Chapter 9

Partitions of Unity, Covering Maps &

9.1 Partitions of Unity

To study manifolds, it is often necessary to construct var-
ious objects such as functions, vector fields, Riemannian
metrics, volume forms, etc., by gluing together items con-
structed on the domains of charts.

Partitions of unity are a crucial technical tool in this glu-
INg process.
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The first step is to define “bump functions” (also called
plateau functions). For any r > 0, we denote by B(r)
the open ball

B(r)={(z1,...,z,) €ER" | 25 +--- + 22 <7},

and by B(r) = {(z1,...,2,) ER" [ 27+ + a7 <71},
its closure.

Given a topological space, X, for any function,
f: X — R, the support of f, denoted supp f, is the
closed set

supp f = {zx € X | f(x) # 0}.
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Proposition 9.1. There is a smooth function,
b: R" — R, so that

(1 ifzeB@)
b(x)_{o if z € R" — B(2).

See Figures 9.1 and 9.2.
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Figure 9.1: The graph of b: R — R used in Proposition 9.1.
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Figure 9.2: The graph of b: R? — R used in Proposition 9.1.

Proposition 9.1 yields the following useful technical result:
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Proposition 9.2. Let M be a smooth manifold. For
any open subset, U C M, any p € U and any smooth
function, f: U — R, there exist an open subset, V,
with p € V and a smooth function, f: M — R, de-
fined on the whole of M, so that V is compact,

VCu, supp f C U

and

~

flq) = f(q), forallq e V.
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If X is a (Hausdorff) topological space, a family, {U, }aer,
of subsets U, of X is a cover (or covering) of X iff

X =U,e; Ua.

A cover, {U, }qe1, such that each U, is open is an open
cover.

If {U,}aer is a cover of X, for any subset, J C I, the
subfamily {U,}aes is a subcover of {U,}aer if X =
Uaes Uas iie., {Us}aeys is still a cover of X.

Given a cover {V3}ses, we say that a family {U, }aer 18
a refinement of {Vs}ses if it is a cover and if there is a
function, h: I — J, so that Uy C V), for all a € 1.

A family {U,}.er of subsets of X is locally finite iff for

every point, p € X, there is some open subset, U, with
p € U, so that UNU, # 0 for only finitely many o € I.
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A space, X, is paracompact iff every open cover has an
open locally finite refinement.

Remark: Recall that a space, X, is compact iff it is
Hausdorft and if every open cover has a finite subcover.
Thus, the notion of paracompactness (due to Jean
Dieudonné) is a generalization of the notion of compact-
ness.

Recall that a topological space, X, is second-countable if
it has a countable basis, i.e., if there is a countable family
of open subsets, {U;};>1, so that every open subset of X
1s the union of some of the U;’s.

A topological space, X, if locally compact ift it is Haus-
dorff and for every a € X, there is some compact subset,
K, and some open subset, U, with a € U and U C K.

As we will see shortly, every locally compact and second-
countable topological space is paracompact.
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[t is important to observe that every manifold (even not
second-countable) is locally compact.

Definition 9.1. Let M be a (smooth) manifold. A par-
tition of unity on M is a family, {f;}ic;, of smooth
functions on M (the index set I may be uncountable)
such that

(a) The family of supports, {supp f;}icrs, is locally finite.

(b) For all ¢ € I and all p € M, we have 0 < fi(p) < 1,
and

Zfz(p) =1, foreverypée M.

iel
Note that condition (b) implies that {supp f;}ics is a
cover of M. If {U,}aey is a cover of M, we say that
the partition of unity { f;}ier is subordinate to the cover

{Uq}aes if {supp fi}ier is a refinement of {U, }ae .

When I = J and supp f; C U;, we say that {f;}ier is
subordinate to {U,}acr with the same index set as the
partition of unity.
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In Definition 9.1, by (a), for every p € M, there is some
open set, U, with p € U and U meets only finitely many
of the supports, supp f;.

