
Chapter 20

Manifolds Arising from Group
Actions

20.1 Proper Maps

We saw in Chapter 5 that many topological spaces arise
from a group action.

The scenario is that we have a smooth action
' : G ⇥ M ! M of a Lie group G acting on a manifold
M .

If G acts transitively on M , then for any point x 2 M ,
if Gx is the stabilizer of x, Theorem 5.14 ensures that M
is homeomorphic to G/Gx.

For simplicity of notation, write H = Gx.
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What we would really like is that G/H actually be a
manifold.

This is indeed the case, because the transitive action of
G on G/H is equivalent to a right action of H on G
which is no longer transitive, but which has some special
properties (to be proper and free).

We are thus led to considering left (and right) actions
' : G⇥M ! M of a Lie group G on a manifold M that
are not necessarily transitive.

If the action is not transitive, then we consider the orbit
space M/G of orbits G · x (x 2 M).

However, in general, M/G is not even Hausdor↵. It is
thus desirable to look for su�cient conditions that ensure
that M/G is Hausdor↵.
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A su�cient condition can be given using the notion of a
proper map.

If our action is also free , then the orbit space M/G is
indeed a smooth manifold.

Sharper results hold if we consider Riemannian manifolds.

Before we go any further, let us observe that the case
where our action is transitive is subsumed by the more
general situation of an orbit space.

Indeed, if our action is transitive, for any x 2 M , we know
that the stabilizer H = Gx of x is a closed subgroup of
G.
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Then, we can consider the right action G ⇥ H ! G of
H on G given by

g · h = gh, g 2 G, h 2 H.

The orbits of this (right) action are precisely the left
cosets gH of H .

Therefore, the set of left cosets G/H (the homogeneous
space induced by the action · : G ⇥ M ! M) is the set
of orbits of the right action G ⇥ H ! G.

Observe that we have a transitive left action of G on the
space G/H of left cosets, given by

g1 · g2H = g1g2H.

The stabilizer of 1H is obviously H itself.
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Thus, we recover the original transitive left action of G
on M = G/H .

Now, it turns out that an action of the form G⇥H ! G,
where H is a closed subgroup of a Lie group G, is a
special case of a free and proper action M ⇥ G ! G, in
which case the orbit space M/G is a manifold, and the
projection ⇡ : G ! M/G is a submersion.

Let us now define proper maps.

Definition 20.1. If X and Y are two Hausdor↵ topo-
logical spaces,1 a continuous map ' : X ! Y is proper
i↵ for every topological space Z, the map
' ⇥ id : X ⇥ Z ! Y ⇥ Z is a closed map (recall that f
is a closed map i↵ the image of any closed set by f is a
closed set).

If we let Z be a one-point space, we see that a proper
map is closed.

1It is not necessary to assume that X and Y are Hausdor↵ but, if X and/or Y are not Hausdor↵, we
have to replace “compact” by “quasi-compact.” We have no need for this extra generality.
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At first glance, it is not obvious how to check that a map
is proper just from Definition 20.1. Proposition 20.2 gives
a more palatable criterion.

The following proposition is easy to prove .

Proposition 20.1. If ' : X ! Y is any proper map,
then for any closed subset F of X, the restriction of
' to F is proper.

The following result providing a “good” criterion for check-
ing that a map is proper can be shown (see Bourbaki,
General Topology [9], Chapter 1, Section 10).

Proposition 20.2. A continuous map ' : X ! Y is
proper i↵ ' is closed and if '�1(y) is compact for
every y 2 Y .

Proposition 20.2 shows that a homeomorphism (or a dif-
feomorphism) is proper.
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If ' is proper, it is easy to show that '�1(K) is compact
in X whenever K is compact in Y .

Moreover, if Y is also locally compact, then we have
the following result (see Bourbaki, General Topology [9],
Chapter 1, Section 10).

Proposition 20.3. If Y is locally compact, a map
' : X ! Y is a proper map i↵ '�1(K) is compact in
X whenever K is compact in Y

In particular, this is true if Y is a manifold since manifolds
are locally compact.

This explains why Lee [31] (Chapter 9) takes the property
stated in Proposition 20.3 as the definition of a proper
map (because he only deals with manifolds).

Finally, we can define proper actions.
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20.2 Proper and Free Actions

Definition 20.2. Given a Hausdor↵ topological group
G and a topological space M , a left action
· : G ⇥ M ! M is proper if it is continuous and if the
map

✓ : G ⇥ M �! M ⇥ M, (g, x) 7! (g · x, x)

is proper.

The right actions associated with the transitive actions
presented in Section 5.2 are examples of proper actions.

Proposition 20.4. The action · : H ⇥ G ! G of
a closed subgroup H of a group G on G (given by
(h, g) 7! hg) is proper. The same is true for the right
action of H on G.
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As desired, proper actions yield Hausdor↵ orbit spaces.

Proposition 20.5. If the action · : G ⇥ M ! M is
proper (where G is Hausdor↵), then the orbit space
M/G is Hausdor↵. Furthermore, M is also Haus-
dor↵.

We also have the following properties (see Bourbaki, Gen-
eral Topology [9], Chapter 3, Section 4).

Proposition 20.6. Let · : G ⇥ M ! M be a proper
action, with G Hausdor↵. For any x 2 M , let G ·x be
the orbit of x and let Gx be the stabilizer of x. Then:

(a) The map g 7! g · x is a proper map from G to M .

(b) Gx is compact.

(c) The canonical map from G/Gx to G ·x is a home-
omorphism.

(d) The orbit G · x is closed in M .



932 CHAPTER 20. MANIFOLDS ARISING FROM GROUP ACTIONS

If G is locally compact, we have the following character-
ization of being proper (see Bourbaki, General Topology
[9], Chapter 3, Section 4).

Proposition 20.7. If G and M are Hausdor↵ and G
is locally compact, then the action · : G ⇥ M ! M is
proper i↵ for all x, y 2 M , there exist some open sets,
Vx and Vy in M , with x 2 Vx and y 2 Vy, so that the
closure K of the set K = {g 2 G | (g · Vx) \ Vy 6= ;},
is compact in G.

In particular, if G has the discrete topology, the above
condition holds i↵ the sets {g 2 G | (g · Vx) \ Vy 6= ;}
are finite.

Also, if G is compact, then K is automatically compact,
so every compact group acts properly.
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If M is locally compact, we have the following character-
ization of being proper (see Bourbaki, General Topology
[9], Chapter 3, Section 4).

Proposition 20.8. Let · : G ⇥ M ! M be a con-
tinuous action, with G and M Hausdor↵. For any
compact subset K of M we have:

(a) The set GK = {g 2 G | (g · K)\ K 6= ;} is closed.

(b) If M is locally compact, then the action is proper
i↵ GK is compact for every compact subset K of
M .

In the special case where G is discrete (and M is locally
compact), condition (b) says that the action is proper i↵
GK is finite.

Remark: If G is a Hausdor↵ topological group and if H
is a subgroup of G, then it can be shown that the action
of G on G/H ((g1, g2H) 7! g1g2H) is proper i↵ H is
compact in G.
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Definition 20.3. An action · : G ⇥ M ! M is free if
for all g 2 G and all x 2 M , if g 6= 1 then g · x 6= x.

An equivalent way to state that an action · : G⇥M ! M
is free is as follows. For every g 2 G, let ⌧g : M ! M be
the di↵eomorphism of M given by

⌧g(x) = g · x, x 2 M.

Then, the action · : G⇥M ! M is free i↵ for all g 2 G,
if g 6= 1 then ⌧g has no fixed point.

Another equivalent statement is that for every x 2 M ,
the stabilizer Gx of x is reduced to the trivial group {1}.

For example, the action of SO(3) on S2 given by Example
5.1 of Section 5.2 is not free since any rotation of S2 fixes
the two points of the rotation axis.
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If H is a subgroup of G, obviously H acts freely on G (by
multiplication on the left or on the right). This fact to-
gether with Proposition 20.4 yields the following corollary
which provides a large supply of free and proper actions.

Corollary 20.9.The action · : H⇥G ! G of a closed
subgroup H of a group G on G (given by (h, g) 7! hg)
is free and proper. The same is true for the right
action of H on G.

There is a stronger version of the results that we are going
to state next that involves the notion of principal bundle.

Since this notion is not discussed until Section ??, we
state weaker versions not dealing with principal bundles.
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The weaker version that does not mention principal bun-
dles is usually stated for left actions; for instance, in Lee
[31] (Chapter 9, Theorem 9.16). We formulate both a left
and a right version.

Theorem 20.10. Let M be a smooth manifold, G be
a Lie group, and let · : G ⇥ M ! M be a left smooth
action (resp. right smooth action · : M ⇥ G ! M)
which is proper and free. Then the canonical projec-
tion ⇡ : G ! M/G is a submersion (which means that
d⇡g is surjective for all g 2 G), and there is a unique
manifold structure on M/G with this property.

Theorem 20.10 has some interesting corollaries.

Because a closed subgroup H of a Lie group G is a Lie
group, and because the action of a closed subgroup is free
and proper, if we apply Theorem 20.10 to the right action
· : G ⇥ H ! G (here M = G and G = H), we get the
following result.
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This is the result we use to verify reductive homoge-
neous spaces are indeed manifolds.

Theorem 20.11. If G is a Lie group and H is a
closed subgroup of G, then the canonical projection
⇡ : G ! G/H is a submersion (which means that d⇡g

is surjective for all g 2 G), and there is a unique
manifold structure on G/H with this property.

In the special case whereG acts transitively onM , for any
x 2 M , if Gx is the stabilizer of x, then with H = Gx,

Theorem 20.11 shows that there is a manifold structure
on G/H such that ⇡ : G ! G/H is a submersion.
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Actually, G/H is di↵eomorphic to M , as shown by the
following theorem whose proof can be found in Lee [31]
(Chapter 9, Theorem 9.24).

Theorem 20.12. Let · : G ⇥ M ! M be a smooth
transitive action of a Lie group G on a smooth mani-
fold M (so that M is a homogeneous space). For any
x 2 M , if Gx is the stabilizer of x and if we write
H = Gx, then the map ⇡x : G/H ! M given by

⇡x(gH) = g · x

is a di↵eomorphism and an equivariant map (with re-
spect to the action of G on G/H and the action of G
on M).

By Theorem 20.11 and Theorem 20.12, every homoge-
neous space M (with a smooth G-action) is equivalent to
a manifold G/H as above.
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This is an important and very useful result that reduces
the study of homogeneous spaces to the study of coset
manifolds of the form G/H where G is a Lie group and
H is a closed subgroup of G.

Here is a simple example of Theorem 20.11. Let G =
SO(3) and

H =

⇢
M 2 SO(3) | M =

✓
1 0
0 S

◆
, S 2 SO(2)

�
.

The right action · : SO(3) ⇥ H ! SO(3) given by the
matrix multiplication

g · h = gh, g 2 SO(3), h 2 H,

yields the left cosets gH , and the orbit space SO(3)/SO(2),
which by Theorem 20.11 and Theorem 20.12 is di↵eomor-
phic to S2.
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20.3 Riemannian Submersions and Coverings Induced
by Group Actions ~

The purpose of this section is to equip the orbit space
M/G of Theorem 20.10 with the inner product structure
of a Riemannian manifold.

Because we provide a di↵erent proof for the reason why
reductive homogeneous manifolds are Riemannian mani-
folds, namely Proposition 20.22, this section is not neces-
sary for understanding the material in Section 20.4 and
may be skipped on the first reading.

