
Chapter 9

Partitions of Unity, Covering Maps ~

9.1 Partitions of Unity

To study manifolds, it is often necessary to construct var-
ious objects such as functions, vector fields, Riemannian
metrics, volume forms, etc., by gluing together items con-
structed on the domains of charts.

Partitions of unity are a crucial technical tool in this glu-
ing process.
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The first step is to define “bump functions” (also called
plateau functions). For any r > 0, we denote by B(r)
the open ball

B(r) = {(x1, . . . , xn) 2 Rn | x2

1
+ · · · + x2

n < r},

and by B(r) = {(x1, . . . , xn) 2 Rn | x2

1
+ · · ·+ x2

n  r},
its closure.

Given a topological space, X , for any function,
f : X ! R, the support of f , denoted supp f , is the
closed set

supp f = {x 2 X | f (x) 6= 0}.
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Proposition 9.1. There is a smooth function,
b : Rn ! R, so that

b(x) =

⇢
1 if x 2 B(1)
0 if x 2 Rn � B(2).

See Figures 9.1 and 9.2.
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Figure 9.1: The graph of b : R ! R used in Proposition 9.1.
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> 

Figure 9.2: The graph of b : R2 ! R used in Proposition 9.1.

Proposition 9.1 yields the following useful technical result:
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Proposition 9.2. Let M be a smooth manifold. For
any open subset, U ✓ M , any p 2 U and any smooth
function, f : U ! R, there exist an open subset, V ,
with p 2 V and a smooth function, ef : M ! R, de-
fined on the whole of M , so that V is compact,

V ✓ U, supp ef ✓ U

and

ef (q) = f (q), for all q 2 V .
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If X is a (Hausdor↵) topological space, a family, {U↵}↵2I ,
of subsets U↵ of X is a cover (or covering) of X i↵
X =

S
↵2I U↵.

A cover, {U↵}↵2I , such that each U↵ is open is an open
cover .

If {U↵}↵2I is a cover of X , for any subset, J ✓ I , the
subfamily {U↵}↵2J is a subcover of {U↵}↵2I if X =S

↵2J U↵, i.e., {U↵}↵2J is still a cover of X .

Given a cover {V�}�2J , we say that a family {U↵}↵2I is
a refinement of {V�}�2J if it is a cover and if there is a
function, h : I ! J , so that U↵ ✓ Vh(↵), for all ↵ 2 I .

A family {U↵}↵2I of subsets of X is locally finite i↵ for
every point, p 2 X , there is some open subset, U , with
p 2 U , so that U \ U↵ 6= ; for only finitely many ↵ 2 I .
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A space, X , is paracompact i↵ every open cover has an
open locally finite refinement.

Remark: Recall that a space, X , is compact i↵ it is
Hausdor↵ and if every open cover has a finite subcover.
Thus, the notion of paracompactness (due to Jean
Dieudonné) is a generalization of the notion of compact-
ness.

Recall that a topological space, X , is second-countable if
it has a countable basis, i.e., if there is a countable family
of open subsets, {Ui}i�1, so that every open subset of X
is the union of some of the Ui’s.

A topological space, X , if locally compact i↵ it is Haus-
dor↵ and for every a 2 X , there is some compact subset,
K, and some open subset, U , with a 2 U and U ✓ K.

As we will see shortly, every locally compact and second-
countable topological space is paracompact.
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It is important to observe that every manifold (even not
second-countable) is locally compact.

Definition 9.1. Let M be a (smooth) manifold. A par-
tition of unity on M is a family, {fi}i2I , of smooth
functions on M (the index set I may be uncountable)
such that

(a) The family of supports, {supp fi}i2I , is locally finite.

(b) For all i 2 I and all p 2 M , we have 0  fi(p)  1,
and X

i2I

fi(p) = 1, for every p 2 M.

Note that condition (b) implies that {supp fi}i2I is a
cover of M . If {U↵}↵2J is a cover of M , we say that
the partition of unity {fi}i2I is subordinate to the cover
{U↵}↵2J if {supp fi}i2I is a refinement of {U↵}↵2J .

When I = J and supp fi ✓ Ui, we say that {fi}i2I is
subordinate to {U↵}↵2I with the same index set as the
partition of unity .
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In Definition 9.1, by (a), for every p 2 M , there is some
open set, U , with p 2 U and U meets only finitely many
of the supports, supp fi.

So, fi(p) 6= 0 for only finitely many i 2 I and the infinite
sum

P
i2I fi(p) is well defined.