So, fi(p) # 0 for only finitely many ¢ € I and the infinite
sum » .., fi(p) is well defined.

Proposition 9.3. Let X be a topological space which
is second-countable and locally compact (thus, also
Hausdorff). Then, X is paracompact. Moreover, ev-
ery open cover has a countable, locally finite refine-
ment consisting of open sets with compact closures.
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Remarks:

1. Proposition 9.3 implies that a second-countable, lo-
cally compact (Hausdorff) topological space is the union
of countably many compact subsets. Thus, X is count-
able at infinity, a notion that we already encountered
in Proposition 5.11 and Theorem 5.14.

2. A manifold that is countable at infinity has a count-
able open cover by domains of charts. It follows that
M is second-countable. Thus, for manifolds, second-
countable is equivalent to countable at infinity.

Recall that we are assuming that our manifolds are Haus-
dorff and second-countable.
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Theorem 9.4. Let M be a smooth manifold and let
{Us}aer be an open cover for M. Then, there is a
countable partition of unity, {fi}i>1, subordinate to
the cover {U,}acr and the support, supp f;, of each f;
1S compact.

If one does not require compact supports, then there is
a partition of unity, { fatacr, subordinate to the cover
{Uq}aer with at most countably many of the f., not
identically zero. (In the second case, supp f, C U,.)

We close this section by stating a famous theorem of
Whitney whose proof uses partitions of unity.

Theorem 9.5. (Whitney, 1935) Any smooth mani-
fold (Hausdorff and second-countable), M, of dimen-

sion n 18 diffeomorphic to a closed submanifold of
R2n—l—1.

For a proof, see Hirsch [23], Chapter 2, Section 2, Theo-
rem 2.14.
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9.2 Covering Maps and Universal Covering Manifolds

Covering maps are an important technical tool in alge-
braic topology and more generally in geometry.

We begin with covering maps.

Definition 9.2. A map, m: M — N, between two
smooth manifolds is a covering map (or cover) ift

(1) The map 7 is smooth and surjective.

(2) For any ¢ € N, there is some open subset, V' C N,
so that ¢ € V' and

V) = U U,

where the U, are pairwise disjoint open subsets, U; C
M, and w: U; — V is a diffeomorphism for every
1 € I. We say that V' is evenly covered.

The manifold, M, is called a covering manifold of N.
See Figure 9.3.
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Figure 9.3: Two examples of a covering map. The left illustration is 7: R — S! with
m(t) = (cos(2rt),sin(27t)), while the right illustration is the 2-fold antipodal covering of
RP? by S2.



042 CHAPTER 9. PARTITIONS OF UNITY, COVERING MAPS ®

A homomorphism of coverings, m: M; — N and
mo: My — N, is a smooth map, ¢: My — Ms, so that

T = T O @,

that is, the following diagram commutes:

© M.

M,
o™
N

We say that the coverings m: M; — N and

mo: My — N are equivalent iff there is a homomorphism,
¢. My — Ms, between the two coverings and ¢ is a
diffeomorphism.

As usual, the inverse image, 77 1(g), of any element g € N
is called the fibre over q, the space NN is called the base
and M 1is called the covering space.
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As 7 is a covering map, each fibre is a discrete space.

Note that a homomorphism maps each fibre 7; *(¢) in M,
to the fibre 7, '(¢(q)) in My, for every q € M.

Proposition 9.6. Let m: M — N be a covering map.
If N is connected, then all fibres, 7 *(q), have the
same cardinality for all g € N. Furthermore, if 7=1(q)
1s not finite then it 1s countably infinite.

When the common cardinality of fibres is finite it is called
the multiplicity of the covering (or the number of sheets).

For any integer, n > 0, the map, z — 2", from the unit
circle St = U(1) to itself is a covering with n sheets. The
map,

t: > (cos(2mt),sin(27t)),

is a covering, R — S', with infinitely many sheets.
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It is also useful to note that a covering map, w: M — N,
is a local diffeomorphism (which means that
dry: TyM — TN is a bijective linear map for every

peM).