Definition 20.4. Given a Riemannian manifold (N, h),
we say that a Lie group G acts by isometries on N if
for every g 2 G, the di↵eomorphism ⌧g : N ! N given
by

⌧g(p) = g · p, p 2 N,

is an isometry ((d⌧g)p : TpN ! T⌧g(p)N is an isometry for
all p 2 N).
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If (N, h) is a Riemannian manifold and if G is a Lie group,
then ⇡ : N ! N/G can be made into a Riemannian
submersion.

Theorem 20.13. Let (N, h) be a Riemannian man-
ifold and let · : G ⇥ N ! N be a smooth, free and
proper proper action, with G a Lie group acting by
isometries of N . Then, there is a unique Riemannian
metric g on M = N/G such that ⇡ : N ! M is a
Riemannian submersion.

As an example, if N = S2n+1, then the group G = S1 =
SU(1) acts by isometries on S2n+1, and we obtain a sub-
mersion ⇡ : S2n+1 ! CPn.

If we pick the canonical metric on S2n+1, by Theorem
20.13, we obtain a Riemannian metric on CPn known as
the Fubini–Study metric.
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Using Proposition 15.8, it is possible to describe the
geodesics ofCPn; see Gallot, Hulin, Lafontaine [19] (Chap-
ter 2).

Another situation where a group action yields a Rieman-
nian submersion is the case where a transitive action is
reductive, considered in the next section.

We now consider the case of a smooth action
· : G ⇥ M ! M , where G is a discrete group (and M is
a manifold). In this case, we will see that ⇡ : M ! M/G
is a Riemannian covering map.

Assume G is a discrete group. By Proposition 20.7, the
action · : G⇥M ! M is proper i↵ for all x, y 2 M , there
exist some open sets, Vx and Vy in M , with x 2 Vx and
y 2 Vy, so that the set K = {g 2 G | (g · Vx) \ Vy 6= ;}
is finite.

By Proposition 20.8, the action · : G⇥M ! M is proper
i↵ GK = {g 2 G | (g · K) \ K 6= ;} is finite for every
compact subset K of M .
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It is shown in Lee [31] (Chapter 9) that the above condi-
tions are equivalent to the conditions below.

Proposition 20.14. If · : G ⇥ M ! M is a smooth
action of a discrete group G on a manifold M , then
this action is proper i↵

(i) For every x 2 M , there is some open subset V
with x 2 V such that gV \ V 6= ; for only finitely
many g 2 G.

(ii) For all x, y 2 M , if y /2 G ·x (y is not in the orbit
of x), then there exist some open sets V, W with
x 2 V and y 2 W such that gV \ W = 0 for all
g 2 G.
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The following proposition gives necessary and su�cient
conditions for a discrete group to act freely and properly
often found in the literature (for instance, O’Neill [38],
Berger and Gostiaux [6], and do Carmo [13], but beware
that in this last reference Hausdor↵ separation is not re-
quired!).

Proposition 20.15. If X is a locally compact space
and G is a discrete group, then a smooth action of G
on X is free and proper i↵ the following conditions
hold:

(i) For every x 2 X, there is some open subset V with
x 2 V such that gV \ V = ; for all g 2 G such
that g 6= 1.

(ii) For all x, y 2 X, if y /2 G · x (y is not in the orbit
of x), then there exist some open sets V, W with
x 2 V and y 2 W such that gV \ W = 0 for all
g 2 G.
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Remark: The action of a discrete group satisfying the
properties of Proposition 20.15 is often called “properly
discontinuous.”

However, as pointed out by Lee ([31], just before Propo-
sition 9.18), this term is self-contradictory since such ac-
tions are smooth, and thus continuous!

Then, we have the following useful result.

Theorem 20.16. Let N be a smooth manifold and
let G be discrete group acting smoothly, freely and
properly on N . Then, there is a unique structure of
smooth manifold on N/G such that the projection map
⇡ : N ! N/G is a covering map.
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Real projective spaces are illustrations of Theorem 20.16.

Indeed, if N is the unit n-sphere Sn ✓ Rn+1 and G =
{I, �I}, where �I is the antipodal map, then the con-
ditions of Proposition 20.15 are easily checked (since Sn

is compact), and consequently the quotient

RPn = Sn/G

is a smooth manifold and the projection map ⇡ : Sn !
RPn is a covering map.

The fiber ⇡�1([x]) of every point [x] 2 RPn consists of
two antipodal points: x, �x 2 Sn.



20.3. RIEMANNIAN SUBMERSIONS AND COVERINGS ~ 947

The next step is to see how a Riemannian metric on N
induces a Riemannian metric on the quotient manifold
N/G. The following theorem is the Riemannian version
of Theorem 20.16.

Theorem 20.17. Let (N, h) be a Riemannian mani-
fold and let G be discrete group acting smoothly, freely
and properly on N , and such that the map x 7! � · x
is an isometry for all � 2 G. Then there is a unique
structure of Riemannian manifold on M = N/G such
that the projection map ⇡ : N ! M is a Riemannian
covering map.

Theorem 20.17 implies that every Riemannian metric g
on the sphere Sn induces a Riemannian metric bg on the
projective space RPn, in such a way that the projection
⇡ : Sn ! RPn is a Riemannian covering.
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In particular, if U is an open hemisphere obtained by
removing its boundary Sn�1 from a closed hemisphere,
then ⇡ is an isometry between U and its image RPn �
⇡(Sn�1) ⇡ RPn � RPn�1.

In summary, given a Riemannian manifold N and a group
G acting on N , Theorem 20.13 gives us a method for
obtaining a Riemannian manifold N/G such that
⇡ : N ! N/G is a Riemannian submersion
(· : G ⇥ N ! N is a free and proper action and G acts
by isometries).

Theorem 20.17 gives us a method for obtaining a Rie-
mannian manifold N/G such that ⇡ : N ! N/G is a
Riemannian covering (· : G⇥N ! N is a free and proper
action of a discrete group G acting by isometries).

In the next section, we show that Riemannian submer-
sions arise from a reductive homogeneous space.
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20.4 Reductive Homogeneous Spaces

If · : G⇥M ! M is a smooth action of a Lie group G on
a manifold M , then a certain class of Riemannian metrics
on M is particularly interesting.

Recall that for every g 2 G, ⌧g : M ! M is the di↵eo-
morphism of M given by

⌧g(p) = g · p, for all p 2 M.

Definition 20.5. Given a smooth action · : G ⇥ M !
M , a metric h�, �i on M is G-invariant if ⌧g is an
isometry for all g 2 G; that is, for all p 2 M , we have

hd(⌧g)p(u), d(⌧g)p(v)ip = hu, vip for all u, v 2 TpM.

If the action is transitive, then for any fixed p0 2 M and
for every p 2 M , there is some g 2 G such that p = g ·p0,
so it is su�cient to require that d(⌧g)p0

be an isometry
for every g 2 G.
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From now on we are dealing with a smooth transitive
action · : G ⇥ M ! M , and for any given p0 2 M , if
H = Gp0

is the stabilizer of p0, then by Theorem 20.12,
M is di↵eomorphic to G/H .

The existence of G-invariant metrics on G/H depends
on properties of a certain representation of H called the
isotropy representation (see Proposition 20.20).

The isotropy representation is equivalent to another rep-
resentation AdG/H : H ! GL(g/h) of H involving the
quotient algebra g/h.

This representation is too complicated to deal with, so
we consider the more tractable situation where the Lie
algebra g of G factors as a direct sum

g = h � m,

for some subspace m of g such that Adh(m) ✓ m for all
h 2 H , where h is the Lie algebra of H .
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Then g/h is isomorphic to m, and the representation
AdG/H : H ! GL(g/h) becomes the representation
Ad: H ! GL(m), where Adh is the restriction of Adh

to m for every h 2 H .

In this situation there is an isomorphism between Tp0
M ⇠=

To(G/H) and m (where o denotes the point in G/H cor-
responding to the coset H).

It is also the case that if H is “nice” (for example, com-
pact), then M = G/H will carry G-invariant metrics,
and that under such metrics, the projection ⇡ : G !
G/H is a Riemannian submersion.

In order to proceed it is necessary to express the derivative
d⇡1 : g ! To(G/H) of the projection map ⇡ : G ! G/H
in terms of certain vector fields.
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This is a special case of a process in which an action
· : G ⇥ M ! M associates a vector field X⇤ on M to
every vector X 2 g in the Lie algebra of G.

Definition 20.6. Given a smooth action ' : G ⇥ M !
M of a Lie group on a manifold M , for every X 2 g, we
define the vector field X⇤ (or XM) on M called an action
field or infinitesimal generator of the action correspond-
ing to X , by

X⇤(p) =
d

dt
(exp(tX) · p)

����
t=0

, p 2 M.

For a fixed X 2 g, the map t 7! exp(tX) is a curve
through 1 in G, so the map t 7! exp(tX) · p is a curve
through p in M , and X⇤(p) is the tangent vector to this
curve at p.
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For example, in the case of the adjoint action
Ad: G ⇥ g ! g, for every X 2 g, we have

X⇤(Y ) = [X, Y ],

so X⇤ = ad(X).

For any p0 2 M , there is a di↵eomorphism
G/Gp0

! G · p0 onto the orbit G · p0 of p0 viewed as a
manifold, and it is not hard to show that for any p 2 G·p0,
we have an isomorphism

Tp(G · p0) = {X⇤(p) | X 2 g};

see Marsden and Ratiu [32] (Chapter 9, Section 9.3).

It can also be shown that the Lie algebra gp of the stabi-
lizer Gp of p is given by

gp = {X 2 g | X⇤(p) = 0}.
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The following technical proposition is shown in Marsden
and Ratiu [32] (Chapter 9, Proposition 9.3.6 and lemma
9.3.7).

Proposition 20.18. Given a smooth action
' : G⇥M ! M of a Lie group on a manifold M , the
following properties hold:

(1) For every X 2 g, we have

(AdgX)⇤ = ⌧ ⇤
g�1X

⇤ = (⌧g)⇤X
⇤, for every g 2 G;

Here, ⌧ ⇤
g�1 is the pullback associated with ⌧g�1, and

(⌧g)⇤ is the push-forward associated with ⌧g.

(2) The map X 7! X⇤ from g to X(M) is a Lie algebra
anti-homomorphism, which means that

[X⇤, Y ⇤] = �[X, Y ]⇤ for all X, Y 2 g.

Remark: If the metric on M is G-invariant (that is,
every ⌧g is an isometry of M), then the vector field X⇤ is
a Killing vector field on M for every X 2 g.
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Given a pair (G, H), where G is a Lie group and H is a
closed subgroup of G, it turns out that there is a criterion
for the existence of some G-invariant metric on the homo-
geneous space G/H in terms of a certain representation
of H called the isotropy representation.

Let us explain what this representation is.

Recall that G acts on the left on G/H via

g1 · (g2H) = g1g2H, g1, g2 2 G.

For any g1 2 G, the di↵eomorphism ⌧g1
: G/H ! G/H

is left coset multiplication, given by

⌧g1
(g2H) = g1 · (g2H) = g1g2H.

In this situation, Part (1) of Proposition 20.18 is easily
proved as follows.
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Proposition 20.19. For any X 2 g and any g 2 G,
we have

(⌧g)⇤X
⇤ = (Adg(X))⇤.

Denote the point in G/H corresponding to the coset
1H = H by o. Then, we have a homomorphism

�G/H : H ! GL(To(G/H)),

given by

�G/H(h) = (d⌧h)o, for all h 2 H.

Definition 20.7. The homomorphism �G/H is called
the isotropy representation of the homogeneous space
G/H .
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Actually, we have an isomorphism

To(G/H) ⇠= g/h

induced by d⇡1 : g ! To(G/H), where ⇡ : G ! G/H is
the canonical projection.