Proposition 9.3. Let X be a topological space which
is second-countable and locally compact (thus, also
Hausdor↵). Then, X is paracompact. Moreover, ev-
ery open cover has a countable, locally finite refine-
ment consisting of open sets with compact closures.
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Remarks:

1. Proposition 9.3 implies that a second-countable, lo-
cally compact (Hausdor↵) topological space is the union
of countably many compact subsets. Thus, X is count-
able at infinity , a notion that we already encountered
in Proposition 5.11 and Theorem 5.14.

2. A manifold that is countable at infinity has a count-
able open cover by domains of charts. It follows that
M is second-countable. Thus, for manifolds, second-
countable is equivalent to countable at infinity.

Recall that we are assuming that our manifolds are Haus-
dor↵ and second-countable.



9.1. PARTITIONS OF UNITY 539

Theorem 9.4. Let M be a smooth manifold and let
{U↵}↵2I be an open cover for M . Then, there is a
countable partition of unity, {fi}i�1, subordinate to
the cover {U↵}↵2I and the support, supp fi, of each fi

is compact.

If one does not require compact supports, then there is
a partition of unity, {f↵}↵2I, subordinate to the cover
{U↵}↵2I with at most countably many of the f↵ not
identically zero. (In the second case, supp f↵ ✓ U↵.)

We close this section by stating a famous theorem of
Whitney whose proof uses partitions of unity.

Theorem 9.5. (Whitney, 1935) Any smooth mani-
fold (Hausdor↵ and second-countable), M , of dimen-
sion n is di↵eomorphic to a closed submanifold of
R2n+1.

For a proof, see Hirsch [23], Chapter 2, Section 2, Theo-
rem 2.14.
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9.2 Covering Maps and Universal Covering Manifolds

Covering maps are an important technical tool in alge-
braic topology and more generally in geometry.

We begin with covering maps.

Definition 9.2. A map, ⇡ : M ! N , between two
smooth manifolds is a covering map (or cover ) i↵

(1) The map ⇡ is smooth and surjective.

(2) For any q 2 N , there is some open subset, V ✓ N ,
so that q 2 V and

⇡�1(V ) =
[

i2I

Ui,

where the Ui are pairwise disjoint open subsets, Ui ✓
M , and ⇡ : Ui ! V is a di↵eomorphism for every
i 2 I . We say that V is evenly covered .

The manifold, M , is called a covering manifold of N .
See Figure 9.3.
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Figure 9.3: Two examples of a covering map. The left illustration is ⇡ : R ! S1
with

⇡(t) = (cos(2⇡t), sin(2⇡t)), while the right illustration is the 2-fold antipodal covering of

RP2
by S2

.
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A homomorphism of coverings, ⇡1 : M1 ! N and
⇡2 : M2 ! N , is a smooth map, � : M1 ! M2, so that

⇡1 = ⇡2 � �,

that is, the following diagram commutes:

M1

�
//

⇡1 !!

M2

⇡2}}

N

.

We say that the coverings ⇡1 : M1 ! N and
⇡2 : M2 ! N are equivalent i↵ there is a homomorphism,
� : M1 ! M2, between the two coverings and � is a
di↵eomorphism.

As usual, the inverse image, ⇡�1(q), of any element q 2 N
is called the fibre over q, the space N is called the base
and M is called the covering space .
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As ⇡ is a covering map, each fibre is a discrete space.

Note that a homomorphism maps each fibre ⇡�1

1
(q) in M1

to the fibre ⇡�1

2
(�(q)) in M2, for every q 2 M1.

Proposition 9.6. Let ⇡ : M ! N be a covering map.
If N is connected, then all fibres, ⇡�1(q), have the
same cardinality for all q 2 N . Furthermore, if ⇡�1(q)
is not finite then it is countably infinite.

When the common cardinality of fibres is finite it is called
themultiplicity of the covering (or the number of sheets).

For any integer, n > 0, the map, z 7! zn, from the unit
circle S1 = U(1) to itself is a covering with n sheets. The
map,

t : 7! (cos(2⇡t), sin(2⇡t)),

is a covering, R ! S1, with infinitely many sheets.
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It is also useful to note that a covering map, ⇡ : M ! N ,
is a local di↵eomorphism (which means that
d⇡p : TpM ! T⇡(p)N is a bijective linear map for every
p 2 M).

The crucial property of covering manifolds is that curves
in N can be lifted to M , in a unique way.

