Chapter 3

Adjoint Representations and the Derivative of exp

3.1 The Adjoint Representations Ad and ad

Given any two vector spaces E and F, recall that the vector space of all linear maps from E to F is denoted by Hom(E,F).

The vector space of all invertible linear maps from E to itself is a group denoted $\mathbf{GL}(E)$.

When $E = \mathbb{R}^n$, we often denote $\mathbf{GL}(\mathbb{R}^n)$ by $\mathbf{GL}(n, \mathbb{R})$ (and if $E = \mathbb{C}^n$, we often denote $\mathbf{GL}(\mathbb{C}^n)$ by $\mathbf{GL}(n, \mathbb{C})$).

The vector space $M_n(\mathbb{R})$ of all $n \times n$ matrices is also denoted by $\mathfrak{gl}(n,\mathbb{R})$ (and $M_n(\mathbb{C})$ by $\mathfrak{gl}(n,\mathbb{C})$).

Then, $\mathbf{GL}(\mathfrak{gl}(n,\mathbb{R}))$ is the vector space of all invertible linear maps from $\mathfrak{gl}(n,\mathbb{R}) = \mathrm{M}_n(\mathbb{R})$ to itself.

For any matrix $A \in M_A(\mathbb{R})$ (or $A \in M_A(\mathbb{C})$), define the maps $L_A \colon M_n(\mathbb{R}) \to M_n(\mathbb{R})$ and $R_A \colon M_n(\mathbb{R}) \to M_n(\mathbb{R})$ by

$$L_A(B) = AB$$
, $R_A(B) = BA$, for all $B \in M_n(\mathbb{R})$.

Observe that $L_A \circ R_B = R_B \circ L_A$ for all $A, B \in M_n(\mathbb{R})$.

For any matrix $A \in \mathbf{GL}(n, \mathbb{R})$, let

$$\mathbf{Ad}_A \colon \mathrm{M}_n(\mathbb{R}) \to \mathrm{M}_n(\mathbb{R}) \pmod{\mathrm{p}}$$

be given by

$$\mathbf{Ad}_A(B) = ABA^{-1}$$
 for all $B \in \mathrm{M}_n(\mathbb{R})$.

Observe that $\mathbf{Ad}_A = L_A \circ R_{A^{-1}}$ and that \mathbf{Ad}_A is an invertible linear map with inverse $\mathbf{Ad}_{A^{-1}}$.

The restriction of \mathbf{Ad}_A to invertible matrices $B \in \mathbf{GL}(n, \mathbb{R})$ yields the map

$$\mathbf{Ad}_A \colon \mathbf{GL}(n,\mathbb{R}) \to \mathbf{GL}(n,\mathbb{R})$$

also given by

$$\mathbf{Ad}_A(B) = ABA^{-1}$$
 for all $B \in \mathbf{GL}(n, \mathbb{R})$.

This time, observe that \mathbf{Ad}_A is a group homomorphism (with respect to multiplication), since

$$\mathbf{Ad}_{A}(BC) = ABCA^{-1}$$
$$= ABA^{-1}ACA^{-1} = \mathbf{Ad}_{A}(B)\mathbf{Ad}_{A}(C).$$

In fact, \mathbf{Ad}_A is a group isomorphism (because its inverse is $\mathbf{Ad}_{A^{-1}}$).

Beware that \mathbf{Ad}_A is **not** a linear map on $\mathbf{GL}(n, \mathbb{R})$ because $\mathbf{GL}(n, \mathbb{R})$ is not a vector space!

However, $\mathbf{GL}(n, \mathbb{R})$ is an open subset of $M_n(\mathbb{R})$, because it is the complement of the set of singular matrices

$${A \in M_n(\mathbb{R}) \mid \det(A) = 0},$$

a closed set, since it is the inverse image of the closed set {0} by the determinant function, which is continuous.

Since $\mathbf{GL}(n,\mathbb{R})$ is an open subset of $\mathrm{M}_n(\mathbb{R})$, for every $B \in \mathbf{GL}(n,\mathbb{R})$, there is an open ball $B(B,\eta) \subseteq \mathbf{GL}(n,\mathbb{R})$ such that $B + X \in B(B,\eta)$ for all $X \in \mathrm{M}_n(\mathbb{R})$ with $\|X\| < \eta$, so $\mathbf{Ad}_A(B + X)$ is well defined and

$$\mathbf{Ad}_A(B+X) - \mathbf{Ad}_A(B)$$

= $A(B+X)A^{-1} - ABA^{-1} = AXA^{-1}$,

which shows that $d(\mathbf{Ad}_A)_B$ exists and is given by

$$d(\mathbf{Ad}_A)_B(X) = AXA^{-1}$$
, for all $X \in M_n(\mathbb{R})$.