The homomorphism �G/H is a representation of the group
H , and since we can view H as the isotropy group (the
stabilizer) of the element o 2 G/H corresponding to the
coset H , it makes sense to call it the isotropy representa-
tion.

It is not easy to deal with the isotropy representation
directly.

Fortunately, the isotropy representation is equivalent to
another representation AdG/H : H ! GL(g/h) obtained
from the representation Ad: G ! GL(g) by a quotient
process.
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Recall that Adg1
(g2) = g1g2g

�1

1
. Then, following O’Neill

[38] (see Proposition 22, Chapter 11), observe that

⌧h � ⇡ = ⇡ � Adh for all h 2 H,

since h 2 H implies that h�1H = H , so for all g 2 G,

(⌧h � ⇡)(g) = hgH = hgh�1H = (⇡ � Adh)(g).

By taking derivatives at 1, we get

(d⌧h)o � d⇡1 = d⇡1 � Adh,

which is equivalent to the commutativity of the diagram

g
Adh

//

d⇡1

✏✏

g

d⇡1

✏✏

To(G/H)
(d⌧h)o

// To(G/H).
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Proposition 20.20. Let (G, H) be a pair where G is
a Lie group and H is a closed subgroup of G. The
following properties hold:

(1) The representations �G/H : H ! GL(To(G/H))
and AdG/H : H ! GL(g/h) are equivalent; this
means that for every h 2 H, we have the com-
mutative diagram

g/h
Ad

G/H
h

//

'

✏✏

g/h

'

✏✏

To(G/H)
(d⌧h)o

// To(G/H),

where the isomorphism ' : g/h ! To(G/H) and

the quotient map AdG/H
h : g/h ! g/h are defined

in the notes.

(2) The homogeneous space G/H has some G-invariant
metric i↵ the closure of AdG/H(H) is compact in
GL(g/h). Furthermore, this metric is unique up
to a scalar if the isotropy representation is irre-
ducible.
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The representation AdG/H : H ! GL(g/h) which in-
volves the quotient algebra g/h is hard to deal with.

To make things more tractable, it is natural to assume
that g splits as a direct sum g = h � m for some well-
behaved subspace m of g, so that g/h is isomorphic to
m.

Definition 20.8. Let (G, H) be a pair where G is a
Lie group and H is a closed subgroup of G. We say that
the homogeneous space G/H is reductive if there is some
subspace m of g such that

g = h � m,

and

Adh(m) ✓ m for all h 2 H.

See Figure 20.1.
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e

o
To (M)

M G/H=~

G

H

π

h

m

Figure 20.1: A schematic illustration of a reductive homogeneous manifold. Note that

g = h � m and that To(M) ⇠= m via d⇡1.

Observe that unlike h, which is a Lie subalgebra of g,
the subspace m is not necessarily closed under the Lie
bracket, so in general it is not a Lie algebra.
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Also, since m is finite-dimensional and since Adh is an
isomorphism, we actually have Adh(m) = m.

Definition 20.8 allows us to deal with g/h in a tractable
manner, but does not provide any means of defining a
metric on G/H .

We would like to define G-invariant metrics on G/H and
a key property of a reductive spaces is that there is a
criterion for the existence of G-invariant metrics on G/H
in terms of Ad(H)-invariant inner products on m.

Since g/h is isomorphic to m, by the reasoning just before
Proposition 20.20, the map d⇡1 : g ! To(G/H) restricts
to an isomorphism between m and To(G/H) (where o
denotes the point in G/H corresponding to the coset H).
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The representation AdG/H : H ! GL(g/h) becomes the
representation Ad: H ! GL(m), where Adh is the re-
striction of Adh to m for every h 2 H .

We also know that for any X 2 g, we can express d⇡1(X)
in terms of the vector field X⇤ introduced in Definition
20.6 by

d⇡1(X) = X⇤
o ,

and that

Ker d⇡1 = h.

Thus, the restriction of d⇡1 to m is an isomorphism onto
To(G/H), given by X 7! X⇤

o .
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Also, for every X 2 g, since g = h � m, we can write
X = Xh+Xm, for some unique Xh 2 h and some unique
Xm 2 m, and

d⇡1(X) = d⇡1(Xm) = X⇤
o .

We use the isomorphism d⇡1 to transfer any inner product
h�, �im on m to an inner product h�, �i on To(G/H),
and vice-versa, by stating that

hX, Y im = hX⇤
o , Y

⇤
o i, for all X, Y 2 m;

that is, by declaring d⇡1 to be an isometry between m
and To(G/H). See Figure 20.1.

If the metric on G/H is G-invariant, then the map p 7!
exp(tX)·p = exp(tX)aH (with p = aH 2 G/H , a 2 G)
is an isometry of G/H for every t 2 R, so by Proposition
15.9, X⇤ is a Killing vector field. This fact is needed in
Section 20.6.
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Proposition 20.21. Let (G, H) be a pair of Lie groups
defining a reductive homogeneous space M = G/H,
with reductive decomposition g = h � m. The follow-
ing properties hold:

(1) The isotropy representation
�G/H : H ! GL(To(G/H)) is equivalent to the
representation AdG : H ! GL(m) (where Adh is
restricted to m for every h 2 H): this means that
for every h 2 H, we have the commutative dia-
gram

m
Ad

G
h

//

d⇡1

✏✏

m

d⇡1

✏✏

To(G/H)
(d⌧h)o

// To(G/H),

where ⇡ : G ! G/H is the canonical projection.



966 CHAPTER 20. MANIFOLDS ARISING FROM GROUP ACTIONS

(2) By making d⇡1 an isometry between m and To(G/H)
(as explained above), there is a one-to-one corre-
spondence between G-invariant metrics on G/H
and Ad(H)-invariant inner products on m (inner
products h�, �im such that

hu, vim = hAdh(u),Adh(v)im,

for all h 2 H and all u, v 2 m).

(3) The homogeneous space G/H has some G-invariant
metric i↵ the closure of AdG(H) is compact in
GL(m). Furthermore, if the representation
AdG : H ! GL(m) is irreducible, then such a met-
ric is unique up to a scalar. In particular, if H is
compact, then a G-invariant metric on G/H al-
ways exists.
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At this stage we have a mechanism to equip G/H with
a Riemannian metric from an inner product m which has
the special property of being Ad(H)-invariant, but this
mechanism does not provide a Riemannian metric on G.

The construction of a Riemannian metric on G can be
done by extending the Ad(H)-invariant metric onm to all
of g, and using the bijective correspondence between left-
invariant metrics on a Lie group G, and inner products
on its Lie algebra g given by Proposition 18.1.

Proposition 20.22. Let (G, H) be a pair of Lie groups
defining a reductive homogeneous space M = G/H,
with reductive decomposition g = h � m. If m has
some Ad(H)-invariant inner product h�, �im, for any
inner product h�, �ig on g extending h�, �im such
that h and m are orthogonal, if we give G the left-
invariant metric induced by h�, �ig, then the map
⇡ : G ! G/H is a Riemannian submersion.

By Proposition 15.8, a Riemannian submersion carries
horizontal geodesics to geodesics.



968 CHAPTER 20. MANIFOLDS ARISING FROM GROUP ACTIONS

20.5 Examples of Reductive Homogeneous Spaces

We now apply the theory of Propositions 20.21 and 20.22
to construct a family of reductive homogeneous spaces,
the Stiefel manifolds S(k, n).

For any n � 1 and any k with 1  k  n, let S(k, n) be
the set of all orthonormal k-frames, where an orthonormal
k-frame is a k-tuples of orthonormal vectors (u1, . . . , uk)
with ui 2 Rn.

Recall that SO(n) acts transitively on S(k, n) via the
action · : SO(n) ⇥ S(k, n) ! S(k, n)

R · (u1, . . . , uk) = (Ru1, . . . , Ruk).

and that the stabilizer of this action is

H =

⇢✓
I 0
0 R

◆ ���� R 2 SO(n � k)

�
.
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Theorem 20.12 implies that S(k, n) ⇠= G/H , with G =
SO(n) and H ⇠= SO(n � k).

Observe that the points of G/H ⇠= S(k, n) are the cosets
QH , with Q 2 SO(n); that is, the equivalence classes
[Q], with the equivalence relation on SO(n) given by

Q1 ⌘ Q2 i↵ Q2 = Q1
eR, for some eR 2 H.

If we write Q = [Y Y?], where Y consists of the first k
columns of Q and Y? consists of the last n � k columns
of Q, it is clear that [Q] is uniquely determined by Y .
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In fact, if Pn,k denotes the projection matrix consisting
of the first k columns of the identity matrix In,

Pn,k =

✓
Ik

0n�k,k

◆
,

for any Q = [Y Y?], the unique representative Y of the
equivalence class [Q] is given by

Y = QPn,k.

Furthermore Y? is characterized by the fact that Q =
[Y Y?] is orthogonal, namely, Y Y > + Y?Y >

? = I .
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Define

h =

⇢✓
0 0
0 S

◆ ���� S 2 so(n � k)

�
,

m =

⇢✓
T �A>

A 0

◆ ���� T 2 so(k), A 2 Mn�k,k(R)
�

.

Clearly g = so(n) = h � m.

It is easy to check that Adh(m) ✓ m.

Therefore Definition 20.8 shows that S(k, n) ⇠= G/H is
a reductive homogeneous manifold with g/h ⇠= m.

Since H ⇠= SO(n � k) is compact, Proposition 20.21
guarantees the existence of a G-invariant metric on G/H ,
which in turn ensures the existence of an Ad(H)-invariant
metric on m.

Theorem 18.26 implies that we may construct such a met-
ric by using the Killing form on so(n).
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Proposition 20.23. If X, Y 2 m, with

X =

✓
S �A>

A 0

◆
, Y =

✓
T �B>

B 0

◆
,

then the fomula

hX, Y i = �1

2
tr(XY ) =

1

2
tr(S>T ) + tr(A>B)

defines an Ad(H)-invariant inner product on m. If we
give h the same inner product so that g also has the
inner product hX, Y i = �1

2
tr(XY ), then m and h are

orthogonal.

In order to describe the geodesics of S(k, n) ⇠= G/H , we
will need the additional requirement of naturally reduc-
tiveness which is defined in the next section.
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20.6 Naturally Reductive Homogeneous Spaces

When M = G/H is a reductive homogeneous space that
has a G-invariant metric, it is possible to give an expres-
sion for (rX⇤Y ⇤)o (where X⇤ and Y ⇤ are the vector fields
corresponding to X, Y 2 m).

If X⇤, Y ⇤, Z⇤ are the Killing vector fields associated with
X, Y, Z 2 m, then it can be shown that

2hrX⇤Y ⇤, Z⇤i = �h[X, Y ]⇤, Z⇤i � h[X, Z]⇤, Y ⇤i
� h[Y, Z]⇤, X⇤i.

The problem is that the vector field rX⇤Y ⇤ is not neces-
sarily of the form W ⇤ for some W 2 g. However, we can
find its value at o.
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By evaluating at o and using the fact that X⇤
o = (X⇤

m)o
for any X 2 g, we obtain

2h(rX⇤Y ⇤)o, Z
⇤
o i + h([X, Y ]⇤m)o, Z

⇤
o i

= h([Z, X ]⇤m)o, Y
⇤
o i + h([Z, Y ]⇤m)o, X

⇤
o i.