The crucial property of covering manifolds is that curves
in NV can be lifted to M, in a unique way.

Definition 9.3. Let m: M — N be a covering map,

and let PP be a Hausdoril topological space. For any map
o: P — N, alift of ¢ through misamap ¢: P — M
so that

¢ =Tmog,

as in the following commutative diagram.
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We would like to state three propositions regarding cov-
ering spaces.

However, two of these propositions use the notion of a
simply connected manifold.

Intuitively, a manifold is simply connected if it has no
“holes.”

More precisely, a manifold is simply connected if it has a
trivial fundamental group.

A fundamental group is a homotopic loop group.
Therefore, given topological spaces X and Y, we need

to define a homotopy between two continuous functions
f: X—=Yandg: X —»Y.
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Definition 9.4. Let X and Y be topological spaces,
f: X =Y and g: X — Y be two continuous functions,
and let I = [0,1]. We say that f is homotopic to g
if there exists a continuous function F': X x [ — Y
(where X x [ is given the product topology) such that
F(z,0) = f(x) and F(z,1) = g(x) for all x € X. The
map F'is a homotopy from f to g, and this is denoted
f ~pg If fand g agree on A C X, ie. f(a) = g(a)
whenever a € A, we say [ is homotopic to g relative
A, and this is denoted f ~p g rel A.

A homotopy provides a means of continuously deforming
f into g through a family {f;} of continuous functions
fi: X — Y where t € [0,1] and fy(z) = f(x) and
filz) =g(z) for all z € X.
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For example, let D be the unit disk in R? and consider
two continuous functions f: I — D and g: [ — D.

Then f ~p g via the straight line homotopy F': [ X I —
D, where F(xz,t) = (1 —t)f(x) + tg(z).

Proposition 9.7. Let X and Y be topological spaces
and let A C X. Homotopy (or homotopy rel A) is
an equivalence relation on the set of all continuous
functions from X to Y.

The next two propositions show that homotopy behaves
well with respect to composition.

Proposition 9.8. Let X, Y, and Z be topological
spaces and let A C X. For any continuous functions

fX—=>Y, g X =Y, andh:Y — Z,if f ~p g rel
A, then ho f ~pop hog rel A as maps from X to Z.

f

X y .7

)
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Proposition 9.9. Let X, Y, and Z be topological
spaces and let B C Y. For any continuous func-
tions f: X — Y, g:Y — Z, and h:Y — Z, if
g ~c h rel B, then go f ~p ho f rel f 1B, where
Flz,1) = G(f(2),t).

In order to define the fundamental group of a topological
space X, we recall the definition of a loop.

Definition 9.5. Let X be a topological space, p be a
point in X, and let I = [0,1]. We say « is a loop based
at p = a(0) if « is a continuous map «: I — X with

a(0) = a(l).
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Given a topological space X, choose a point p € X and
form .S, the set of all loops in X based at p.

By applying Proposition 9.7, we know that the relation
of homotopy relative to {0, 1} is an equivalence relation
on S. This leads to the following definition.

Definition 9.6. Let X be a topological space, p be a
point in X, and let a be a loop in X based at p. The
set of all loops homotopic to « relative to {0,1} is the
homotopy class of o and is denoted («).

Definition 9.7. Given two loops a and (5 in a topolog-
ical space X based at p, the product a- 5 is a loop in X
based at p defined by
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The product of loops gives rise to the product of homo-
topy classes where

We leave it the reader to check that the multiplication of
homotopy classes is well defined and associative, namely

(a-B) () = () - (B-7) whenever «, 3, and ~y are loops
in X based at p.

Let (e) be the homotopy class of the constant loop in
X based at p, and define the inverse of (o) as (a)™! =
(a1, where o 1(t) = a(1 — t).

