Chapter 2

Review of Derivatives, Series, and
Vector Fields

2.1 The Derivative of a Function Between Normed Vec-
tor Spaces

In most cases, £ = R" and F' = R™. However, it is
sometimes necessary to allow £ and F' to be infinite di-
mensional.

Let E¥ and F' be two normed vector spaces, let A C E
be some open subset of E/, and let a € A be some element
of A. Even though a is a vector, we may also call it a
point.
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The idea behind the derivative of the function f at a is
that it is a linear approrimation of f in a small open
set around a.

The difficulty is to make sense of the quotient

fla+n)— f(a)
h

where h is a vector.
We circumvent this difficulty in two stages.

A first possibility is to consider the directional derivative
with respect to a vector u # 0 in E.

We can consider the vector f(a+tu)— f(a), wheret € R
(or t € C). Now,

fla+tu) — fla)
t

makes sense.



2.1. THE DERIVATIVE OF A FUNCTION BETWEEN NORMED VECTOR SPACES57

The idea is that the map from (7, s) to F' given by
t— fla+tu)

defines a curve (segment) in I, and the directional deriva-
tive D, f(a) defines the direction of the tangent line at a
to this curve. See Figure 2.1.

Figure 2.1: Let f: R? — R. The graph of f is the peach surface in R?, and t — f(a + tu) is
the embedded orange curve connecting f(a) to f(a + tu). Then D, f(a) is the slope of the
pink tangent line in the direction of w.
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Definition 2.1. Let £ and F’ be two normed spaces, let
A be a nonempty open subset of E/, and let f: A — F
be any function. For any a € A, for any u # 0 in F,
the directional derivative of f at a w.r.t. the vector u,
denoted by D, f(a), is the limit (if it exists)

o flastn) — fo

t—0,telU t

)

where U = {t e R |a+tu € A, t # 0}
(or U={teCla+tuec A, t#0})

Since the map t — a+tw is continuous, and since A—{a}
is open, the inverse image U of A — {a} under the above
map is open, and the definition of the limit in Definition
2.1 makes sense.
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The directional derivative is sometimes called the Gateaux
derivative.

In the special case where £ = R and F' = R, and we let
u =1 (i.e., the real number 1, viewed as a vector), it is
immediately verified that Dy f(a) = f'(a).

When £ =R (or E = C) and F is any normed vector
space, the derivative Dy f(a), also denoted by f/(a), pro-
vides a suitable generalization of the notion of derivative.

However, when F has dimension > 2. directional deriva-
tives present a serious problem, which is that their defi-
nition is not sufficiently uniform.

A function can have all directional derivatives at a, and
yet not be continuous at a. Two functions may have all
directional derivatives in some open sets, and yet their
composition may not.

Thus, we introduce a more uniform notion.
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Given two normed vector spaces E and F', recall that a
linear map f: E — F'is continuous iff there is some
constant C' > 0 such that

| f(w)| < Cllu| foraluekF.

The set of continuous linear maps from £ to F'is a vector
space denoted L(F; F'), and the set of all linear maps
from E to F is a vector space denoted by Hom(E, F).

If F is finite-dimensional, then £(E; F') = Hom(E, F)),
but if E is infinite-dimensional, then there may be linear

maps that are not continuous, and in general the space
L(FE; F) is a proper subspace of Hom(E, F).
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Definition 2.2. Let £ and F’ be two normed spaces, let

A be a nonempty open subset of F/, and let
f: A — F beany function. For any a € A, we say that f
is differentiable at a € A if there is a linear continuous

map, L: F — F', and a function, €(h), such that

fla+h) = fla)+ L(h) + (h)]|n]]

for every a + h € A, where

lim e(h) =0,
h—0, heU

withU ={h€ E|a+he A h#0).

The linear map L is denoted by Df(a), or Df,, or df (a),
or df,, or f'(a), and it is called the Fréchet derivative,
or deriwative, or total deriwative, or total differential,
or differential, of f at a. See Figure 2.2.



62 CHAPTER 2. REVIEW OF DERIVATIVES, SERIES, AND VECTOR FIELDS

Figure 2.2: Let f: R? — R. The graph of f is the green surface in R®. The linear map
L = Df(a) is the pink tangent plane. For any vector h € R?, L(h) is approximately equal
to f(a+ h) — f(a). Note that L(h) is also the direction tangent to the curve t — f(a + tu).
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Since the map h — a + h from E to E is continuous,
and since A is open in F, the inverse image U of A —{a}
under the above map is open in £, and it makes sense to
say that

lim e(h) =0.
h—0, heU

Note that for every h € U, since h # 0, €(h) is uniquely
determined since

fla+h)— fla) — L(h)
17| |

e(h) =

and the value €(0) plays absolutely no role in this defini-
tion.