Consequently,

(rX⇤Y ⇤)o = �1

2
([X, Y ]⇤m)o + U(X, Y )⇤o,

where [X, Y ]m is the component of [X, Y ] on m and
U(X, Y ) is determined by

2hU(X, Y ), Zi = h[Z, X ]m, Y i + hX, [Z, Y ]mi,

for all Z 2 m.
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Here, we are using the isomorphism X 7! X⇤
0
between m

and To(G/H) and the fact that the inner product on m
is chosen so that m and To(G/H) are isometric

Since the term U(X, Y ) clearly complicates matters, it is
natural to make the following definition, which is equiva-
lent to requiring that U(X, Y ) = 0 for all X, Y 2 m.

Definition 20.9. A homogeneous space G/H is nat-
urally reductive if it is reductive with some reductive
decomposition g = h � m, if it has a G-invariant metric,
and if

h[X, Z]m, Y i = hX, [Z, Y ]mi, for all X, Y, Z 2 m.

Note that one of the requirements of Definition 20.9 is
that G/H must have a G-invariant metric.

The above computation yield the following result.
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Proposition 20.24. If G/H is naturally reductive,
then the Levi-Civita connection associated with the G-
invariant metric on G/H is given by

(rX⇤Y ⇤)o = �1

2
([X, Y ]⇤m)o = �1

2
[X, Y ]m,

for all X, Y 2 m.

We can now find the geodesics on a naturally reductive
homogenous space.

Indeed, if M = (G, H) is a reductive homogeneous space
and M has a G-invariant metric, then there is an Ad(H)-
invariant inner product h�, �im on m.

Pick any inner product h�, �ih on h, and define an inner
product on g = h�m by setting h andm to be orthogonal.

Then, we get a left-invariant metric on G for which the
elements of h are vertical vectors and the elements of m
are horizontal vectors.
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Observe that in this situation, the condition for being
naturally reductive extends to left-invariant vector fields
on G induced by vectors in m.

Since (d⌧g)1 : g ! TgG is a linear isomorphism for all
g 2 G, the direct sum decomposition g = h�m yields a
direct sum decomposition TgG = (d⌧g)1(h) � (d⌧g)1(m).

Given a left-invariant vector field XL induced by a vector
X 2 g, if X = Xh + Xm is the decomposition of X onto
h � m, we obtain a decomposition

XL = XL
h + XL

m,

into a left-invariant vector field XL
h 2 hL and a left-

invariant vector field XL
m 2 mL, with

XL
h (g) = (d⌧g)1(Xh), XL

m = (d⌧g)1(Xm).
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Since the (d⌧g)1 are isometries, if h and m are orthogonal,
so are (d⌧g)1(h) and (d⌧g)1(m), and so XL

h and XL
m are

orthogonal vector fields.

Proposition 20.25. If the condition for being natu-
rally reductive holds, namely

h[X, Z]m, Y i = hX, [Z, Y ]mi, for all X, Y, Z 2 m,

then a similar condition holds for left-invariant vector
fields:

h[XL, ZL]m, Y Li = hXL, [ZL, Y L]mi,

for all XL, Y L, ZL 2 mL.

Recall that the left action of G on G/H is given by
g1 · g2H = g1g2H , and that o denotes the coset 1H .
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Proposition 20.26. If M = G/H is a naturally re-
ductive homogeneous space, for every G-invariant met-
ric on G/H, for every X 2 m, the geodesic �d⇡1(X)

through o is given by

�d⇡1(X)(t) = ⇡ � exp(tX) = exp(tX) · o, for all t 2 R.

Proposition 20.26 shows that the geodesics in G/H are
given by the obits of the one-parameter groups (t 7!
exp tX) generated by the members of m.

We can also obtain a formula for the geodesic through
every point p = gH 2 G/H .

Proposition 20.27. If M = G/H is a naturally re-
ductive homogeneous space, for every X 2 m, the
geodesic through p = gH with initial velocity (AdgX)⇤p =
(⌧g)⇤X⇤

p is given

t 7! g exp(tX) · o.
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An important corollary of Proposition 20.26 is that nat-
urally reductive homogeneous spaces are complete.

Indeed, the one-parameter group t 7! exp(tX) is defined
for all t 2 R.

One can also figure out a formula for the sectional curva-
ture (see (O’Neill [38], Chapter 11, Proposition 26).

Under the identification of m and To(G/H) given by the
restriction of d⇡1 to m, we have

hR(X, Y )X, Y i = 1

4
h[X, Y ]m, [X, Y ]mi

+ h[[X, Y ]h, X ]m, Y i, for all X, Y 2 m.

Conditions on a homogeneous space that ensure that such
a space is naturally reductive are obviously of interest.
Here is such a condition.
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Proposition 20.28. Let M = G/H be a homoge-
neous space with G a connected Lie group, assume
that g admits an Ad(G)-invariant inner product h�, �i,
and let m = h? be the orthogonal complement of h
with respect to h�, �i. Then, the following properties
hold:

(1) The space G/H is reductive with respect to the de-
composition g = h � m.

(2) Under the G-invariant metric induced by h�, �i,
the homogeneous space G/H is naturally reductive.

(3) The sectional curvature is determined by

hR(X, Y )X, Y i = 1

4
h[X, Y ]m, [X, Y ]mi

+ h[X, Y ]h, [X, Y ]hi.
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Recall a Lie group G is said to be semisimple if its Lie
algebra g is semisimple.

From Theorem 18.25, a Lie algebra g is semisimple i↵
its Killing form B is nondegenerate, and from Theorem
18.26, a connected Lie group G is compact and semisim-
ple i↵ its Killing form B is negative definite.

By Proposition 18.24, the Killing form is Ad(G)-invariant.

Thus, for any connected compact semisimple Lie group
G, for any constant c > 0, the bilinear form �cB is an
Ad(G)-invariant inner product on g.

Then, as a corollary of Proposition 20.28, we obtain the
following result.
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Proposition 20.29. Let M = G/H be a homoge-
neous space such that G is a connected compact
semisimple group. Then, under any inner product
h�, �i on g given by �cB, where B is the Killing
form of g and c > 0 is any positive real, the space
G/H is naturally reductive with respect to the decom-
position g = h � m, where m = h? be the orthogonal
complement of h with respect to h�, �i. The sectional
curvature is non-negative.

A homogeneous space as in Proposition 20.29 is called a
normal homogeneous space .
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20.7 Examples of Naturally Reductive Homogeneous
Spaces

Since SO(n) is semisimple and compact for n � 3, the
Stiefel manifolds S(k, n) and the Grassmannian mani-
folds G(k, n) are examples of homogeneous spaces satisy-
ing the assumptions of Proposition 20.29 (with an inner
product induced by a scalar factor of the Killing form on
SO(n)).

Therefore, Stiefel manifolds S(k, n) and Grassmannian
manifolds G(k, n) are naturally reductive homogeneous
spaces for n � 3 (under the reduction g = h�m induced
by the Killing form).

If n = 2, then SO(2) is an abelian group, and thus not
semisimple. However, in this case, G(1, 2) = RP(1) ⇠=
SO(2)/S(O(1) ⇥ O(1)) ⇠= SO(2)/O(1), and S(1, 2) =
S1 ⇠= SO(2)/SO(1) ⇠= SO(2).
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These are special cases of symmetric cases discussed in
Section 20.9.

In the first case, H = S(O(1)⇥O(1)), and in the second
case, H = SO(1). In both cases,

h = (0),

and we can pick
m = so(2),

which is trivially Ad(H)-invariant.

In Section 20.9, we show that the inner product on so(2)
given by

hX, Y i = tr(X>Y )

is Ad(H)-invariant, and with the induced metric, RP(1)
and S1 ⇠= SO(2) are naturally reductive manifolds.

For n � 3, we have S(1, n) = Sn�1 and S(n � 1, n) =
SO(n), which are symmetric spaces.
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On the other hand, S(k, n) it is not a symmetric space if
2  k  n � 2. A justification is given in Section 20.10.

Since the Grassmannian manifolds G(k, n) have more
structure (they are symmetric spaces), let us first con-
sider the Stiefel manifolds S(k, n) in more detail.

Readers may find material from Absil, Mahony and Sepul-
chre [1], especially Chapters 1 and 2, a good complement
to our presentation, which uses more advanced concepts
(reductive homogeneous spaces).

By Proposition 20.26, the geodesic through o with initial
velocity

X =

✓
S �A>

A 0

◆

is given by

�(t) = exp

✓
t

✓
S �A>

A 0

◆◆
Pn,k.
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This is not a very explicit formula. It is possible to do
better, see Edelman, Arias and Smith [16] for details.

Let us consider the case where k = n � 1, which is
simpler.

If k = n � 1, then n � k = 1, so S(n � 1, n) = SO(n),
H ⇠= SO(1) = {1}, h = (0) and m = so(n).

The inner product on so(n) is given by

hX, Y i = �1

2
tr(XY ) =

1

2
tr(X>Y ), X, Y 2 so(n).

Every matrix X 2 so(n) is a skew-symmetric matrix, and
we know that every such matrix can be written as X =
P>DP , where P is orthogonal and where D is a block
diagonal matrix whose blocks are either a 1-dimensional
block consisting of a zero, of a 2 ⇥ 2 matrix of the form

Dj =

✓
0 �✓j

✓j 0

◆
,

with ✓j > 0.
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Then, eX = P>eDP = P>⌃P , where ⌃ is a block diago-
nal matrix whose blocks are either a 1-dimensional block
consisting of a 1, of a 2 ⇥ 2 matrix of the form

Dj =

✓
cos ✓j � sin ✓j

sin ✓j cos ✓j

◆
.

We also know that every matrix R 2 SO(n) can be
written as

R = eX,

for some matrix X 2 so(n) as above, with 0 < ✓j  ⇡.

Then, we can give a formula for the distance d(I, Q) be-
tween the identity matrix and any matrix Q 2 SO(n).



20.7. EXAMPLES OF NATURALLY REDUCTIVE HOMOGENEOUS SPACES 989

Since the geodesics from I through Q are of the fom

�(t) = etX with eX = Q,

and since the length L(�) of the geodesic from I to eX is

L(�) =

Z
1

0

h�0(t), �0(t)i1

2dt.

We find that

d(I, Q) = (✓2

1
+ · · · + ✓2

m)
1

2 ,

where ✓1, . . . , ✓m are the angles associated with the eigen-
values e±i✓1, . . . , e±i✓m of Q distinct from 1, and with
0 < ✓j  ⇡.



990 CHAPTER 20. MANIFOLDS ARISING FROM GROUP ACTIONS

If Q, R 2 SO(n), then

d(Q, R) = (✓2

1
+ · · · + ✓2

m)
1

2 ,

where ✓1, . . . , ✓m are the angles associated with the eigen-
values e±i✓1, . . . , e±i✓m of Q�1R = Q>R distinct from 1,
and with 0 < ✓j  ⇡.

Remark: SinceX> = �X , the square distance d(I, Q)2

can also be expressed as

d(I, Q)2 = �1

2
min

X|eX=Q
tr(X2),

or even (with some abuse of notation, since log is multi-
valued) as

d(I, Q)2 = �1

2
min tr((logQ)2).
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In the other special case where k = 1, we have
S(1, n) = Sn�1, H ⇠= SO(n � 1),

h =

⇢✓
0 0
0 S

◆ ���� S 2 so(n � 1)

�
,

and

m =

⇢✓
0 �u>

u 0

◆ ���� u 2 Rn�1

�
.

Therefore, there is a one-to-one correspondence between
m and Rn�1.

