(B, ⌘) ✓ GL(n,R)
such that B + X 2 B(B, ⌘) for all X 2 Mn(R) with
kXk < ⌘, so AdA(B + X) is well defined and

AdA(B + X) � AdA(B)

= A(B + X)A�1 � ABA�1 = AXA�1,

which shows that d(AdA)B exists and is given by

d(AdA)B(X) = AXA�1, for all X 2 Mn(R).



140 CHAPTER 3. ADJOINT REPRESENTATIONS AND THE DERIVATIVE OF exp

In particular, for B = I , we see that the derivative
d(AdA)I ofAdA at I is a linear map of gl(n,R) = Mn(R)
denoted by Ad(A) or AdA (or AdA), and given by

AdA(X) = AXA�1 for all X 2 gl(n,R).

The inverse of AdA is AdA�1, so AdA 2 GL(gl(n,R)).

Note that
AdAB = AdA � AdB,

so the map A 7! AdA is a group homomorphism denoted

Ad: GL(n,R) ! GL(gl(n,R)).

The homomorphism Ad is called the adjoint representa-
tion of GL(n,R).

We also would like to compute the derivative d(Ad)I of
Ad at I .
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For all X, Y 2 Mn(R), with kXk small enough we have
I + X 2 GL(n,R), and

AdI+X(Y ) � AdI(Y ) � (XY � Y X)

= (Y X2 � XY X)(I + X)�1.

Then, if we let

✏(X, Y ) =
(Y X2 � XY X)(I + X)�1

kXk ,

we proved that for kXk small enough

AdI+X(Y ) � AdI(Y ) = (XY � Y X) + ✏(X, Y ) kXk ,

with k✏(X, Y )k  2 kXk kY k
��(I + X)�1

��, and with
✏(X, Y ) linear in Y .
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Let adX : gl(n,R) ! gl(n,R) be the linear map given by

adX(Y ) = XY � Y X = [X, Y ],

and ad be the linear map

ad: gl(n,R) ! Hom(gl(n,R), gl(n,R))

given by

ad(X) = adX.

We also define ✏X : gl(n,R) ! gl(n,R) as the linear map
given by

✏X(Y ) = ✏(X, Y ).

If k✏Xk is the operator norm of ✏X , we have

k✏Xk = max
kY k=1

k✏(X, Y )k  2 kXk
��(I + X)�1

�� .
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Then, the equation

AdI+X(Y ) � AdI(Y ) = (XY � Y X) + ✏(X, Y ) kXk ,

which holds for all Y , yields

AdI+X � AdI = adX + ✏X kXk ,

and because k✏Xk  2 kXk
��(I + X)�1

��, we have
limX 7!0 ✏X = 0, which shows that d(Ad)I(X) = adX ;
that is,

d(Ad)I = ad.

The notation ad(X) (or adX) is also used instead adX .
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The map ad is a linear map

ad: gl(n,R) ! Hom(gl(n,R), gl(n,R))

called the adjoint representation of gl(n,R).

One will check that

ad([X, Y ]) = ad(X)ad(Y ) � ad(Y )ad(X)

= [ad(X), ad(Y )],

the Lie bracket on linear maps on gl(n,R).
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This means that ad is a Lie algebra homomorphism. It
can be checked that this property is equivalent to the
following identity known as the Jacobi identity :

[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z, X ]] = 0,

for all X, Y, Z 2 gl(n,R).

Note that
adX = LX � RX.

Finally, we prove a formula relating Ad and ad through
the exponential.
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Proposition 3.1. For any X 2 Mn(R) = gl(n,R), we
have

AdeX = eadX =
1X

k=0

(adX)k

k!
;

that is,

eXY e�X = eadXY

= Y + [X, Y ] +
1

2!
[X, [X, Y ]] +

1

3!
[X, [X, [X, Y ]]]

+ · · ·

for all X, Y 2 Mn(R)
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3.2 The Derivative of exp

It is also possible to find a formula for the derivative
d expA of the exponential map at A, but this is a bit
tricky.

It can be shown that

d(exp)A = eA
1X

k=0

(�1)k

(k + 1)!
(adA)

k,

so

d(exp)A(B) = eA

✓
B � 1

2!
[A, B] +

1

3!
[A, [A, B]]

� 1

4!
[A, [A, [A, B]]] + · · ·

◆
.
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It is customary to write

id � e�adA

adA

for the power series

1X

k=0

(�1)k

(k + 1)!
(adA)

k,

and the formula for the derivative of exp is usually stated
as

d(exp)A = eA

✓
id � e�adA

adA

◆
.
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The formula for the exponential tells us when the deriva-
tive d(exp)A is invertible.

Indeed, it is easy to see that if the eigenvalues of the ma-
trix X are �1, . . . , �n, then the eigenvalues of the matrix

id � e�X

X
=

1X

k=0

(�1)k

(k + 1)!
Xk

are

1 � e��j

�j
if �j 6= 0, and 1 if �j = 0.

It follows that the matrix id�e�X

X is invertible i↵ no �j if
of the form k2⇡i for some k 2 Z � {0}, so d(exp)A is
invertible i↵ no eigenvalue of adA is of the form k2⇡i for
some k 2 Z � {0}.
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However, it can also be shown that if the eigenvalues of A
are �1, . . . , �n, then the eigenvalues of adA are the �i��j,
with 1  i, j  n.

In conclusion, d(exp)A is invertible i↵ for all i, j we have

�i � �j 6= k2⇡i, k 2 Z � {0}. (⇤)

This suggests defining the following subset E(n) of Mn(R).

The set E(n) consists of all matrices A 2 Mn(R) whose
eigenvalue � + iµ of A (�, µ 2 R) lie in the horizontal
strip determined by the condition �⇡ < µ < ⇡.

Then, it is clear that the matrices in E(n) satisfy the
condition (⇤), so d(exp)A is invertible for all A 2 E(n).

By the inverse function theorem, the exponential map is
a local di↵eomorphism between E(n) and exp(E(n)).
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Remarkably, more is true: the exponential map is di↵eo-
morphism between E(n) and exp(E(n)) (in particular, it
is a bijection).

This takes quite a bit of work to be proved. For example,
see Mnemné and Testard [36]. We have the following
result.

Theorem 3.2.The restriction of the exponential map
to E(n) is a di↵eomorphism of E(n) onto its image
exp(E(n)). Furthermore, exp(E(n)) consists of all in-
vertible matrices that have no real negative eigenval-
ues; it is an open subset of GL(n,R); it contains the
open ball B(I, 1) = {A 2 GL(n,R) | kA � Ik < 1},
for every matrix norm k k on n ⇥ n matrices.

Theorem 3.2 has some practical applications because there
are algorithms for finding a real log of a matrix with no
real negative eigenvalues; for more on applications of The-
orem 3.2 to medical imaging, see Chapter 19.
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