It does no harm to assume that €(0) = 0, and we will
assume this from now on.
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Note that the continuous linear map L is unique, if it
exists.

The following proposition shows that our new definition is
consistent with the definition of the directional derivative.

Proposition 2.1. Let E and F' be two normed spaces,
let A be a nonempty open subset of E, and let

f: A — F be any function. For any a € A, if Df(a)
1s defined, then f 1s continuous at a and | has a di-
rectional derivative Dy f(a) for every u # 0 in E.
Furthermore,

D.f(a) = Df(a)(u).

The uniqueness of L follows from Proposition 2.1.
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Also, when FE is of finite dimension, it is easily shown
that every linear map is continuous, and this assumption
is then redundant.

As an example, consider the map f: M, (R) — M,(R)
given by

f(A>:ATA_Ia

where M,,(R) denotes the vector space of all n x n ma-
trices with real entries equipped with any matrix norm,
since they are all equivalent.

For example, pick the Frobenius norm ||A|| , = \/tr(A"T A).
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We obtain
Df(A)H)=A"H+H'A, forall Aand H in M,(R).

If Df(a) exists for every a € A, we get a map
Df: A— L(E;F),

called the derivative of f on A, and also denoted by
df. Here, L(E; F') denotes the vector space of continuous
linear maps from E to F'.

We now consider a number of standard results about
derivatives.

A function f: E — F'is said to be affine if there is some
_>
linear map f : £ — F and some fixed vector ¢ € F',
such that
%
= f

f(u) (u) + ¢

%
for all u € E. We call f the linear map associated
with f.
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Proposition 2.2. Given two normed spaces E and
F,if f: E— F is a constant function, then
Df(a) = 0, for every a € E. If f: E — F is a

%
continuous affine map, then Df(a) = [, for every

%
a € E, where f 1is the linear map associated with f.

Proposition 2.3. Given a normed space E and a
normed vector space F', for any two functions

f,g: E — F, for every a € E, if Df(a) and Dg(a)
exist, then D(f + g)(a) and D(Af)(a) exist, and

D(f +g)(a) = Df(a) + Dg(a),
D(Af)(a) = ADf(a).
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Given two normed vector spaces (Ey, || ||;) and (Es, || ||,),
there are three natural and equivalent norms that can be
used to make F; X Es into a normed vector space:

L.
2.
3.

(w1, ug)
(w1, ug)

(w1, ug)

L= JJually + JJuzl]y.
2 2
o = (lwlli + [luzfl3)!2.

s = max(flually, [Juzally).

We usually pick the first norm.

If £, E5, and F' are three normed vector spaces, recall
that a bilinear map f: E4 X Ey — F' is continuous iff
there is some constant C' > 0 such that

| f(ug, uo)|| < CHuly |luelly for all uy € Ey and uy € Ey.
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Proposition 2.4. Given three normed vector spaces
Eq, E5, and F, for any continuous bilinear map

f: By x Ey — F, for every (a,b) € Ey X Ey, Df(a,b)
exists, and for every u € By and v € Ey,

D f(a,b)(u,v) = f(u,b) + f(a,v).
We now state the very usetul chain rule.

Theorem 2.5. Given three normed spaces E, F', and
G, let A be an open set in E, and let B an open set
in . For any functions f: A — F and g: B — G,
such that f(A) C B, for any a € A, if Df(a) exists
and Dg(f(a)) exists, then D(g o f)(a) exists, and

D(go f)(a) = Dg(f(a)) o Df(a).

Theorem 2.5 has many interesting consequences. We
mention one corollary:.
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Proposition 2.6. Given two normed spaces E and
F, let A be some open subset in E, let B be some
open subset in F', let f: A — B be a bijection from A
to B, and assume that Df exists on A and that Df™!
exists on B. Then, for every a € A,

Df ' (f(a)) = (Df(a)) ",

Proposition 2.6 has the remarkable consequence that the
two vector spaces F/ and F' have the same dimension.

In other words, a local property, the existence of a bijec-
tion f between an open set A of £ and an open set B
of F, such that f is differentiable on A and f~! is dif-
ferentiable on B, implies a global property, that the two
vector spaces F and F' have the same dimension.

Let us mention two more rules about derivatives that are
used all the time.
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Let ¢: GL(n,C) — M,(C) be the function (inversion)
defined on invertible n x n matrices by ¢(4) = AL
Then we have

dLA(H> = —A_lHA_l,

for all A € GL(n,C) and for all H € M,,(C).