Given any Q 2 SO(n), the equivalence class [Q] of Q
is uniquely determined by the first column of Q, and we
view it as a point on Sn�1.
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If we let kuk =
p

u>u, we leave it as an exercise to prove
that for any

X =

✓
0 �u>

u 0

◆
,

we have

etX =

0

@
cos(kuk t) � sin(kuk t) u>

kuk

sin(kuk t) u
kuk I + (cos(kuk t) � 1) uu>

kuk2

1

A .

Consequently (under the identification of Sn�1 with the
first column of matrices Q 2 SO(n)), the geodesic �
through e1 (the column vector corresponding to the point
o 2 Sn�1) with initial tangent vector u is given by

�(t) =

 
cos(kuk t)

sin(kuk t) u
kuk

!
= cos(kuk t)e1 + sin(kuk t)

u

kuk,

where u 2 Rn�1 is viewed as the vector in Rn whose first
component is 0.
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Then, we have

�0(t) = kuk
✓

� sin(kuk t)e1 + cos(kuk t)
u

kuk

◆
,

and we find the that the length L(�)(✓) of the geodesic
from e1 to the point

p(✓) = �(✓) = cos(kuk ✓)e1 + sin(kuk ✓)
u

kuk

is given by

L(�)(✓) =

Z ✓

0

h�0(t), �0(t)i1

2 dt = ✓ kuk .
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Since

he1, p(✓)i = cos(✓ kuk),

we see that for a unit vector u and for any angle ✓ such
that 0  ✓  ⇡, the length of the geodesic from e1 to
p(✓) can be expressed as

L(�)(✓) = ✓ = arccos(he1, pi);

that is, the angle between the unit vectors e1 and p. This
is a generalization of the distance between two points on
a circle.
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Geodesics can also be determined in the general case
where 2  k  n � 2; we follow Edelman, Arias and
Smith [16], with one change because some point in that
paper requires some justification which is not provided.

Given a point [Y Y?] 2 S(k, n), and given and any tan-
gent vector X = Y S + Y?A, we need to compute

�(t) = [Y Y?] exp

✓
t

✓
S �A>

A 0

◆◆
Pn,k.

We can compute this exponential if we replace the matrix
by a more “regular matrix,” and for this, we use a QR-
decomposition of A. Let

A = U

✓
R
0

◆

be a QR-decomposition of A, with U an orthogonal (n�
k) ⇥ (n � k) matrix and R an upper triangular k ⇥ k
matrix.



996 CHAPTER 20. MANIFOLDS ARISING FROM GROUP ACTIONS

We can write U = [U1 U2], where U1 consists of the first
k columns on U and U2 of the last n � 2k columns of U
(if 2k  n).

We have

A = U1R,

and we can write

✓
S �A>

A 0

◆
=

✓
I 0
0 U1

◆✓
S �R>

R 0

◆✓
I 0
0 U>

1

◆
.

Then, we find

�(t) = [Y Y?U1] exp t

✓
S �R>

R 0

◆✓
Ik

0

◆
.

This is essentially the formula given in Section 2.4.2 of
Edelman, Arias and Smith [16], except for the term Y?U1.
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We can easily compute the length L(�)(s) of the geodesic
� from o to p = esX · o, for any X 2 m.

Indeed, for any

X =

✓
S �A>

A 0

◆
2 m,

we know that the geodesic from o with initial velocity X
is �(t) = etX · o, so we have

L(�)(s) =

Z s

0

h(etX)0, (etX)0i1

2dt,

but we already did this computation and found that

(L(�)(s))2 = s2

✓
1

2
tr(X>X)

◆

= s2

✓
1

2
tr(S>S) + tr(A>A)

◆
.
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We can compute these traces using the eigenvalues of S
and the singular values of A.

If ±i✓1, . . . , ±i✓m are the nonzero eigenvalues of S and
�1, . . . , �k are the singular values of A, then

L(�)(s) = s(✓2

1
+ · · · + ✓2

m + �2

1
+ · · · + �2

k)
1

2 .
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We conclude this section with a proposition that shows
that under certain conditions, G is determined by m and
H .

A point p 2 M = G/H is called a pole if the exponential
map at p is a di↵eomorphism. The following proposition
is proved in O’Neill [38] (Chapter 11, Lemma 27).

Proposition 20.30. If M = G/H is a naturally re-
ductive homogeneous space, then for any pole o 2 M ,
there is a di↵eomorphism m ⇥ H ⇠= G given by the
map (X, h) 7! (exp(X))h.

Next, we will see that there exists a large supply of nat-
urally reductive homogeneous spaces: symmetric spaces.
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20.8 A Glimpse at Symmetric Spaces

There is an extensive theory of symmetric spaces and our
goal is simply to show that the additional structure af-
forded by an involutive automorphism of G yields spaces
that are naturally reductive.

The theory of symmetric spaces was entirely created by
one person, Élie Cartan, who accomplished the tour de
force of giving a complete classification of these spaces
using the classification of semisimple Lie algebras that he
had obtained earlier.

One of the most complete exposition is given in Helgason
[21]. O’Neill [38], Petersen [39], Sakai [43] and Jost [24]
have nice and more concise presentations. Ziller [48] is
also an excellent introduction.
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Given a homogeneous space G/K, the new ingredient is
that we have an involutive automorphism � of G.

Definition 20.10. Given a Lie group G, an automor-
phism � of G such that � 6= id and �2 = id called an
involutive automorphism of G. Let G� be the set of
fixed points of �, the subgroup of G given by

G� = {g 2 G | �(g) = g},

and let G�
0
be the identity component of G� (the con-

nected component of G� containing 1).

If we have an involutive automorphism � : G ! G, then
we can consider the +1 and �1 eigenspaces of
d�1 : g ! g, given by

k = {X 2 g | d�1(X) = X}
m = {X 2 g | d�1(X) = �X}.
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Definition 20.11. An involutive automorphism of G
satisfying G�

0
✓ K ✓ G� is called a Cartan involution.

The map d�1 is often denoted by ✓.

The following proposition will be needed later.

Proposition 20.31. Let � be an involutive automor-
phism of G and let k and m be the +1 and �1 eigenspaces
of d�1 : g ! g. Then for all X 2 m and all Y 2 k, we
have

B(X, Y ) = 0,

where B is the Killing form of g.

Remarkably, k and m yield a reductive decomposition of
G/K.
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Proposition 20.32.Given a homogeneous space G/K
with a Cartan involution � (G�

0
✓ K ✓ G�), if k and

m are defined as above, then

(1) k is indeed the Lie algebra of K.

(2) We have a direct sum

g = k � m.

(3) Ad(K)(m) ✓ m; in particular, [k,m] ✓ m.

(4) We have

[k, k] ✓ k and [m,m] ✓ k.

In particular, the pair (G, K) is a reductive homo-
geneous space (as in Definition 20.8), with reductive
decomposition g = k � m.

If we also assume that G is connected and that G�
0
is

compact, then we obtain the following remarkable result
proved in O’Neill [38] (Chapter 11) and Ziller [48] (Chap-
ter 6).
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Theorem 20.33. Let G be a connected Lie group and
let � : G ! G be an automorphism such that �2 =
id, � 6= id (an involutive automorphism), and G�

0
is

compact. For every compact subgroup K of G, if
G�

0
✓ K ✓ G�, then G/K has G-invariant metrics,

and for every such metric, G/K is naturally reductive.
The reductive decomposition g = k�m is given by the
+1 and �1 eigenspaces of d�1. Furthermore, for every
p 2 G/K, there is an isometry sp : G/K ! G/K such
that sp(p) = p, d(sp)p = �id, and

sp � ⇡ = ⇡ � �,

as illustrated in the diagram below:

G �
//

⇡
✏✏

G
⇡
✏✏

G/K sp
// G/K.
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Definition 20.12. A triple (G, K, �) satisfying the as-
sumptions of Theorem 20.33 is called a symmetric pair .2

A triple (G, K, �) as above defines a special kind of nat-
urally homogeneous space G/K known as a symmetric
space.

Definition 20.13. If M is a connected Riemannian
manifold, for any p 2 M , an isometry sp such that
sp(p) = p and d(sp)p = �id is a called a global sym-
metry at p. A connected Riemannian manifold M for
which there is a global symmetry for every point of M is
called a symmetric space .

Theorem 20.33 implies that the naturally reductive homo-
geneous spaceG/K defined by a symmetric pair (G, K, �)
is a symmetric space.

2Once again we fall victims of tradition. A symmetric pair is actually a triple!
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It can be shown that a global symmetry sp reverses
geodesics at p and that s2

p = id, so sp is an involution.

It should be noted that although sp 2 Isom(M), the
isometry sp does not necessarily lie in Isom(M)0.

The following facts are proved in O’Neill [38] (Chapters 9
and 11), Ziller [48] (Chapter 6), and Sakai [43] (Chapter
IV).

1. Every symmetric space M is complete, and Isom(M)
acts transitively on M . In fact the identity component
Isom(M)0 acts transitively on M .

2. Thus, every symmetric space M is a homogeneous
space of the form Isom(M)0/K, whereK is the isotropy
group of any chosen point p 2 M (it turns out that
K is compact).
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3. The symmetry sp gives rise to a Cartan involution �
of G = Isom(M)0 defined so that

�(g) = sp � g � sp g 2 G.

Then we have
G�

0
✓ K ✓ G�.

4. Thus, every symmetric space M is presented by a
symmetric pair (Isom(M)0, K, �).

However, beware that in the presentation of the symmet-
ric space M = G/K given by a symmetric pair (G, K, �),
the group G is not necessarily equal to Isom(M)0.
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Thus, we do not have a one-to-one correspondence be-
tween symmetric spaces and homogeneous spaces with a
Cartan involution.

From our point of view, this does not matter since we
are more interested in getting symmetric spaces from the
data (G, K, �).

By abuse of terminology (and notation), we refer to the
homogeneous space G/K defined by a symmetric pair
(G, K, �) as the symmetric space (G, K, �).

Remark: The reader may have noticed that in this sec-
tion on symmetric spaces, the closed subgroup of G is
denoted by K rather than H . This is in accordance with
the convention that G/K usually refers to a symmetric
space rather than just a homogeneous space.
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Since the homogeneous space G/H defined by a sym-
metric pair (G, K, �) is naturally reductive and has a
G-invariant metric, by Proposition 20.26, its geodesics
coincide with the one-parameter groups (they are given
by the Lie group exponential).

The Levi-Civita connection on a symmetric space de-
pends only on the Lie bracket on g. Indeed, we have
the following formula proved in Ziller [48] (Chapter 6).

Proposition 20.34. Given any symmetric space M
defined by the triple (G, K, �), for any X 2 m and
and vector field Y on M ⇠= G/K, we have

(rX⇤Y )o = [X⇤, Y ]o.

Another nice property of symmetric space is that the cur-
vature formulae are quite simple.
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If we use the isomorphism between m and T0(G/K) in-
duced by the restriction of d⇡1 tom, then for allX, Y, Z 2
m we have:

1. The curvature at o is given by

R(X, Y )Z = [[X, Y ]h, Z],

or more precisely by

R(d⇡1(X), d⇡1(Y ))d⇡1(Z) = d⇡1([[X, Y ]h, Z]).

In terms of the vector fields X⇤, Y ⇤, Z⇤, we have

R(X⇤, Y ⇤)Z⇤ = [[X, Y ], Z]⇤ = [[X⇤, Y ⇤], Z⇤].

2. The sectional curvature K(X⇤, Y ⇤) at o is determined
by

hR(X⇤, Y ⇤)X⇤, Y ⇤i = h[[X, Y ]h, X ], Y i.
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3. The Ricci curvature at o is given by

Ric(X⇤, X⇤) = �1

2
B(X, X),

where B is the Killing form associated with g.