With these conventions, the product operation between
homotopy classes gives rise to a group. In particular,
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Proposition 9.10. Let X be a topological space and
let p be a point in X. The set of homotopy classes of
loops in X based at p is a group with multiplication

given by () - (B) = {(a - )

Definition 9.8. Let X be a topological space and p a
point in X . The group of homotopy classes of loops in X
based at p is the fundamental group of X based at p,
and is denoted by m1(X, p).

If we assume X is path connected, we can show that
T (X, p) = 7 (X, q) for any points p and ¢ in X. There-
fore, when X is path connected, we simply write m(X).
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For example, it can be shown that m1(S') = Z, and for
the 2-torus T?, m(T?) = Z x Z.

These are abelian groups, but in general the fundamental
group is not abelian.

A simple example is a compact surface of genus 2, that
is, the result of gluing two tori along a disc.

In this case the fundamental group 71 (Ms) is the quotient
of the free group on four generators {aq, by, as, bo} by the
subgroup generated by

alblaflbflagbgaglbgl.

Definition 9.9. If X is path connected topological space
and 71 (X) = (e), (which is also denoted as 7 (X) = (0)),
we say X is simply connected.

In other words, every loop in X can be shrunk in a con-
tinuous manner within X to its basepoint.
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Examples of simply connected spaces include R" and S™
whenever n > 2.

On the other hand, the torus and the circle are not simply
connected. See Figures 9.4 and 9.5.

Figure 9.4: The torus is not simply connected. The loop at p is homotopic to a point, but
the loop at ¢ is not.
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Figure 9.5: The unit sphere S? is simply connected since every loop can be continuously
deformed to a point. This deformation is represented by the map F: I x I — S? where
F(z,0) =« and F(z,1) =p.

We now state without proot the following results:
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Proposition 9.11. [f m: M — N 1s a covering map,
then for every smooth curve, a: I — N, in N (with
0 € I) and for any point, ¢ € M, such that 7(q) =
a(0), there is a unique smooth curve, a: I — M,
lifting o through m such that a(0) = q. See Figure

9.6.
(—

=
-

m(q)

0
| a

Figure 9.6: The lift of a curve @ when 7: R — S! is 7(t) = (cos(2nt), sin(27t)).
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Proposition 9.12. Let m: M — N be a covering map
and let ¢: P — N be a smooth map. For any py € P,
any qo € M and any ro € N with w(qy) = ¢(py) = 70,
the following properties hold:

(1) If P is connected then there is al most one lift,
¢: P— M, of ¢ through m such that ¢(py) = qo.

(2) If P is simply connected, then such a lift exists.

_ M > q

s
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Theorem 9.13. Every connected manifold, M, pos-
sesses a simply connected covering map, w: M — M,
that s, with M simply connected. Any two simply
connected coverings of N are equivalent.

In view of Theorem 9.13, it is legitimate to speak of the
simply connected cover, M, of M, also called universal
covering (or cover) of M.

[t can be shown that m(SO(3)) = Z/27Z, so SO(3) is
not simply-connected (but it is path-connected).

The universal cover of SO(3) is the group SU(2) of unit
quaternions.

More generally, for n > 3, SO(n) is path-connected and
m(SO(n)) = Z /27, so SO(n) is not simply-connected.

The universal cover of SO(n) is a group denoted Spin(n)
and called a spin group. It is a matrix Lie group.
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The group SL(2, R) is path-connected and m (SL(2,R)) =
Z, so SL(2,R) is not simply-connected.

The universal cover of SL(2, R), often denoted S isa Lie
group but not a matrix Lie group.

For n > 3, the group SL(n,R) is path-connected and
m1(SL(n,R)) = Z/27Z, so SL(n, R) is not simply-connected.

On the other hand, SL(n, C) is path-connected and simply-
connected for all n > 1.

For more on all this, see Fulton and Harris [17] (Chapters
10, 11, 23).
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Given any point, p € M, let w1(M, p) denote the funda-
mental group of M with basepoint p.