Next, if f: M,(C) — M,(C) and g: M,,(C) — M,,(C)
are differentiable matrix functions, then

d(f9)a(B) = dfa(B)g(A) + f(A)dga(B),
for all A, B € M,,(C). This is known as the product rule.
When F is of finite dimension n, for any basis (u, . . . , uy,)

of E/, we can define the directional derivatives with respect
to the vectors in the basis (uq, ..., u,)
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This way, we obtain the definition of partial derivatives,
as follows.

Definition 2.3. For any two normed spaces E and F', if
F is of finite dimension n, for every basis (ug, . .., u,) for
E, for every a € E, for every function f: E — F', the
directional derivatives Dy f(a) (if they exist) are called
the partial derivatives of f with respect to the basis
(w1, ..., u,). The partial derivative Dy, f(a) is also de-

0
noted by 0;f(a), or a—gj(a).
The notation ——(a) for a partial derivative, although

(%j
customary and going back to Leibniz, is a “logical ob-
scenity.”

Indeed, the variable z; really has nothing to do with the
formal definition.

This is just another of these situations where tradition is
just too hard to overthrow!
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If both £ and F' are of finite dimension, for any basis
(u1,...,u,) of £ and any basis (vy,...,v,) of I, every
function f: E — F'is determined by m functions

fi: E—= R (or f;: E— C), where

f(ﬁl?) — fl(x)vl + e fm<x>vma

for every x € E.

Then, we get
D f(a)(u;) =
D fi(a)(uj)vi+- - +Dfi(a)(uj)vit- - - +D frla)(w;)vn,
that is,
D f(a)(u;) = 0; fila)vi+- - -+0; fila)vit- - -+0; fm(a)vm.
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The linear map D f(a) is determined by the m x n-matrix

J(f)la) = (9; fila)), or

) = (5@

Oifila) Oafi(a) ... O,fi(a)

J(f)la) = : : o
alfm<a> a2fm<a> s anfm(a>

ofi, . Oh o
(3ZC1< ) a—@(a) 8xn<a>\

J(F)(a) = 8—:1:1<CL> a—@a) SR

51‘},; afﬂ; of,
\(%1 015 e SRS (%n(a))
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This matrix is called the Jacobian matriz of Df at a.
When m = n, the determinant, det(J(f)(a)), of J(f)(a)
is called the Jacobian of Df(a).

We know that this determinant only depends on D f(a),
and not on specific bases. However, partial derivatives
oive a means for computing it.

When £ = R"” and F' = R"™, for any function
f: R" — R™, it is easy to compute the partial derivatives

afi
856]' (CL)

We simply treat the function f;: R” — R as a function of
its 7-th argument, leaving the others fixed, and compute
the derivative as the usual derivative.
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Example 2.1. For example, consider the function
f: R? = R?, defined by

f(r,0) = (rcos@,rsinb).

Then, we have

1)) = (

and the Jacobian (determinant) has value

det(J(f)(r,0)) =r.

sin@ 7rcos@

cos —rsin 9)
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In the case where E = R (or £ = C), for any function
f:R — F (or f: C — F), the Jacobian matrix of
Df(a) is a column vector. In fact, this column vector is
just Dy f(a). Then, for every A € R (or A € C),

Df(a)(A) = AD1f(a).

Definition 2.4. Given a function f: R — F
(or f: C — F'), where F is a normed space, the vector

Df(a)(1) = D1 f(a)

is called the vector derivative or velocity vector (in the
real case) at a. We usually identify D f(a) with its Ja-
cobian matrix Dy f(a), which is the column vector corre-
sponding to Dy f(a).

By abuse of notation, we also let D f(a) denote the vector

Df(a)(1) = Dyf(a).
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When E = R, the physical interpretation is that f defines
a (parametric) curve that is the trajectory of some particle
moving in R as a function of time, and the vector D1 f(a)
is the velocity of the moving particle f(t) at t = a. See
Figure 2.3.

Example 2.2.

1. When A = (0,1) and F' = R?, a function
f:(0,1) — R? defines a (parametric) curve in R?.

If f=(f1, f2, f3), its Jacobian matrix at a € R is
df
(EW)\

I($a) = | Do)

of;
5@

See Figure 2.3.
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Figure 2.3: The red space curve f(t) = (cos(t),sin(t),t).

— sin(t)
The velocity vectors J(f)(a) = | cos(t) | are rep-

1
resented by the blue arrows.
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2. When E = R? and F' = R?, a function ¢: R? — R’

defines a parametric surface.