Proof of the above formulae can be found in O’Neill [38]
(Chapter 11), Ziller [48] (Chapter 6), Sakai [43] (Chapter
IV) and Helgason [21] (Chapter IV, Section 4).

However, beware that Ziller, Sakai and Helgason use the
opposite of the sign convention that we are using for the
curvature tensor (which is the convention used by O’Neill
[38], Gallot, Hulin, Lafontaine [19], Milnor [33], and Ar-
vanitoyeorgos [2]).
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Recall that we define the Riemann tensor by

R(X, Y ) = r[X,Y ] + rY � rX � rX � rY ,

whereas Ziller, Sakai and Helgason use

R(X, Y ) = �r[X,Y ] � rY � rX + rX � rY .

With our convention, the sectional curvature K(x, y) is
determined by hR(x, y)x, yi, and the Ricci curvature
Ric(x, y) as the trace of the map v 7! R(x, v)y.
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With the opposite sign convention, the sectional curva-
tureK(x, y) is determined by hR(x, y)y, xi, and the Ricci
curvature Ric(x, y) as the trace of the map v 7! R(v, x)y.

Therefore, the sectional curvature and the Ricci curvature
are identical under both conventions (as they should!).

In Ziller, Sakai and Helgason, the curvature formula is

R(X⇤, Y ⇤)Z⇤ = �[[X, Y ], Z]⇤.

We are now going to see that basically all of the familiar
spaces are symmetric spaces.
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20.9 Examples of Symmetric Spaces

Recall that the set of all k-dimensional spaces of Rn is
a homogeneous space G(k, n), called a Grassmannian ,
and that G(k, n) ⇠= SO(n)/S(O(k) ⇥ O(n � k)).

We can also consider the set of k-dimensional oriented
subspaces of Rn.

An oriented k-subspace is a k-dimensional subspace W
together with the choice of a basis (u1, . . . , uk) determin-
ing the orientation of W .

Another basis (v1, . . . , vk) of W is positively oriented if
det(f ) > 0, where f is the unique linear map f such that
f (ui) = vi, i = 1, . . . , k.

The set of of k-dimensional oriented subspaces of Rn is
denoted by G0(k, n).
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The group SO(n) acts transitively on G0(k, n), and us-
ing a reasoning similar to the one used in the case where
SO(n) acts on G(k, n), we find that the stabilizer of the
oriented subspace (e1, . . . , ek) is the set of orthogonal ma-
trices of the form

✓
Q 0
0 R

◆
,

where Q 2 SO(k) and R 2 SO(n � k), because this
time, Q has to preserve the orientation of the subspace
spanned by (e1, . . . , ek).

Thus, the isotropy group is isomorphic to

SO(k) ⇥ SO(n � k).



1016 CHAPTER 20. MANIFOLDS ARISING FROM GROUP ACTIONS

It follows that

G0(k, n) ⇠= SO(n)/SO(k) ⇥ SO(n � k).

Let us see how both G0(k, n) and G(k, n) are presented
as symmetric spaces.

Again, readers may find material from Absil, Mahony and
Sepulchre [1], especially Chapters 1 and 2, a good com-
plement to our presentation, which uses more advanced
concepts (symmetric spaces).
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1. Grassmannians as Symmetric Spaces

Let G = SO(n) (with n � 2), let

Ik,n�k =

✓
Ik 0
0 �In�k

◆
,

where Ik is the k ⇥ k-identity matrix, and let � be given
by

�(P ) = Ik,n�kPIk,n�k, P 2 SO(n).

It is clear that � is an involutive automorphism of G.

The set F = G� of fixed points of � is given by

F = G� = S(O(k) ⇥ O(n � k)),

and

G�
0
= SO(k) ⇥ SO(n � k).
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Therefore, there are two choices for K:

1. K = SO(k) ⇥ SO(n � k), in which case we get the
Grassmannian G0(k, n) of oriented k-subspaces.

2. K = S(O(k) ⇥ O(n � k)), in which case we get the
Grassmannian G(k, n) of k-subspaces.

As in the case of Stiefel manifolds, given any Q 2 SO(n),
the first k columns Y of Q constitute a representative of
the equivalence class [Q], but these representatives are
not unique; there is a further equivalence relation given
by

Y1 ⌘ Y2 i↵ Y2 = Y1R for some R 2 O(k).

Nevertheless, it is useful to consider the first k columns
of Q, given by QPn,k, as representative of [Q] 2 G(k, n).
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Because � is a linear map, its derivative d� is equal to
�, and since so(n) consists of all skew-symmetric n ⇥ n
matrices, the +1-eigenspace is given by

k =

⇢✓
S 0
0 T

◆ ���� S 2 so(k), T 2 so(n � k)

�
,

and the �1-eigenspace by

m =

⇢✓
0 �A>

A 0

◆ ���� A 2 Mn�k,k(R)
�

.

Thus, m is isomorphic to Mn�k,k(R) ⇠= R(n�k)k.

It is also easy to show that the isotropy representation is
given by

Ad((Q, R))A = QAR>,

where (Q, R) represents an element of
S(O(k)⇥O(n � k)), and A represents an element of m.
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It can be shown that this representation is irreducible i↵
(k, n) 6= (2, 4).

It can also be shown that if n � 3, then G0(k, n) is simply
connected, ⇡1(G(k, n)) = Z2, and G0(k, n) is a double
cover of G(n, k).

An Ad(K)-invariant inner product on m is given by

⌧✓
0 �A>

A 0

◆
,

✓
0 �B>

B 0

◆�

= �1

2
tr

✓✓
0 �A>

A 0

◆✓
0 �B>

B 0

◆◆
= tr(A>B).

We also give g the same inner product. Then, we imme-
diately check that k and m are orthogonal.

In the special case where k = 1, we have G0(1, n) = Sn�1

and G(1, n) = RPn�1, and then the SO(n)-invariant
metric on Sn�1 (resp. RPn�1) is the canonical one.



20.9. EXAMPLES OF SYMMETRIC SPACES 1021

Skip upon first reading ~

For any point [Q] 2 G(k, n) with Q 2 SO(n), if we write
Q = [Y Y?], where Y denotes the first k columns of Q
and Y? denotes the last n � k columns of Q, the tangent
vectors X 2 T[Q]G(k, n) are of the form

X = [Y Y?]

✓
0 �A>

A 0

◆
= [Y?A � Y A>],

A 2 Mn�k,k(R).

Consequently, there is a one-to-one correspondence be-
tween matrices X as above and n ⇥ k matrices of the
form X 0 = Y?A, for any matrix A 2 Mn�k,k(R).

As noted in Edelman, Arias and Smith [16], because the
spaces spanned by Y and Y? form an orthogonal direct
sum in Rn, there is a one-to-one correspondence between
n ⇥ k matrices of the form Y?A for any matrix A 2
Mn�k,k(R), and matrices X 0 2 Mn,k(R) such that

Y >X 0 = 0.
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This second description of tangent vectors to G(k, n) at
[Y ] is sometimes more convenient.

The tangent vectors X 0 2 Mn,k(R) to the Stiefel manifold
S(k, n) at Y satisfy the weaker condition that Y >X 0 is
skew-symmetric.

End ~

Given any X 2 m of the form

X =

✓
0 �A>

A 0

◆
,

the geodesic starting at o is given by

�(t) = exp(tX) · o.

Thus, we need to compute

exp(tX) = exp

✓
0 �tA>

tA 0

◆
.
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This can be done using SVD.

Since G(k, n) and G(n � k, n) are isomorphic, without
loss of generality, assume that 2k  n. Then, let

A = U

✓
⌃
0

◆
V >

be an SVD for A, with U a (n� k)⇥ (n� k) orthogonal
matrix, ⌃ a k ⇥ k matrix, and V a k ⇥ k orthogonal
matrix.

Since we assumed that k  n � k, we can write

U = [U1 U2],

with U1 is a (n�k)⇥k matrix and U2 an (n�k)⇥(n�2k)
matrix.
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We find that

exp(tX) = exp t

✓
0 �A>

A 0

◆

=

✓
V 0
0 U

◆0

@
cos t⌃ � sin t⌃ 0
sin t⌃ cos t⌃ 0
0 0 I

1

A
✓

V > 0
0 U>

◆
.

Now, exp(tX)Pn,k is certainly a representative of the
equivalence class of [exp(tX)], so as a n ⇥ k matrix, the
geodesic through o with initial velocity

X =

✓
0 �A>

A 0

◆

(with A any (n� k)⇥ k matrix with n� k � k) is given
by

�(t) =

✓
V 0
0 U1

◆✓
cos t⌃
sin t⌃

◆
V >,

where A = U1⌃V >, a compact SVD of A.
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Because symmetric spaces are geodesically complete, we
get an interesting corollary. Indeed, every equivalence
class [Q] 2 G(k, n) possesses some representative of the
form eX for some X 2 m, so we conclude that for every
orthogonal matrix Q 2 SO(n), there exist some orthog-
onal matrices V, eV 2 O(k) and U, eU 2 O(n � k), and
some diagonal matrix ⌃ with nonnegatives entries, so that

Q =

✓
V 0
0 U

◆0

@
cos⌃ � sin⌃ 0
sin⌃ cos⌃ 0
0 0 I

1

A
 
(eV )> 0

0 (eU)>

!
.

This is an instance of the CS-decomposition; see Golub
and Van Loan [20].
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The matrices cos⌃ and sin⌃ are actually diagonal ma-
trices of the form

cos⌃ = diag(cos ✓1, . . . , cos ✓k)

and sin⌃ = diag(sin ✓1, . . . , sin ✓k),

so we may assume that 0  ✓i  ⇡/2, because if cos ✓i or
sin ✓i is negative, we can change the sign of the ith row
of V (resp. the sign of the i-th row of U) and still obtain
orthogonal matrices U 0 and V 0 that do the job.

Now, it is known that (✓1, . . . , ✓k) are the principal an-
gles (or Jordan angles) between the subspaces spanned
the first k columns of In and the subspace spanned by
the columns of Y (see Golub and van Loan [20]).
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Recall that given two k-dimensional subspaces U and V
determined by two n⇥k matrices Y1 and Y2 of rank k, the
principal angles ✓1, . . . , ✓k between U and V are defined
recursively as follows: Let U1 = U , V1 = V , let

cos ✓1 = max
u2U ,v2V

kuk
2
=1,kvk

2
=1

hu, vi,

let u1 2 U and v1 2 V be any two unit vectors such that
cos ✓1 = hu1, v1i, and for i = 2, . . . , k, if
Ui = Ui�1 \ {ui�1}? and Vi = Vi�1 \ {vi�1}?, let

cos ✓i = max
u2Ui,v2Vi

kuk
2
=1,kvk

2
=1

hu, vi,

and let ui 2 Ui and vi 2 Vi be any two unit vectors such
that cos ✓i = hui, vii.
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The vectors ui and vi are not unique, but it is shown in
Golub and van Loan [20] that (cos ✓1, . . . , cos ✓k) are the
singular values of Y >

1
Y2 (with 0  ✓1  ✓2  . . .  ✓k 

⇡/2).

We can also determine the length L(�)(s) of the geodesic
�(t) from o to p = esX , for any X 2 m, with

X =

✓
0 �A>

A 0

◆
.

The computation from Section 20.4 remains valid and we
obtain

(L(�)(s))2 = s2

✓
1

2
tr(X>X)

◆
= s2tr(A>A).