In particular, for B = I, we see that the derivative $d(\mathbf{Ad}_A)_I$ of \mathbf{Ad}_A at I is a linear map of $\mathfrak{gl}(n, \mathbb{R}) = \mathrm{M}_n(\mathbb{R})$ denoted by $\mathrm{Ad}(A)$ or Ad_A (or Ad_A), and given by

$$Ad_A(X) = AXA^{-1}$$
 for all $X \in \mathfrak{gl}(n, \mathbb{R})$.

The inverse of Ad_A is $Ad_{A^{-1}}$, so $Ad_A \in \mathbf{GL}(\mathfrak{gl}(n,\mathbb{R}))$.

Note that

$$Ad_{AB} = Ad_A \circ Ad_B$$

so the map $A \mapsto \mathrm{Ad}_A$ is a group homomorphism denoted

Ad:
$$GL(n, \mathbb{R}) \to GL(\mathfrak{gl}(n, \mathbb{R})).$$

The homomorphism Ad is called the *adjoint representation* of $\mathbf{GL}(n, \mathbb{R})$.

We also would like to compute the derivative $d(Ad)_I$ of Ad at I.

For all $X, Y \in M_n(\mathbb{R})$, with ||X|| small enough we have $I + X \in \mathbf{GL}(n, \mathbb{R})$, and

$$Ad_{I+X}(Y) - Ad_{I}(Y) - (XY - YX)$$

= $(YX^{2} - XYX)(I + X)^{-1}$.

Then, if we let

$$\epsilon(X,Y) = \frac{(YX^2 - XYX)(I+X)^{-1}}{\|X\|},$$

we proved that for ||X|| small enough

$$\operatorname{Ad}_{I+X}(Y) - \operatorname{Ad}_{I}(Y) = (XY - YX) + \epsilon(X, Y) \|X\|,$$

with $\|\epsilon(X,Y)\| \le 2\|X\| \|Y\| \|(I+X)^{-1}\|$, and with $\epsilon(X,Y)$ linear in Y.

128 CHAPTER 3. ADJOINT REPRESENTATIONS AND THE DERIVATIVE OF exp

Let $ad_X : \mathfrak{gl}(n,\mathbb{R}) \to \mathfrak{gl}(n,\mathbb{R})$ be the linear map given by

$$ad_X(Y) = XY - YX = [X, Y],$$

and ad be the linear map

ad:
$$\mathfrak{gl}(n,\mathbb{R}) \to \operatorname{Hom}(\mathfrak{gl}(n,\mathbb{R}),\mathfrak{gl}(n,\mathbb{R}))$$

given by

$$ad(X) = ad_X$$
.

We also define $\epsilon_X \colon \mathfrak{gl}(n,\mathbb{R}) \to \mathfrak{gl}(n,\mathbb{R})$ as the linear map given by

$$\epsilon_X(Y) = \epsilon(X,Y).$$

If $\|\epsilon_X\|$ is the operator norm of ϵ_X , we have

$$\|\epsilon_X\| = \max_{\|Y\|=1} \|\epsilon(X,Y)\| \le 2 \|X\| \|(I+X)^{-1}\|.$$

Then, the equation

$$\operatorname{Ad}_{I+X}(Y) - \operatorname{Ad}_{I}(Y) = (XY - YX) + \epsilon(X,Y) ||X||,$$
 which holds for all Y , yields

$$Ad_{I+X} - Ad_I = ad_X + \epsilon_X ||X||,$$

and because $\|\epsilon_X\| \le 2 \|X\| \|(I+X)^{-1}\|$, we have $\lim_{X\to 0} \epsilon_X = 0$, which shows that $d(\mathrm{Ad})_I(X) = \mathrm{ad}_X$; that is,

$$d(\mathrm{Ad})_I = \mathrm{ad}.$$

The notation ad(X) (or ad(X)) is also used instead ad_X .

130 CHAPTER 3. ADJOINT REPRESENTATIONS AND THE DERIVATIVE OF exp

The map ad is a linear map

ad:
$$\mathfrak{gl}(n,\mathbb{R}) \to \operatorname{Hom}(\mathfrak{gl}(n,\mathbb{R}),\mathfrak{gl}(n,\mathbb{R}))$$

called the *adjoint representation* of $\mathfrak{gl}(n,\mathbb{R})$.

One will check that

$$\operatorname{ad}([X, Y]) = \operatorname{ad}(X)\operatorname{ad}(Y) - \operatorname{ad}(Y)\operatorname{ad}(X)$$
$$= [\operatorname{ad}(X), \operatorname{ad}(Y)],$$

the Lie bracket on linear maps on $\mathfrak{gl}(n,\mathbb{R})$.

This means that ad is a Lie algebra homomorphism. It can be checked that this property is equivalent to the following identity known as the *Jacobi identity*:

$$[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0,$$

for all $X, Y, Z \in \mathfrak{gl}(n, \mathbb{R})$.