Letting ¢ = (f, g, h), its Jacobian matrix at a € R*

IS o1 o1
I = | () Do
o) ),

(a,)\

See Figure 2.4.

The Jacobian matrix is

1 0
J(f)la)=10 1
2u 20

The first column is the vector tangent to the pink u-
direction curve, while the second column is the vector
tangent to the blue v-direction curve.
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/

Figure 2.4: The parametric surface x = u,y = v, 2 = u? + v

3. When E = R? and F = R, for a function f: R?> — R,
the Jacobian matrix at a € R? is

1@ = (G S Sha).

Yy <
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More generally, when f: R" — R, the Jacobian matrix
at a € R" is the row vector

100 = (550 - 5h@)

[ts transpose is a column vector called the gradient of f

at a, denoted by gradf(a) or V f(a).

Then, given any v € R", note that

of
8331

of
ox,

Df(a)(v) = 3 =(a)vi +--- +

(a) v, = gradf(a) - v

the scalar product of gradf(a) and v.



2.1. THE DERIVATIVE OF A FUNCTION BETWEEN NORMED VECTOR SPACESS3

When FE, F', and G have finite dimensions, if A is an open
subset of E, B is an open subset of F', for any functions
f:A— Fand g: B— G,suchthat f(A) C B, for any
a € A, letting b = f(a), and h = go f, if Df(a) exists
and Dg(b) exists, by Theorem 2.5, the Jacobian matrix
J(h)(a) = J(g o f)(a) is given by

J()(@) = Jg)0)()(a) =
(Gngy Oy 90\ () gy )

8y1 (9y2 o 8yn 6%1 6$2 833]9
Jg2 g0 g2 (9f 2 (9f 2 3f >
agm agm 8gm 8fn 8fn 8fn
b) ... b R

\ 8y1 8y2 ) 83/” ( )) \6351 85132 ( ) aSCp (a))

Thus, we have the familiar formula

Z agz afk:
8:1:] 8yk 8:1:]
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Given two normed spaces E and F' of finite dimension,
given an open subset A of E, if a function f: A — F'is

differentiable at a € A, then its Jacobian matrix is well
defined.

& One should be warned that the converse is false. There

are functions such that all the partial derivatives exist

at some a € A, but yet, the function is not differentiable
at a, and not even continuous at a.

However, there are sufficient conditions on the partial
derivatives for D f(a) to exist, namely, continuity of the
partial derivatives.

If f is differentiable on A, then f defines a function
Df: A— L(E;F).

[t turns out that the continuity of the partial derivatives
on A is a necessary and sufficient condition for Df to
exist and to be continuous on A.

To prove this, we need an important result known as the
mean value theorem.
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If Eis a vector space (over R or C), given any two points
a,b € E, the closed segment |a, b is the set of all points
a+ Ab—a), where 0 < XA < 1, A € R, and the open
segment (a,b) is the set of all points a4+ A(b— a), where
D<A<1, AeR.

The following result is known as the mean value theorem.

Proposition 2.7. Let E and F' be two normed vector
spaces, let A be an open subset of E/, and let f: A —
F' be a continuous function on A. Given any a € A
and any h # 0 in E, if the closed segment [a,a+ h] is
contained in A, iof f: A — F is differentiable at every
point of the open segment (a,a + h), and if

sup  [[IDf(z)]| <M

r€(a,a+h)
for some M > 0, then

Ifla+h) = fla)|l < M]|n]].

As a corollary, if L: E — I is a continuous linear
map, then

If(a+h) = fla) = L(h)|| < M]|A]],
where M = sup,c(qq4p) |[Df(x) — L.
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Proposition 2.8. Let f: A — F be any function bew-
teen two normed vector spaces E and F', where A is an

open subset of E. If A is connected and if Df(a) =0
for all a € A, then f 1is a constant function on A.

The mean value theorem also implies the following im-
portant result.

Theorem 2.9. Given two normed affine spaces E and
F', where E 1s of finite dimension n and where

(u1,...,uy) is a basis of E, given any open subset A
of £/, qiven any function f: A — F, the derivative
Df: A— L(F;F) is defined and g?ntinuous on A iff

every partial derivative 0;f (or e ) is defined and
L j

continuous on A, forall 7,1 < 5 <n. As a corollary,
if F'is of finite dimension m, and (vy,...,vy) 1S a
basis of F', the derivative Df: A — L(E; F) is defined
and continuous on A iff every partial deriative 0, f;

Ofi

(9:1;7-
1<i<m, 1< 73<n.

or is defined and continuous on A, for alli, 7,
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Definition 2.5. Given two normed affine spaces E and
F', and an open subset A of E, we say that a function
f: A= FisaC’function on A if f is continuous on
A. We say that f: A — Fis a C'-function on Aif Df

exists and is continuous on A.