Then, if ✓1, . . . , ✓k are the singular values of A, we get

L(�)(s) = s(✓2

1
+ · · · + ✓2

k)
1

2 .
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In view of the above discussion regarding principal angles,
we conclude that if Y1 consists of the first k columns of
an orthogonal matrix Q1 and if Y2 consists of the first
k columns of an orthogonal matrix Q2 then the distance
between the subspaces [Q1] and [Q2] is given by

d([Q1], [Q2]) = (✓2

1
+ · · · + ✓2

k)
1

2 ,

where (cos ✓1, . . . , cos ✓k) are the singular values of Y >
1

Y2

(with 0  ✓i  ⇡/2); the angles (✓1, . . . , ✓k) are the
principal angles between the spaces [Q1] and [Q2].

In Golub and van Loan, a di↵erent distance between sub-
spaces is defined, namely

dp2([Q1], [Q2]) =
��Y1Y

>
1

� Y2Y
>
2

��
2
.
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If we write ⇥ = diag(✓1 . . . , ✓k), then it is shown that

dp2([Q1], [Q2]) = ksin⇥k1 = max
1ik

sin ✓i.

This metric is derived by embedding the Grassmannian
in the set of n⇥n projection matrices of rank k, and then
using the 2-norm.

Other metrics are proposed in Edelman, Arias and Smith
[16].
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We leave it to the brave readers to compute h[[X, Y ], X ], Y i,
where

X =

✓
0 �A>

A 0

◆
, Y =

✓
0 �B>

B 0

◆
,

and check that

h[[X, Y ], X ], Y i = hBA> � AB>, BA> � AB>i
+ hA>B � B>A, A>B � B>Ai,

which shows that the sectional curvature is nonnnegative.

When k = 1, which corresponds to RPn�1 (or Sn�1), we
get a metric of constant positive curvature.
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2. Symmetric Positive Definite Matrices

Recall that the space SPD(n) of symmetric positive def-
inite matrices (n � 2) appears as the homogeneous space
GL+(n,R)/SO(n), under the action of GL+(n,R) on
SPD(n) given by

A · S = ASA>.

Write G = GL+(n,R), K = SO(n), and choose the
Cartan involution � given by

�(S) = (S>)�1.

It is immediately verified that

G� = SO(n).
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Then, we have gl+(n) = gl(n) = Mn(R), k = so(n), and
m = S(n), the vector space of symmetric matrices. We
define an Ad(SO(n))-invariant inner product on gl+(n)
by

hX, Y i = tr(X>Y ).

If X 2 m and Y 2 k = so(n), we find that hX, Y i = 0.
Thus, we have

hX, Y i =

8
><

>:

�tr(XY ) if X, Y 2 k

tr(XY ) if X, Y 2 m

0 if X 2 m, Y 2 k.

We leave it as an exercise (see Petersen [39], Chapter 8,
Section 2.5) to show that

h[[X, Y ], X ], Y i = �tr([X, Y ]>[X, Y ]), for all X, Y 2 m.
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This shows that the sectional curvature is nonpositive.
It can also be shown that the isotropy representation is
given by

�A(X) = AXA�1 = AXA>,

for all A 2 SO(n) and all X 2 m.

Recall that the exponential exp : S(n) ! SDP(n) is a
bijection.

Then, given any S 2 SPD(n), there is a unique X 2 m
such that S = eX , and the unique geodesic from I to S
is given by

�(t) = etX.

Let us try to find the length L(�) = d(I, S) of this
geodesic.
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As in Section 20.4, we have

L(�) =

Z
1

0

h�0(t), �0(t)i1

2dt,

but this time, X 2 m is symmetric and the geodesic is
unique, so we have

L(�) =

Z
1

0

h(etX)0, (etX)0i1

2dt =

Z
1

0

(tr(X2e2tX))
1

2dt.

Since X is a symmetric matrix, we can write

X = P>⇤P,

with P orthogonal and ⇤ = diag(�1, . . . , �n), a real di-
agonal matrix, and we have

tr(X2e2tX) = tr(P>⇤2PP>e2t⇤P )

= tr(⇤2e2t⇤)

= �2

1
e2t�1 + · · · + �2

ne
2t�n.
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Therefore,

d(I, S) = L(�) =

Z
1

0

((�1e
t�1)2 + · · · + (�ne

t�n)2)
1

2dt.

Actually, since S = eX and S is SPD, �1, . . . , �n are the
logarithms of the eigenvalues �1, . . . , �n of X , so we have

d(I, S) = L(�) =

Z
1

0

((log �1e
t log �1)2 + · · ·

+ (log �ne
t log �n)2)

1

2dt.

Unfortunately, there doesn’t appear to be a closed form
formula for this integral.
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The symmetric space SPD(n) contains an interesting
submanifold, namely the space of matrices S in SPD(n)
such that det(S) = 1.

This the symmetric space SL(n,R)/SO(n), which we
suggest denoting by SSPD(n). For this space, g = sl(n),
and the reductive decomposition is given by

k = so(n), m = S(n) \ sl(n).

Now, recall that the Killing form on gl(n) is given by

B(X, Y ) = 2ntr(XY ) � 2tr(X)tr(Y ).

On sl(n), the Killing form is B(X, Y ) = 2ntr(XY ), and
it is proportional to the inner product

hX, Y i = tr(XY ).
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Therefore, we see that the restriction of the Killing form
of sl(n) to m = S(n)\ sl(n) is positive definite, whereas
it is negative definite on k = so(n).

The symmetric space SSPD(n) ⇠= SL(n,R)/SO(n) is
an example of a symmetric space of noncompact type.

On the other hand, the Grassmannians are examples of
symmetric spaces of compact type (for n � 3). In the
next section, we take a quick look at these special types
of symmetric spaces.
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3. The Hyperbolic Space H+

n (1) ~

In Section 6.1 we defined the Lorentz group SO0(n, 1) as
follows: if

J =

✓
In 0
0 �1

◆
,

then a matrix A 2 Mn+1(R) belongs to SO0(n, 1) i↵

A>JA = J, det(A) = +1, an+1n+1 > 0.

In that same section we also defined the hyperbolic space
H+

n (1) as the sheet of Hn(1) which contains (0, . . . , 0, 1)
where

Hn(1) = {u = (u, t) 2 Rn+1 | kuk2 � t2 = �1}.
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We also showed that the action
· : SO0(n, 1) ⇥ H+

n (1) �! H+

n (1) with

A · u = Au

is a transitive with stabilizer SO(n) (see Proposition 6.8).

Thus, H+

n (1) arises as the homogeneous space
SO0(n, 1)/SO(n).

Since the inverse of A 2 SO0(n, 1) is JA>J , the map
� : SO0(n, 1) ! SO0(n, 1) given by

�(A) = JAJ = (A>)�1

is an involutive automorphism of SO0(n, 1). Write G =
SO0(n, 1), K = SO(n).
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It is immediately verified that

G� =

⇢✓
Q 0
0 1

◆
| Q 2 SO(n)

�
,

so G� ⇠= SO(n). We have

so(n, 1) =

⇢✓
B u
u> 0

◆
| B 2 so(n), u 2 Rn

�
,

and the derivative ✓ : so(n, 1) ! so(n, 1) of � at I is
given by

✓(X) = JXJ = �X>.
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From this we deduce that the +1-eigenspace is given by

k =

⇢✓
B 0
0 0

◆
| B 2 so(n)

�
,

and the �1-eigenspace is given by

m =

⇢✓
0 u
u> 0

◆
| u 2 Rn

�
,

with

so(n, 1) = k � m,

a reductive decomposition.
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We define an Ad(K)-invariant inner product on so(n, 1)
by

hX, Y i = 1

2
tr(X>Y ).

In fact, on m ⇠= Rn, we have

⌧✓
0 u
u> 0

◆
,

✓
0 v
v> 0

◆�
=

1

2
tr

✓✓
0 u
u> 0

◆✓
0 v
v> 0

◆◆

=
1

2
tr(uv> + u>v) = u>v,

the Euclidean product of u and v.
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As an exercise, the reader should compute h[[X, Y ], X ], Y i,
where

X =

✓
0 u
u> 0

◆
, Y =

✓
0 v
v> 0

◆
,

and check that

h[[X, Y ], X ], Y i = �huv> � vu>, uv> � vu>i,

which shows that the sectional curvature is nonpositive.
In fact, H+

n (1) has constant negative sectional curvature.

We leave it as an exercise to prove that for n � 2, the
Killing form B on so(n, 1) is given by

B(X, Y ) = (n � 1)tr(XY ),

for all X, Y 2 so(n, 1).
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If we write

X =

✓
B1 u
u> 0

◆
, Y =

✓
B2 v
v> 0

◆
,

then

B(X, Y ) = (n � 1)tr(B1B2) + 2(n � 1)u>v.

This shows that B is negative definite on k and positive
definite on m.

This means that the space H+

n (1) is a symmetric space of
noncompact type.

The symmetric space H+

n (1) = SO0(n, 1)/SO(n) turns
out to be dual, as a symmetric space, to
Sn = SO(n + 1)/SO(n).
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4. The Hyperbolic Grassmannian G⇤(q, p + q)~

This is the generalization of the hyperbolic space H+

n (1)
in Example (3).

Recall from Section 6.1 that we define Ip,q, for p, q � 1,
by

Ip,q =

✓
Ip 0
0 �Iq

◆
.

If n = p + q, the matrix Ip,q is associated with the
nondegenerate symmetric bilinear form

'p,q((x1, . . . , xn), (y1, . . . , yn)) =
pX

i=1

xiyi �
nX

j=p+1

xjyj

with associated quadratic form

�p,q((x1, . . . , xn)) =
pX

i=1

x2

i �
nX

j=p+1

x2

j .
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The group SO(p, q) is the set of all n⇥n-matrices (with
n = p + q)

SO(p, q) = {A 2 GL(n,R) | A>Ip,qA = Ip,q, det(A) = 1}.

If we write

A =

✓
P Q
R S

◆
, P 2 Mp(R), Q 2 Mq(R)

then it is shown in O’Neill [38] (Chapter 9, Lemma 6) that
the connected component SO0(p, q) of SO(p, q) contain-
ing I is given by

SO0(p, q) = {A 2 GL(n,R) | A>Ip,qA = Ip,q,

det(P ) > 0, det(S) > 0}.
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For both SO(p, q) and SO0(p, q), the inverse is given by

A�1 = Ip,qA
>Ip,q.

This implies that the map � : SO0(p, q) ! SO0(p, q)
given by

�(A) = Ip,qAIp,q = (A>)�1

is an involution, and its fixed subgroup G� is given by

G� =

⇢✓
Q 0
0 R

◆
| Q 2 SO(p), R 2 SO(q)

�
.

Thus G� is isomorphic to SO(p) ⇥ SO(q).
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For p, q � 1, the Lie algebra so(p, q) of SO0(p, q) (and
SO(p, q) as well) is given by

so(p, q) =

⇢✓
B A
A> C

◆
| B 2 so(p), C 2 so(q),

A 2 Mp,q(R)
�

.

Since ✓ = d�I is also given by ✓(X) = Ip,qXIp,q = �X>,
we find that the +1-eigenspace k of ✓ is given by

k =

⇢✓
B 0
0 C

◆
| B 2 so(p), C 2 so(q)

�
,

and the �1-eigenspace m of ✓ is is given by

m =

⇢✓
0 A

A> 0

◆
| A 2 Mp,q(R)

�
.
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Note that k is a subalgebra of so(p, q) and so(p, q) =
k � m.

Write G = SOo(p, q) and K = SO(p) ⇥ SO(q).

We define an Ad(K)-invariant inner product on so(p, q)
by

hX, Y i = 1

2
tr(X>Y ).