Note that

$$ad_X = L_X - R_X.$$

Finally, we prove a formula relating Ad and ad through the exponential. **Proposition 3.1.** For any $X \in M_n(\mathbb{R}) = \mathfrak{gl}(n, \mathbb{R})$, we have

$$Ad_{e^X} = e^{ad_X} = \sum_{k=0}^{\infty} \frac{(ad_X)^k}{k!};$$

that is,

$$e^{X}Ye^{-X} = e^{\operatorname{ad}_{X}}Y$$

$$= Y + [X, Y] + \frac{1}{2!}[X, [X, Y]] + \frac{1}{3!}[X, [X, [X, Y]]]$$

$$+ \cdots$$

for all $X, Y \in M_n(\mathbb{R})$

3.2 The Derivative of exp

It is also possible to find a formula for the derivative $d \exp_A$ of the exponential map at A, but this is a bit tricky.

It can be shown that

$$d(\exp)_A = e^A \sum_{k=0}^{\infty} \frac{(-1)^k}{(k+1)!} (\operatorname{ad}_A)^k,$$

SO

$$d(\exp)_A(B) = e^A \left(B - \frac{1}{2!} [A, B] + \frac{1}{3!} [A, [A, B]] - \frac{1}{4!} [A, [A, A, B]] + \cdots \right).$$

134 CHAPTER 3. ADJOINT REPRESENTATIONS AND THE DERIVATIVE OF exp It is customary to write

$$\frac{\mathrm{id} - e^{-\mathrm{ad}_A}}{\mathrm{ad}_A}$$

for the power series

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(k+1)!} (\text{ad}_A)^k,$$

and the formula for the derivative of exp is usually stated as

$$d(\exp)_A = e^A \left(\frac{\mathrm{id} - e^{-\mathrm{ad}_A}}{\mathrm{ad}_A} \right).$$

The formula for the exponential tells us when the derivative $d(\exp)_A$ is invertible.

Indeed, it is easy to see that if the eigenvalues of the matrix X are $\lambda_1, \ldots, \lambda_n$, then the eigenvalues of the matrix

$$\frac{\mathrm{id} - e^{-X}}{X} = \sum_{k=0}^{\infty} \frac{(-1)^k}{(k+1)!} X^k$$

are

$$\frac{1 - e^{-\lambda_j}}{\lambda_j}$$
 if $\lambda_j \neq 0$, and 1 if $\lambda_j = 0$.

It follows that the matrix $\frac{\mathrm{id}-e^{-X}}{X}$ is invertible iff no λ_j if of the form $k2\pi i$ for some $k \in \mathbb{Z} - \{0\}$, so $d(\exp)_A$ is invertible iff no eigenvalue of ad_A is of the form $k2\pi i$ for some $k \in \mathbb{Z} - \{0\}$.

However, it can also be shown that if the eigenvalues of A are $\lambda_1, \ldots, \lambda_n$, then the eigenvalues of ad_A are the $\lambda_i - \lambda_j$, with $1 \leq i, j \leq n$.

In conclusion, $d(\exp)_A$ is invertible iff for all i, j we have

$$\lambda_i - \lambda_j \neq k2\pi i, \quad k \in \mathbb{Z} - \{0\}.$$
 (*)

This suggests defining the following subset $\mathcal{E}(n)$ of $M_n(\mathbb{R})$.

The set $\mathcal{E}(n)$ consists of all matrices $A \in M_n(\mathbb{R})$ whose eigenvalue $\lambda + i\mu$ of A ($\lambda, \mu \in \mathbb{R}$) lie in the horizontal strip determined by the condition $-\pi < \mu < \pi$.

Then, it is clear that the matrices in $\mathcal{E}(n)$ satisfy the condition (*), so $d(\exp)_A$ is invertible for all $A \in \mathcal{E}(n)$.

By the inverse function theorem, the exponential map is a local diffeomorphism between $\mathcal{E}(n)$ and $\exp(\mathcal{E}(n))$.

Remarkably, more is true: the exponential map is diffeomorphism between $\mathcal{E}(n)$ and $\exp(\mathcal{E}(n))$ (in particular, it is a bijection).

This takes quite a bit of work to be proved. For example, see Mnemné and Testard [40]. We have the following result.

Theorem 3.2. The restriction of the exponential map to $\mathcal{E}(n)$ is a diffeomorphism of $\mathcal{E}(n)$ onto its image $\exp(\mathcal{E}(n))$. Furthermore, $\exp(\mathcal{E}(n))$ consists of all invertible matrices that have no real negative eigenvalues; it is an open subset of $\mathbf{GL}(n,\mathbb{R})$; it contains the open ball $B(I,1) = \{A \in \mathbf{GL}(n,\mathbb{R}) \mid ||A-I|| < 1\}$, for every matrix norm || || on $n \times n$ matrices.

Theorem 3.2 has some practical applications because there are algorithms for finding a real log of a matrix with no real negative eigenvalues; for more on applications of Theorem 3.2 to medical imaging, see Chapter ??.