Let E and F' be two normed affine spaces, let U C E
be an open subset of £ and let f: EF — F' be a function
such that D f(a) exists for all a € U.

If Df(a) is injective for all a € U, we say that f is
an immersion (on U) and if Df(a) is surjective for all
a € U, we say that f is a submersion (on U).

When E and F are finite dimensional with dim(F) = n
and dim(F') = m, if m > n, then f is an immersion iff the
Jacobian matrix J(f)(a), has full rank (n) for all a € E

and if n > m, then f is a submersion iff the Jacobian
matrix J(f)(a), has full rank (m) for all @ € F.



88 CHAPTER 2. REVIEW OF DERIVATIVES, SERIES, AND VECTOR FIELDS

For example, f: R — R? defined by f(t) = (cos(t), sin(t))

1S an 1mmersion since

100 = (ot

has rank 1 for all .

On the other hand, f: R — R? defined by f(t) = (¢%,t?)

1S not an 1mmersion since

10 = ()

vanishes at ¢t = 0. See Figure 2.5.

An example of a submersion is given by the projection
map f: R* — R, where f(z,y) = z, since J(f)(z,y) =

(1 0).



2.1. THE DERIVATIVE OF A FUNCTION BETWEEN NORMED VECTOR SPACES89

0.5

-0.5

20

Figure 2.5: Figure (i.) is the immersion of R into R? given by f(t) = (cos(t),sin(t)). Figure
(ii.), the parametric curve f(t) = (¢2,?), is not an immersion since the tangent vanishes at
the origin.
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A very important theorem is the inverse function theo-
rem. In order for this theorem to hold for infinite dimen-
sional spaces, it is necessary to assume that our normed
spaces are complete.

Given a normed vector space, E/, we say that a sequence,
(U ), With u, € E, is a Cauchy sequence iff for every
e > 0, there is some N > 0 so that for all m,n > N,

|w, — upl| < e
A normed vector space, F, is complete ift every Cauchy

sequence converges.

A complete normed vector space is also called a Banach
space, after Stefan Banach (1892-1945).

Fortunately, R, C, and every finite dimensional (real or
complex) normed vector space is complete.
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A real (resp. complex) vector space, F, is a real (resp.
complex) Hilbert space if it is complete as a normed space
with the norm ||u|| = 1/ (u, u) induced by its Euclidean
(resp. Hermitian) inner product (of course, positive, def-
inite).

Definition 2.6. Given two topological spaces E and
F' and an open subset A of E, we say that a function
f: A — Fis a local homeomorphism from A to F' if
for every a € A, there is an open set U C A containing
a and an open set V' containing f(a) such that f is a
homeomorphism from U to V = f(U).

If B is an open subset of F', we say that f: A — F
is a (global) homeomorphism from A onto B if f is a
homeomorphism from A to B = f(A).
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If £ and F' are normed spaces, we say that f: A — F'is
a local diffeomorphism from A to F if for every a € A,
there is an open set U C A containing a and an open set
V' containing f(a) such that f is a bijection from U to
V. fis a Cl-function on U, and f~!is a C'-function on

V= fU).

We say that f: A — F is a (global) diffeomorphism
from A to B if f is a homeomorphism from A to B =
f(A), fisa Cl-function on A, and f~!is a C''-function
on B.

Note that a local diffeomorphism is a local homeomor-
phism.

Also, as a consequence of Proposition 2.6, if f is a diffeo-
morphism on A, then Df(a) is a linear isomorphism for
every a € A.
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Theorem 2.10. (Inverse Function Theorem) Let E
and F' be complete normed spaces, let A be an open
subset of E, and let f: A — F be a C'-function on
A. The following properties hold:

(1) For every a € A, if Df(a) is a linear isomorphism
(which means that both Df(a) and (Df(a))™! are
linear and continuous),' then there exist some open
subset U C A containing a, and some open subset
V' of F containing f(a), such that f is a diffeo-
morphism from U to V = f(U). Furthermore,

Df'(f(a)) = (Df(a)) ™"

For every neighborhood N of a, the image f(N) of
N is a neighborhood of f(a), and for every open
ball U C A of center a, the image f(U) of U con-

tains some open ball of center f(a).

! Actually, since E and F are Banach spaces, by the Open Mapping Theorem, it is sufficient to assume
that Df(a) is continuous and bijective; see Lang [32].
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(2) If Df(a) is invertible for every a € A, then
B = f(A) is an open subset of F', and f is a local
diffeomorphism from A to B. Furthermore, if f
1s 1njective, then f is a diffeomorphism from A to
B.