Therefore, for p, q � 1, the coset space
SO0(p, q)/(SO(p) ⇥ SO(q)) is a symmetric space.

Observe that on m, the above inner product is given by

hX, Y i = 1

2
tr(XY ).
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On the other hand, in the case of
SO(p+ q)/(SO(p)⇥SO(q)), on m, the inner product is
given by

hX, Y i = �1

2
tr(XY ).

This space can be described explicitly.

Indeed, let G⇤(q, p + q) be the set of q-dimensional sub-
spaces W of Rn = Rp+q such that �p,q is negative definite
on W .

Then we have an obvious matrix multiplication action of
SO0(p, q) on G⇤(q, p + q), and it is easy to check that
this action is transitive.
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It is not hard to show that the stabilizer of the subspace
spanned by the last q columns of the (p + q) ⇥ (p + q)
identity matrix is SO(p)⇥SO(q), so the space G⇤(q, p+
q) is isomorphic to the homogeneous (symmetric) space
SO0(p, q)/(SO(p) ⇥ SO(q)).

Definition 20.14. The symmetric space G⇤(q, p+q) ⇠=
SO0(p, q)/(SO(p)⇥SO(q)) is called the hyperbolic Grass-
mannian .

Assume that p + q � 3, p, q � 1. Then it can be shown
that the Killing form on so(p, q) is given by

B(X, Y ) = (p + q � 2)tr(XY ),

so so(p, q) is semisimple.
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If we write

X =

✓
B1 A1

A>
1

C1

◆
, Y =

✓
B2 A2

A>
2

C2

◆
,

then

B(X, Y ) = (p + q � 2)(tr(B1B2) + tr(C1C2))

+ 2(p + q � 2)A>
1
A2.

Consequently, B is negative definite on k and positive def-
inite onm, so G⇤(q, p+q) = SO0(p, q)/(SO(p)⇥SO(q))
is another example of a symmetric space of noncompact
type.
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We leave it to the reader to compute h[[X, Y ], X ], Y i,
where

X =

✓
0 A

A> 0

◆
, Y =

✓
0 B

B> 0

◆
,

and check that

h[[X, Y ], X ], Y i = �hBA> � AB>, BA> � AB>i
� hA>B � B>A, A>B � B>Ai,

which shows that the sectional curvature is nonpositive.
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In fact, the above expression is the negative of the expres-
sion that we found for the sectional curvature of
G0(p, p + q).

When p = 1 or q = 1, we get a space of constant negative
curvature.

The above property is one of the consequences of the fact
that the spaceG⇤(q, p+q) = SO0(p, q)/(SO(p)⇥SO(q))
is the symmetric space dual to
G0(p, p+ q) = SO(p+ q)/(SO(p)⇥SO(q)), the Grass-
mannian of oriented p-planes;

see O’Neill [38] (Chapter 11, Definition 37) or Helgason
[21] (Chapter V, Section 2).
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5. Compact Lie Groups

If H be a compact Lie group, then G = H ⇥ H acts on
H via

(h1, h2) · h = h1hh�1

2
.

The stabilizer of (1, 1) is clearly
K = �H = {(h, h) | h 2 H}.

It is easy to see that the map

(g1, g2)K 7! g1g
�1

2

is a di↵eomorphism between the coset space G/K and H
(see Helgason [21], Chapter IV, Section 6).
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A Cartan involution � is given by

�(h1, h2) = (h2, h1),

and obviously G� = K = �H .

Therefore, H appears as the symmetric space G/K, with
G = H ⇥ H , K = �H , and

k = {(X, X) | X 2 h}, m = {(X, �X) | X 2 h}.

For every (h1, h2) 2 g, we have

(h1, h2) =

✓
h1 + h2

2
,
h1 + h2

2

◆
+

✓
h1 � h2

2
, �h1 � h2

2

◆

which gives the direct sum decomposition

g = k � m.
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The natural projection ⇡ : H ⇥ H ! H is given by

⇡(h1, h2) = h1h
�1

2
,

which yields d⇡(1,1)(X, Y ) = X � Y (see Helgason [21],
Chapter IV, Section 6).

It follows that the natural isomorphism m ! h is given
by

(X, �X) 7! 2X.

Given any bi-invariant metric h�, �i on H , define a met-
ric on m by

h(X, �X), (Y, �Y )i = 4hX, Y i.
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The reader should check that the resulting symmetric
space is isometric to H (see Sakai [43], Chapter IV, Ex-
ercise 4).

More examples of symmetric spaces are presented in Ziller
[48] and Helgason [21].

To close our brief tour of symmetric spaces, we conclude
with a short discussion about the type of symmetric spaces.
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20.10 Types of Symmetric Spaces

Suppose (G, K, �) (G connected andK compact) presents
a symmetric space with Cartan involution �, and with

g = k � m,

where k (the Lie algebra of K) is the eigenspace of d�1 as-
sociated with the eigenvalue +1 andm is is the eigenspace
associated with the eigenvalue �1.

If B is the Killing form of g, it turns out that the restric-
tion of B to k is always negative semidefinite.

This will be shown as the first part of the proof of Propo-
sition 20.36.
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However, to guarantee that B is negative definite (that
is, B(Z, Z) = 0 implies that Z = 0) some additional
condition is needed.

This condition has to do with the subgroup N of G de-
fined by

N = {g 2 G | ⌧g = id}
= {g 2 G | gaK = aK for all a 2 G}.

By setting a = e, we see that N ✓ K.

Furthermore, since n 2 N implies na�1bK = a�1bK for
all a, b 2 G, we can readily show that N is a normal
subgroup of both K and G.

It is not hard to show that N is the largest normal sub-
group that K and G have in common (see Ziller [48]
(Chapter 6, Section 6.2).
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We can also describe the subgroup N in a more explicit
fashion. We have

N = {g 2 G | gaK = aK for all a 2 G}
= {g 2 G | a�1gaK = K for all a 2 G}
= {g 2 G | a�1ga 2 K for all a 2 G}.

Definition 20.15. For any Lie group G and any closed
subgroup K of G, the subgroup N of G given by

N = {g 2 G | a�1ga 2 K for all a 2 G}

is called the ine↵ective kernel of the left action of G on
G/K.

The left action of G on G/K is said to be e↵ective (or
faithful) if N = {1}, almost e↵ective if N is a discrete
subgroup.
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If K is compact, which will be assumed from now on,
since a discrete subgroup of a compact group is finite, the
action of G on G/K is almost e↵ective if N is finite.

For example, the action · : SU(n + 1) ⇥ CPn ! CPn

of SU(n + 1) on the (complex) projective space CPn

discussed in Example (e) of Section 5.3 is almost e↵ective
but not e↵ective.

It presents CPn as the homogeneous manifold

SU(n + 1)/S(U(1) ⇥ U(n)) ⇠= CPn.

We leave it as an exercise to the reader to prove that the
ine↵ective kernel of the above action is the finite group

N = {�In+1 | �n+1 = 1, � 2 C}.
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It turns out that the additional requirement needed for
the Killing form to be negative definite is that the action
of G on G/K is almost e↵ective.

The following technical proposition gives a criterion for
the left action of G on G/K to be almost e↵ective in
terms of the Lie algebras g and k. This is Proposition
6.27 from Ziller [48].

Proposition 20.35. The left action of G on G/K
(with K compact) is almost e↵ective i↵ g and k have
no nontrivial ideal in common.

Proposition 20.36. Let (G, K, �) be a symmetric space
(K compact) with Cartan involution �, and assume
that the left action of G on G/K is almost e↵ective.
If B is the Killing form of g and k 6= (0), then the
restriction of B to k is negative definite.
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In view of Proposition 20.36, it is natural to classify sym-
metric spaces depending on the behavior of B on m.

Definition 20.16. Let M = (G, K, �) be a symmetric
space (K compact) with Cartan involution � and Killing
form B. The space M is said to be of

(1) Euclidean type if B = 0 on m.

(2) Compact type if B is negative definite on m.

(3) Noncompact type if B is positive definite on m.



1066 CHAPTER 20. MANIFOLDS ARISING FROM GROUP ACTIONS

Proposition 20.37. Let M = (G, K, �) be a symmet-
ric space (K compact) with Cartan involution � and
Killing form B. The following properties hold:

(1) M is of Euclidean type i↵ [m,m] = (0). In this
case, M has zero sectional curvature.

(2) If M is of compact type, then g is semisimple and
both G and M are compact.

(3) If M is of noncompact type, then g is semisimple
and both G and M are non-compact.

Symmetric spaces of Euclidean type are not that inter-
esting, since they have zero sectional curvature.
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The Grassmannians G(k, n) and G0(k, n) are symmetric
spaces of compact type, and SL(n,R)/SO(n), H+

n (1) =
SO0(n, 1)/SO(n), and the hyperbolic Grassmannian
G⇤(q, p + q) = SO0(p, q)/(SO(p) ⇥ SO(q)) are of non-
compact type.

Since GL+(n,R) is not semisimple,
SPD(n) ⇠= GL+(n,R)/SO(n) is not a symmetric space
of noncompact type, but it has many similar properties.

For example, it has nonpositive sectional curvature and
because it is di↵eomorphic to S(n) ⇠= Rn(n�1)/2, it is
simply connected.

Here is a quick summary of the main properties of sym-
metric spaces of compact and noncompact types. Proofs
can be found in O’Neill [38] (Chapter 11) and Ziller [48]
(Chapter 6).
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Proposition 20.38. Let M = (G, K, �) be a symmet-
ric space (K compact) with Cartan involution � and
Killing form B. The following properties hold:

(1) If M is of compact type, then M has nonnega-
tive sectional curvature and positive Ricci curva-
ture. The fundamental group ⇡1(M) of M is a
finite abelian group.

(2) If M is of noncompact type, then M is simply con-
nected, and M has nonpositive sectional curvature
and negative Ricci curvature. Furthermore, M is
di↵eomorphic to Rn (with n = dim(M)) and G is
di↵eomorphic to K ⇥ Rn.

There is also an interesting duality between symmetric
spaces of compact type and noncompact type, but we
will not discuss it here.
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We conclude this section by explaining what the Stiefel
manifolds S(k, n) are not symmetric spaces for 2  k 
n � 2.

This has to do with the nature of the involutions of so(n).
Recall that the matrices Ip,q and Jn are defined by

Ip,q =

✓
Ip 0
0 �Iq

◆
, Jn =

✓
0 In

�In 0

◆
,

with 2  p + q and n � 1. Observe that I2

p,q = Ip+q and
J2

n = �I2n.
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It is shown in Helgason [21] (Chapter X, Section 2 and
Section 5) that, up to conjugation, the only involutive
automorphisms of so(n) are given by

1. ✓(X) = Ip,qXIp,q, in which case the eigenspace k of ✓
associated with the eigenvalue +1 is

k1 =

⇢✓
S 0
0 T

◆ ���� S 2 so(k), T 2 so(n � k)

�
.

2. ✓(X) = �JnXJn, in which case the eigenspace k of ✓
associated with the eigenvalue +1 is

k2 =

⇢✓
S �T
T S

◆ ���� S 2 so(n), T 2 S(n)

�
.
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However, in the case of the Stiefel manifold S(k, n), the
Lie subalgebra k of so(n) associated with SO(n � k) is

k =

⇢✓
0 0
0 S

◆ ���� S 2 so(n � k)

�
,

and if 2  k  n � 2, then k 6= k1 and k 6= k2.

Therefore, the Stiefel manifold S(k, n) is not a symmetric
space if 2  k  n � 2.

This also has to do with the fact that in this case,
SO(n � k) is not a maximal subgroup of SO(n).
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