Definition 9.3. Let ⇡ : M ! N be a covering map,
and let P be a Hausdor↵ topological space. For any map
� : P ! N , a lift of � through ⇡ is a map e� : P ! M
so that

� = ⇡ � e�,

as in the following commutative diagram.

M
⇡
✏✏

P

e� ==

�
// N
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We would like to state three propositions regarding cov-
ering spaces.

However, two of these propositions use the notion of a
simply connected manifold.

Intuitively, a manifold is simply connected if it has no
“holes.”

More precisely, a manifold is simply connected if it has a
trivial fundamental group.

A fundamental group is a homotopic loop group.

Therefore, given topological spaces X and Y , we need
to define a homotopy between two continuous functions
f : X ! Y and g : X ! Y .
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Definition 9.4. Let X and Y be topological spaces,
f : X ! Y and g : X ! Y be two continuous functions,
and let I = [0, 1]. We say that f is homotopic to g
if there exists a continuous function F : X ⇥ I ! Y
(where X ⇥ I is given the product topology) such that
F (x, 0) = f (x) and F (x, 1) = g(x) for all x 2 X . The
map F is a homotopy from f to g, and this is denoted
f ⇠F g. If f and g agree on A ✓ X , i.e. f (a) = g(a)
whenever a 2 A, we say f is homotopic to g relative
A, and this is denoted f ⇠F g rel A.

A homotopy provides a means of continuously deforming
f into g through a family {ft} of continuous functions
ft : X ! Y where t 2 [0, 1] and f0(x) = f (x) and
f1(x) = g(x) for all x 2 X .
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For example, let D be the unit disk in R2 and consider
two continuous functions f : I ! D and g : I ! D.

Then f ⇠F g via the straight line homotopy F : I ⇥ I !
D, where F (x, t) = (1 � t)f (x) + tg(x).

Proposition 9.7. Let X and Y be topological spaces
and let A ✓ X. Homotopy (or homotopy rel A) is
an equivalence relation on the set of all continuous
functions from X to Y .

The next two propositions show that homotopy behaves
well with respect to composition.

Proposition 9.8. Let X, Y , and Z be topological
spaces and let A ✓ X. For any continuous functions
f : X ! Y , g : X ! Y , and h : Y ! Z, if f ⇠F g rel
A, then h � f ⇠h�F h � g rel A as maps from X to Z.

X
f

//

g
//

Y h
//Z.
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Proposition 9.9. Let X, Y , and Z be topological
spaces and let B ✓ Y . For any continuous func-
tions f : X ! Y , g : Y ! Z, and h : Y ! Z, if
g ⇠G h rel B, then g � f ⇠F h � f rel f�1B, where
F (x, t) = G(f (x), t).

X f
//Y

g
//

h
//

Z.

In order to define the fundamental group of a topological
space X , we recall the definition of a loop.

Definition 9.5. Let X be a topological space, p be a
point in X , and let I = [0, 1]. We say ↵ is a loop based
at p = ↵(0) if ↵ is a continuous map ↵ : I ! X with
↵(0) = ↵(1).
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Given a topological space X , choose a point p 2 X and
form S, the set of all loops in X based at p.

By applying Proposition 9.7, we know that the relation
of homotopy relative to {0, 1} is an equivalence relation
on S. This leads to the following definition.

Definition 9.6. Let X be a topological space, p be a
point in X , and let ↵ be a loop in X based at p. The
set of all loops homotopic to ↵ relative to {0, 1} is the
homotopy class of ↵ and is denoted h↵i.

Definition 9.7. Given two loops ↵ and � in a topolog-
ical space X based at p, the product ↵ · � is a loop in X
based at p defined by

↵ · �(t) =

(
↵(2t) 0  t  1

2

�(2t � 1) 1

2
< t  1.
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The product of loops gives rise to the product of homo-
topy classes where

h↵i · h�i = h↵ · �i.

We leave it the reader to check that the multiplication of
homotopy classes is well defined and associative, namely
h↵ ·�i · h�i = h↵i · h� ·�i whenever ↵, �, and � are loops
in X based at p.

Let hei be the homotopy class of the constant loop in
X based at p, and define the inverse of h↵i as h↵i�1 =
h↵�1i, where ↵�1(t) = ↵(1 � t).

With these conventions, the product operation between
homotopy classes gives rise to a group. In particular,



9.2. COVERING MAPS AND UNIVERSAL COVERING MANIFOLDS 551

Proposition 9.10. Let X be a topological space and
let p be a point in X. The set of homotopy classes of
loops in X based at p is a group with multiplication
given by h↵i · h�i = h↵ · �i

Definition 9.8. Let X be a topological space and p a
point in X . The group of homotopy classes of loops in X
based at p is the fundamental group of X based at p,
and is denoted by ⇡1(X, p).