Part (1) of Theorem 2.10 is often referred to as the “(lo-
cal) inverse function theorem.” It plays an important
role in the study of manifolds and (ordinary) differential
equations.

If £ and F' are both of finite dimension, the case where
Df(a) is just injective or just surjective is also important
for defining manifolds, using implicit definitions.
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IfDf: A — L(E;F) exists for all a € A, then we can
consider taking the derivative DD f(a) of Df at a.

If it exists, DD f(a) is a continuous linear map in
L(E: L(E; F)), and we denote DD f(a) as D*f(a).

It is known that the vector space L(FE; L(F;F)) is iso-
morphic to the vector space of continuous bilinear maps
Lo(E* F), so we can view D?f(a) as a bilinear map in

£2<E2; F)

It is also known by Schwarz’s lemma that D? f(a) is sym-
metric (partial derivatives commute).

Therefore, for every a € A, where it exists, D?f(a) be-
longs to the space Sym2(E2; F') of continuous symmetric
bilinear maps from E? to F.
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If £ has finite dimension n and F' = R, with respect to
any basis (e1,...,e,) of E, D*f(a)(u,v) is the value of
the quadratic form u' Hessf(a)v, where

fessa) = (52 (o)

is the Hessian matrixz of | at a.

By induction, if D"f: A — Sym,, (E™; F) exists for
m > 1, where Sym,, (E™; F') denotes the vector space
of continuous symmetric multilinear maps from E™ to
F, and if DD"f(a) exists for all a € A, we obtain
the (m + 1)th derivative D™ f of f, and D" f €
Sym,, . (E™ F), where Sym,,, 1 (E™"; F) is the vec-
tor space of continuous symmetric multilinear maps from

Emtl o F.
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For any m > 1, we say that the map f: A — Fisa C™
function (or simply that f is C™) if Df,D*f,...,D"f

exist and are continuous on A.

We say that f is C°° or smooth if D" f exists and is
continuous on A for all m > 1. If F has finite dimension
n, it can be shown that f is smooth iff all of its partial
derivatives

o f

Oy, - - O,

(a)

are defined and continuous for all a € A, all m > 1, and
all ’il,...,’im c {1,,71}

The function f: A — F is a C" diffeomorphism be-
tween A and B = f(A) if f is a bijection from A to B
and if f and f~! are C™.

Similarly, f is a smooth diffeomorphism between A and
B = f(A) if f is a bijection from A to B and if f and
f~1 are smooth.
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2.2 Series and Power Series of Matrices

Since a number of important functions on matrices are
defined by power series, in particular the exponential, we
review quickly some basic notions about series in a com-
plete normed vector space.

Given a normed vector space (E, || ||), a series is an in-
. 00
finite sum » ,~, ax of elements a;, € E.

We denote by 5, the partial sum of the first n + 1 ele-

ments,
n

Sn = Zak.

k=0

Definition 2.7. We say that the series > .-, ax con-
verges to the limit a € E if the sequence (.5,,) converges
to a. In this case, we say that the series is convergent.
We say that the series > ;- axr converges absolutely if
the series of norms >~ ||ag|| is convergent.
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There are series that are convergent but not absolutely
convergent; for example, the series

o0 k—1
>
—
k=1
However, if E'is complete (which means that every Cauchy
sequence converges), the converse is an enormously useful

result.

Proposition 2.11. Let (E, || ||) be a complete normed
vector space. If a series > - ay is absolutely conver-
gent, then 1t 1s convergent.

Remark: It can be shown that if (E, | ||) is a normed
vector space such that every absolutely convergent series
is also convergent, then £ must be complete.

If B = C, then there are several conditions that imply
the absolute convergence of a series.
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The ratio test is the following test. Suppose there is some
N > 0 such that a, # 0 for all n > N, and either

An+1
Qp,

r = lim
Nn—o0

exists, or the sequence of ratios diverges to infinity, in
which case we write r = oo. Then, if 0 < r < 1, the
series > ,_ aj converges absolutely, else if 1 < r < oo,
the series diverges.

If (r,) is a sequence of real numbers, recall that
limsupr, = lim sup{ry}.
n

N—$00 =00 k>n

If r,, > 0 for all n, then it is easy to see that r is charac-
terized as follows:

For every € > 0, there is some N € N such that r, < r+e
for all n > N, and r, > r — € for infinitely many n.
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Then, the root test is this. Let

r = limsup |a,|*"

n—0o0
if the limit exists (is finite), else write r = co. Then, if
0 < r < 1, the series > ,_, ax converges absolutely, else
if 1 <r < o0, the series diverges.