If : M — N is a smooth map, for any p € M, if we
write ¢ = ¢(p), then we have an induced group homo-
morphism

¢y (M, p) = m(N,q)

defined as follows. For every loop v in M based at p, the
map f o~y is a loop based at ¢ = ¢(p) in N, so let

o«([7]) = [f 0]

It is easily verified that the map ¢, is well-defined, that
is, does not depend on the choice of the loop ~ in the
homotopy class [vy] € m (M, p), and that it is a group
homomorphism.
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Proposition 9.14. [f m: M — N 1s a covering map,
for every p € M, if g = w(p), then the induced homo-
morphism, m,: m(M,p) — (N, q), is injective.

Proposition 9.15. Let m: M — N be a covering map
and let o: P — N be a smooth map. For any py € P,
any qo € M and any ro € N with 7(qo) = ¢(po) = 70,
if P is connected, then a lift, ¢: P — M, of ¢ such
that ¢(po) = qo exists iff

3 /4]14 711<M7 QO)
) p s - //// jﬂ*
P N m1(P, po) 5~ m(N, o)

Basic Assumption: For any covering, w: M — N, if
IV 1s connected then we also assume that M 1s connected.
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Using Proposition 9.14, we get

Proposition 9.16. If m: M — N is a covering map
and N 1s stmply connected, then m 1s a diffeomorphism
(recall that M is connected); thus, M is diffeomorphic

to the universal cover, N, of N.

The following proposition shows that the universal cover-
ing of a space covers every other covering of that space.
This justifies the terminology “universal covering.”

Proposition 9.17. Say m1: M; — N and

mo: My — N are two coverings of N, with N con-
nected. Every homomorphism, ¢: My — M,, between
these two coverings is a covering map. As a conse-
quence, if m: N — N 1s a unwersal covering of N,

then for every covering, @' M — N, of N, there is a
covering, ¢: N — M, of M.
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The notion of deck-transformation group of a covering is
also useful because it yields a way to compute the funda-
mental group of the base space.

Definition 9.10.1If 7: M — N is a covering map, a
deck-transformation is any diffeomorphism,

¢: M — M, such that m = 7w o ¢, that is, the following
diagram commutes:

M—2 M.
N
N

Note that deck-transformations are just automorphisms
of the covering map.

The commutative diagram of Definition 9.10 means that
a deck transformation permutes the elements of every fi-
bre. It is immediately verified that the set of deck trans-
formations of a covering map is a group denoted I'; (or
simply, I'), called the deck-transformation group of the
covering.
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Observe that any deck transformation ¢ is a lift of 7
through 7 as shown below.

M>p
e

peM——N>¢q

Consequently, if M is connected, by Proposition 9.12 (1),
every deck-transformation is determined by its value at a
single point, say p.

So, the deck-transformations are determined by their ac-
tion on each point of any fixed fibre, 771(g), with ¢ € N.

Since the fibre 771(g) is countable, I" is also countable,
that is, a discrete Lie group.

Moreover, if M is compact, as each fibre, 77 1(q), is com-
pact and discrete, it must be finite and so, the deck-
transformation group is also finite.
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It can also be shown that I, operates without fixed
points, which means that if ¢ € I'; is not the identity
map, then ¢ has not fixed points.

The following proposition gives a useful method for de-
termining the fundamental group of a manifold.

Proposition 9.18. If «: M — M is the universal
covering of a connected manifold, M, then the deck-
transformation group, I', is isomorphic to the funda-
mental group, m (M), of M.

Remark: When 7: M — M is the universal covering
of M, it can be shown that the group I' acts simply and
transitively on every fibre, 7~ 1(q).

This means that for any two elements, z,y € 7 (q),
there is a unique deck-transformation, ¢ € I' such that

¢(x) =y.
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So, there is a bijection between (M) 2 T and the fibre
™ (q).

Proposition 9.13 together with previous observations im-
plies that if the universal cover of a connected (compact)
manifold is compact, then M has a finite fundamental

group.

We will use this fact later, in particular, in the proof of
Myers’ Theorem.
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