If we assume X is path connected, we can show that
⇡1(X, p) ⇠= ⇡1(X, q) for any points p and q in X . There-
fore, when X is path connected, we simply write ⇡1(X).
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For example, it can be shown that ⇡1(S1) = Z, and for
the 2-torus T2, ⇡1(T2) = Z ⇥ Z.

These are abelian groups, but in general the fundamental
group is not abelian.

A simple example is a compact surface of genus 2, that
is, the result of gluing two tori along a disc.

In this case the fundamental group ⇡1(M2) is the quotient
of the free group on four generators {a1, b1, a2, b2} by the
subgroup generated by

a1b1a
�1

1
b�1

1
a2b2a

�1

2
b�1

2
.

Definition 9.9. IfX is path connected topological space
and ⇡1(X) = hei, (which is also denoted as ⇡1(X) = (0)),
we say X is simply connected.

In other words, every loop in X can be shrunk in a con-
tinuous manner within X to its basepoint.
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Examples of simply connected spaces include Rn and Sn

whenever n � 2.

On the other hand, the torus and the circle are not simply
connected. See Figures 9.4 and 9.5.

p

q

Figure 9.4: The torus is not simply connected. The loop at p is homotopic to a point, but

the loop at q is not.
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p

α

α

p

p p F

Figure 9.5: The unit sphere S2
is simply connected since every loop can be continuously

deformed to a point. This deformation is represented by the map F : I ⇥ I ! S2
where

F (x, 0) = ↵ and F (x, 1) = p.

We now state without proof the following results:



9.2. COVERING MAPS AND UNIVERSAL COVERING MANIFOLDS 555

Proposition 9.11. If ⇡ : M ! N is a covering map,
then for every smooth curve, ↵ : I ! N , in N (with
0 2 I) and for any point, q 2 M , such that ⇡(q) =
↵(0), there is a unique smooth curve, e↵ : I ! M ,
lifting ↵ through ⇡ such that e↵(0) = q. See Figure
9.6.

q

π

M

N

I

0
π (q) α

α

α

α

= (0)

~
= (0)

~

Figure 9.6: The lift of a curve ↵ when ⇡ : R ! S1
is ⇡(t) = (cos(2⇡t), sin(2⇡t)).
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Proposition 9.12. Let ⇡ : M ! N be a covering map
and let � : P ! N be a smooth map. For any p0 2 P ,
any q0 2 M and any r0 2 N with ⇡(q0) = �(p0) = r0,
the following properties hold:

(1) If P is connected then there is at most one lift,
e� : P ! M , of � through ⇡ such that e�(p0) = q0.

(2) If P is simply connected, then such a lift exists.

M 3 q0

⇡
✏✏

p0 2 P

e� 77

�
// N 3 r0
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Theorem 9.13. Every connected manifold, M , pos-
sesses a simply connected covering map, ⇡ : fM ! M ,
that is, with fM simply connected. Any two simply
connected coverings of N are equivalent.

In view of Theorem 9.13, it is legitimate to speak of the
simply connected cover, fM , of M , also called universal
covering (or cover ) of M .

It can be shown that ⇡1(SO(3)) = Z/2Z, so SO(3) is
not simply-connected (but it is path-connected).

The universal cover of SO(3) is the group SU(2) of unit
quaternions.

More generally, for n � 3, SO(n) is path-connected and
⇡1(SO(n)) = Z/2Z, so SO(n) is not simply-connected.

The universal cover of SO(n) is a group denoted Spin(n)
and called a spin group. It is a matrix Lie group.
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The group SL(2,R) is path-connected and ⇡1(SL(2,R)) =
Z, so SL(2,R) is not simply-connected.

The universal cover of SL(2,R), often denoted eS, is a Lie
group but not a matrix Lie group.

For n � 3, the group SL(n,R) is path-connected and
⇡1(SL(n,R)) = Z/2Z, so SL(n,R) is not simply-connected.

On the other hand, SL(n,C) is path-connected and simply-
connected for all n � 1.

For more on all this, see Fulton and Harris [17] (Chapters
10, 11, 23).
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Given any point, p 2 M , let ⇡1(M, p) denote the funda-
mental group of M with basepoint p.