The root test also appliesif (|| ||) is a complete normed
vector space by replacing |a,| by ||a||.

Let Z;OZO ar be a series of elements a; € E and let

r = limsup ||a,|""
n—oo
if the limit exists (is finite), else write r = oo. Then, if
0 < r < 1, the series > ,_, ax converges absolutely, else
if 1 <r < o0, the series diverges.
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A power series with coefficients a; € C in the indeter-
minate z is a formal expression f(z) of the form

©9)

f(z) = Z arz",

k=0

For any fixed value z € C, the series f(z) may or may not
converge. It always converges for z = 0, since f(0) = ay.

A fundamental fact about power series is that they have
a radius of convergence.

Proposition 2.12. Given any power series

fz) = Z a2,

k=0
there 1is a nonnegative real R, possibly infinite, called
the radius of convergence of the power series, such
that if |z| < R, then f(z) converges absolutely, else if

12| > R, then f(z) diverges. Moreover (Hadamard),

we have
1

lim sup,, . |an|/™

R:
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Note that Proposition 2.12 does not say anything about
the behavior of the power series for boundary values, that
is, values of z such that |z| = R.

Proposition 2.13. Let f(z) = Y 2, arz" be a power
series with coefficients a; € C. Suppose there 1s some
N > 0 such that a, # 0 for alln > N, and either

R= lim |-

n—oo

An+1

exists, or the sequence on the righthand side diverges
to infinity, in which case we write R = oo. Then, the
power series Y oo arz" has radius of convergence R.

Power series behave very well with respect to derivatives.
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Proposition 2.14. Suppose the power series f(z) =
S oo garz" (with real coefficients) has radius of con-
vergence R > 0. Then, f'(z) exists if |z| < R, the
power series Y ;- kapz*1 has radius of convergence

R, and
f'(z) = Z kapz 1.
k=1

Let us now assume that f(z) = > .77, arz" is a power
series with coefhicients a;, € C, and that its radius of
convergence is R.

Given any matrix A € M, (C) we can form the power
series obtained by substituting A for z,

©¢)

flA) =) arA"

k=0

Let || || be any matrix norm on M,,(C).
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Proposition 2.15. Let f(z) = > 2, axz" be a power
series with complex coefficients, write R for its radius
of convergence, and assume that R > 0. For every p
such that 0 < p < R, the series f(A) = > 2, ap A"
is absolutely convergent for all A € M, (C) such that
Al < p. Furthermore, f is continuous on the open

ball B(R) = {A € M,(C) | |A| < R}.

Note that unlike the case where A € C, if ||A|| > R, we
cannot claim that the series f(A) diverges.

This has to do with the fact that even for the operator
norm we may have ||A"]| < ||A]|". We leave it as an

exercise to find an example of a series and a matrix A
with ||A|| > R, and yet f(A) converges.
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As an application of Proposition 2.15, the exponential
power series

A — Al
e’ =exp(A) = Zﬁ

k=0
is absolutely convergent for all A € M,,(C), and continu-
ous everywhere.

Proposition 2.15 also implies that the series

©.@) Ak
log(I + A) = Z(q)k“?
k=1

is absolutely convergent if || Al < 1.
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Now, it is known (see Cartan [12]) that the formal power

series
E(A) =) o
k=1
and
- l~<:+1A]C
L(4) = 3 (=11
k=1

are mutual inverses; that is,

E(L(A)=A, L(EA)=A, forall A

Observe that E(A) = e — I = exp(A) — I and L(A) =
log(I + A). It follows that

log(exp(A)) = A for all A with [|A]| < log(2)
exp(log(l + A)) =1+ A forall Awith [|A] < 1.
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Finally, let us consider the generalization of the notion
of a power series f(t) = .=, axt” of a real variable ¢,
where the coeflicients a; belong to a complete normed
vector space (F, || ||).

Proposition 2.16. Let (F\ || ||) be a complete normed
vector space. Given any power series
©.9)

Ft)="> at",

k=0

witht € R and a; € F, there is a nonnegative real R,
possibly infinite, called the radius of convergence
of the power series, such that if [t| < R, then f(t) con-
verges absolutely, else if [t| > R, then f(t) diverges.
Moreover, we have

1

hm Supm—)oo ||CLn H

R:

I/n’
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Proposition 2.17. Let (F\ || ||) be a complete normed
vector space. Suppose the power series f(t) = > - axt"
(with coefficients ap € F) has radius of convergence
R. Then, f'(t) exists if |t| < R, the power series
> iy kait*=' has radius of convergence R, and

Fit)y=> kapt" "
k=1
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2.3 Linear Vector Fields and the Exponential

We can apply Propositions 2.16 and 2.17 to the map
f:t e where A is any matrix A € M, (C).