If � : M ! N is a smooth map, for any p 2 M , if we
write q = �(p), then we have an induced group homo-
morphism

�⇤ : ⇡1(M, p) ! ⇡1(N, q)

defined as follows. For every loop � in M based at p, the
map f � � is a loop based at q = '(p) in N , so let

�⇤([�]) = [f � �].

It is easily verified that the map �⇤ is well-defined, that
is, does not depend on the choice of the loop � in the
homotopy class [�] 2 ⇡1(M, p), and that it is a group
homomorphism.
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Proposition 9.14. If ⇡ : M ! N is a covering map,
for every p 2 M , if q = ⇡(p), then the induced homo-
morphism, ⇡⇤ : ⇡1(M, p) ! ⇡1(N, q), is injective.

Proposition 9.15. Let ⇡ : M ! N be a covering map
and let � : P ! N be a smooth map. For any p0 2 P ,
any q0 2 M and any r0 2 N with ⇡(q0) = �(p0) = r0,
if P is connected, then a lift, e� : P ! M , of � such
that e�(p0) = q0 exists i↵

�⇤(⇡1(P, p0)) ✓ ⇡⇤(⇡1(M, q0)),

as illustrated in the diagram below

M
⇡
✏✏

P

e� ==

�
// N i↵

⇡1(M, q0)
⇡⇤
✏✏

⇡1(P, p0)

66

�⇤
// ⇡1(N, r0)

Basic Assumption: For any covering, ⇡ : M ! N , if
N is connected then we also assume that M is connected.
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Using Proposition 9.14, we get

Proposition 9.16. If ⇡ : M ! N is a covering map
and N is simply connected, then ⇡ is a di↵eomorphism
(recall that M is connected); thus, M is di↵eomorphic
to the universal cover, eN , of N .

The following proposition shows that the universal cover-
ing of a space covers every other covering of that space.
This justifies the terminology “universal covering.”

Proposition 9.17. Say ⇡1 : M1 ! N and
⇡2 : M2 ! N are two coverings of N , with N con-
nected. Every homomorphism, � : M1 ! M2, between
these two coverings is a covering map. As a conse-
quence, if ⇡ : eN ! N is a universal covering of N ,
then for every covering, ⇡0 : M ! N , of N , there is a
covering, � : eN ! M , of M .
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The notion of deck-transformation group of a covering is
also useful because it yields a way to compute the funda-
mental group of the base space.

Definition 9.10. If ⇡ : M ! N is a covering map, a
deck-transformation is any di↵eomorphism,
� : M ! M , such that ⇡ = ⇡ � �, that is, the following
diagram commutes:

M �
//

⇡
!!

M
⇡

}}

N

.

Note that deck-transformations are just automorphisms
of the covering map.

The commutative diagram of Definition 9.10 means that
a deck transformation permutes the elements of every fi-
bre. It is immediately verified that the set of deck trans-
formations of a covering map is a group denoted �⇡ (or
simply, �), called the deck-transformation group of the
covering.
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Observe that any deck transformation � is a lift of ⇡
through ⇡ as shown below.

M 3 p
⇡
✏✏

p 2 M

� 88

⇡
// N 3 q

Consequently, if M is connected, by Proposition 9.12 (1),
every deck-transformation is determined by its value at a
single point, say p.

So, the deck-transformations are determined by their ac-
tion on each point of any fixed fibre, ⇡�1(q), with q 2 N .

Since the fibre ⇡�1(q) is countable, � is also countable,
that is, a discrete Lie group.

Moreover, if M is compact, as each fibre, ⇡�1(q), is com-
pact and discrete, it must be finite and so, the deck-
transformation group is also finite.
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It can also be shown that �⇡ operates without fixed
points , which means that if � 2 �⇡ is not the identity
map, then � has not fixed points.

The following proposition gives a useful method for de-
termining the fundamental group of a manifold.

Proposition 9.18. If ⇡ : fM ! M is the universal
covering of a connected manifold, M , then the deck-
transformation group, e�, is isomorphic to the funda-
mental group, ⇡1(M), of M .

Remark: When ⇡ : fM ! M is the universal covering
of M , it can be shown that the group e� acts simply and
transitively on every fibre, ⇡�1(q).

This means that for any two elements, x, y 2 ⇡�1(q),
there is a unique deck-transformation, � 2 e� such that
�(x) = y.
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So, there is a bijection between ⇡1(M) ⇠= e� and the fibre
⇡�1(q).

Proposition 9.13 together with previous observations im-
plies that if the universal cover of a connected (compact)
manifold is compact, then M has a finite fundamental
group.

We will use this fact later, in particular, in the proof of
Myers’ Theorem.
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