This power series has a infinite radius of convergence, and
we have

o0 tk 1Ak 0 tk lAk 1
flt)y=> k AY T Ae.
k=1 ’ k=1
Note that
At = ¢4 A,

Definition 2.8. Given some open subset A of R", a
vector field X on A is a function X: A — R", which
assigns to every point p € A a vector X (p) € R".

Usually, we assume that X is at least C'! function on A.
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For example, if f: R? — R is
flw,y) = cos(zy?),
the gradient vector field X is

(—y?sin(zy?), —2zy sin(zy?)) = (X1, Xo).

Note that
0X 0X
8—y1 — —2ysin(ay?) — 2xy° cos(zy?) = 8—332

This example is easily generalized to R".
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If f: A— Risa C! function, then its gradient defines
a vector field X; namely, p — grad f(p).

If fis C?, then its second partials commute; that is,

IS = T
(9[132'8513]' b= 8[@8562 b,

1 <,9 <n,

so this vector field X = (Xi,...,X,) has a very special
property:
0X; 0X;
8:1;7 B 6:62-’

1<, <n.

This is a necessary condition for a vector field to be the
oradient of some function, but not a sufficient condition
in general.
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The existence of such a function depends on the topolog-
ical shape of the domain A.

Understanding what are sufficient conditions to answer
the above question led to the development of differential
forms and cohomology.

Definition 2.9. Given a vector field X: A — R", for
any point pg € A, a C! curve v: (—¢,¢) — R™ (with
e > 0) is an integral curve for X with initial condition
po if ¥(0) = po, and

vV (t) = X(y(t)) forallt e (—¢,e).

An integral curve has the property that for every time
t € (—e¢,€), the tangent vector v/(¢) to the curve vy at the
point y(t) coincides with the vector X (y(¢)) given by the
vector field at the point v(t). See Figure 2.6.
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Figure 2.6: An integral curve in R2.

Definition 2.10. Given a C' vector field X: A — R",
for any point py € A, a local flow for X at py is a
function
v: J xU — R",

where J C R is an open interval containing 0 and U is an
open subset of A containing pg, so that for every p € U,
the curve t — (¢, p) is an integral curve of X with initial
condition p. See Figure 2.7
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A

Figure 2.7: A portion of local flow ¢: J x U — R2. If p is fixed and ¢ varies, the flow moves
along one of the colored curves. If ¢ is fixed and p varies, p acts as a parameter for the
individually colored curves.

The theory of ODE tells us that if X is C!, then for every

po € A, there is a pair (J, U) as above such that there is
a unique C' local flow p: J x U — R for X at py.

Let us now consider the special class of vector fields in-
duced by matrices in M, (R).
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For any matrix A € M,(R), let X4 be the vector field
given by
Xa(p) = Ap forall p € R".

Such vector fields are obviously C! (in fact, C'*).

The vector field induced by the matrix

A= (173

is shown in Figure 2.8. Integral curves are circles of center

(0,0).

Figure 2.8: A vector field in R?
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[t turns out that the local flows of X 4 are global, in the
sense that J = R and U = R", and that they are given
by the matrix exponential.

Proposition 2.18. For any matrizc A € M,(R), for

any py € R", there 1s a unique local flow ¢: R x R" —
R"™ for the vector field X 4 given by

o(t,p) = e“Ip,
for allt € R and all p € R".

For t fixed, the map ®;: p — ep is a smooth diffeomor-
phism of R” (with inverse given by e ).

We can think of ®; as the map which, given any p, moves
p along the integral curve v, from p to 7,(t) = e'p.



118 CHAPTER 2. REVIEW OF DERIVATIVES, SERIES, AND VECTOR FIELDS

For the vector field of Figure 2.8, each P, is the rotation
oA _ cost —sint
- \sint cost )’
The map ®: R — Diff(R") is a group homomorphism,

because

O, 0P, =D, forall s,t €R.

Observe that ®;(p) = ¢(t, p).
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If we hold p fixed, we obtain the integral curve with initial
condition p, which is also called a flow line of the local
flow.

If we hold ¢ fixed, we obtain a smooth diffeomorphism
of R". The family {®;}er is called the 1-parameter
group generated by X 4, and ® is called the (global) flow
generated by X 4.

In the case of 2 x 2 matrices, it is possible to describe

explicitly the shape of all integral curves; see Rossmann
[47] (Section 1.1).
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